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Abstract

In this paper, we propose a new solution to the field equations of general relativity

by considering the case of a perfectly spherical and irrotational black hole of uniform

and constant density whose size is cosmological. Due to the expansion of the universe,

the axial coordinate of its interior should expand at the same rate as the scale factor

of the Friedman-Lemaître-Robertson-Walker cosmology, making the body’s volume

grow proportional to a3. We study the consequences of the black hole not falling

apart due to its diminishing density, as a result of which we encounter that it must

gain mass presumably from its interior dark energy. We also show how black holes

cannot coexist in the same universe with white holes if Λ ̸= 0. Namely, we conclude

that a white hole can only exist with Λ ≤ 0 and black holes with Λ ≥ 0 (like ours),

being a compelling explanation as to why we have not found any so far. Only when

Λ = 0 could both bodies been observed, although not necessarily.

Keywords: cosmology, black holes, white holes, dark energy, astrophysics, general rela-
tivity.
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1 Introduction

Since Schwarzschild’s discovery of the metric that bears his name, we have known about the
singularity that occurs at the centre of an irrotational, perfectly spherical and electrically
uncharged black hole. According to the work developed by the German researcher, when
a certain amount of mass M is concentrated in a spherical region of radius rs = 2GM/c2,
where G is the gravitational constant and c is the speed of light in a vacuum, then a black
hole is formed. It is characterised by the fact that nothing can escape from it once inside,
since the escape velocity is greater than c.

Also, since the work of Friedman, Lemaître, Robertson and Walker, and subsequent
confirmation by Hubble, we know that the universe is expanding, although this effect is only
visible at cosmological scales (megaparsecs). Such an expansion should also be observed in
the interior of an extraordinarily large black hole, if such a body could ever form. In that
scenario, it could happen that the distance between particles at the outermost and central
regions of the black hole grows at a rate such that they could not come significantly closer.
In fact, it may happen that the expansion velocity is greater than the particle’s motion
speed, and thus the particles will be moving away from each other. And from the black
hole’s centre of mass as well.

This would be the scenario experienced by any observer inside the black hole. The
proper radial distance between the hole’s centre and its position would be infinite, as the
singularity at r = 0 points out, so the observer inexorably experiences this dilation effect
in its entirety. After all, it is at a (more than) cosmological scale. Hence, a black hole
could fall apart if its mass is conserved but its radial coordinate r increases until it exceeds
the Schwarzschild radius. If r > rs were to occur, then inevitably the black hole and its
singularity would be torn apart, leaving a pool of mass that expands indefinitely along with
the expansion of the universe itself.

In this paper, we study this scenario. To do so, we detail a new solution to the Einstein
field equations in which we take into account the expanding effect of the spatial coordinates
inside the spherical body. We then come to a number of conclusions which are listed in the
corresponding section at the end of this article. Among them are (1) the impossibility for
white and black holes to coexist in the same universe with a non-zero cosmological con-
stant —one or the other are exclusive to universes in which Λ ≤ 0 or Λ ≥ 0, respectively—;
(2) dark energy interaction with the black hole and how the latter gains energy from the
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former; as well as (3) why evaporation due to Hawking radiation cannot occur for any
dark-energy-expanding black hole. All these inferences can be proven right or wrong de-
pending on the empirical results obtained by astronomical observation: this theory predicts
black hole’s volume will grow a3 over time, being a the scale factor of Friedman-Lemaître-
Robertson-Walker cosmology. This is because the following solution is based on a principle
of permanence: despite the expansion of the universe, the black hole does not fall apart
but grows proportionally by gaining mass in the process.

2 New solution to the field equations of general relativity

Imagine the reader a black hole of cosmological size, perfectly spherical, electrically un-
charged, irrotational, and whose matter and energy density are both uniform and constant
in any region of it. If outside the body there is only dark energy (represented by the
cosmological constant), this leaves the field equations as follows:

Rµν −
1

2
Rgµν + Λgµν = 0 (1)

Since we are dealing with cosmological scales, Λgµν does not become negligible and we
cannot ignore it. If we operate Eq. (1) by multiplying by gµν both sides of the equation to
find the Ricci scalar R, we are left with:

Rµνg
µν − 1

2
Rgµνg

µν + Λgµνg
µν = 0

Rµ
µ −

1

2
Rδµµ + Λδµµ = 0

R = 4Λ

(2)

Similarly, replacing R = 4Λ in Eq. (1) we find that:

Rµν = Λgµν (3)

Given the characteristics of the black hole we are analysing, the distances between any two
points far apart in its interior would have to reflect the expansion of the universe we see
driven by dark energy, so we must scale its basis vectors by the usual scale factor a (t) ≥ 1∀t
in the Friedman-Lemaître-Robertson-Walker metric. Thus, assuming that the hole we are
analysing maintains at all times a radius equivalent to the Schwarzschild radius rs, we have:

ra = ars =
2GM

c2
a (4)
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Assuming that the time scaling of ra is not due to a changing gravitational constant G or
vacuum velocity of light c, then we have that for this growth in the radial extension of the
black hole is by a proportional increase in the mass M it contains, which becomes explicitly
time dependent. The Schwarzschild metric thus becomes:

ds2 = c2
(
1− ra

r

)
dt2 − a2

(
1− ra

r

)−1

a dr2 − a2r2
(
dθ2 + sin2 θdϕ2

)
− 2cadω2 (5)

where dω2 = A (t, r) dt dr+B (t, r) dt dθ+ C (t, r) dt dϕ and A, B and C are explicitly time
and radial coordinate dependent functions. We know this because:

(1) At a (t0) = 1, the metric should reduce to the Schwarzschild one, entailing A = B =

C = 0 at t0 (the instant of the black hole’s formation). This also requires Λ = 0 to
arrive at Rµν = 0. This means that it is not sufficient only to have a constant scale
of a = 1: it also needs the time symmetry that appears without considering dark
energy. Therefore, dω2 is implicitly time-dependent.

(2) When r → ∞, the metric must reduce to the Friedman-Lemaître-Robertson-Walker
metric while maintaining the expanding character at a distance far enough away that
the effect of the black hole mass does not curve space. Therefore, dω2 is also radius
dependent.

At first glance, we cannot know the values of the three functions except at infinity and t0,
when all of them tend to zero. Notice that the values of ∂θ and ∂ϕ get bigger when we go
away from the centre of the sphere (as happens with time), so time and angular coordinates
are not orthogonal to each other. Nonetheless, we may find useful information transforming
the metric to Eddington-Finkelstein coordinates, in which the expression of the Ricci tensor
greatly simplifies. To do this, we must find the equation for the path of an incoming light
beam following a radial trajectory parameterised by a variable λ. But, because of the three
functions A, B and C, we only know the values they will take at r → ∞ (by definition,
zero), and thus, we are only going to focus on the r → ∞ case. Following the development
we go from:

0 =

∥∥∥∥ d

dλ

∥∥∥∥2

(6)

To (defining λ = r):
∂ct

∂r
=

±a

c
(
1− ra

r

) (7)
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2.1 Eddington-Finkelstein coordinates (r → ∞ case)

To convert to Eddington-Finkelstein coordinates, we follow the usual procedure being A =

B = C = 0 at r → ∞. We define the basis vectors corresponding to the time delay u = ct∓r∗t

and the radial coordinate of the beam path rtraj = r, where r∗t =
a
c

(
r + ra ln

∣∣∣ r
ra

− 1
∣∣∣). By

solving for ct and r, we can solve for u and rtraj:

∂

∂u
=

∂ct

∂u

∂

∂ct
+

∂r

∂u

∂

∂r
=

∂

∂ct
∂

∂rtraj
=

∂ct

∂rtraj

∂

∂ct
+

∂r

∂rtraj

∂

∂r
=

∂

∂r
± ∂

∂ct

a

c

(
1− ra

r

)−1 (8)

This leads us to the values of the metric we are looking for:

guu =

(
∂

∂u

)2

= c2
(
1− ra

r

)
grr =

(
∂

∂rtraj

)2

= 0

gur = gru =
∂

∂u

∂

∂rtraj
= ±ca

(9)

Where grr = 0 as expected for the case r → ∞. Thus, in this scenario, the metric reduces
to the Schwarzschild metric scaled by a:

gµν =


c2
(
1− ra

r

)
0 0 0

0 −a2
(
1− ra

r

)−1

0 0

0 0 −a2r2 0

0 0 0 −a2r2 sin2 θ

 (10)

In Eddington-Finkelstein coordinates:

gµν =


c2
(
1− rα

r

)
±cα 0 0

±cα 0 0 0

0 0 −α2r2 0

0 0 0 −α2r2 sin2 θ

 (11)

Both expressed under the convention
(
+ − − −

)
, with α ≡ a(u, r) denoting the scale

factor, which becomes dependent on both u and r. Overall, we have confirmed the de-
creasing character of gtr and gur with r as well as the property that this metric reduces
appropriately to the Friedman-Lemaître-Robertson-Walker or Schwarzschild metrics as the
case may be:
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(1) If we calculate the limit of A, B and C when r → ∞ we see that they give zero,
together with the elements inversely proportional to r in gtt and grr. Thus, when
r → ∞ the metric reduces to the Friedman-Lemaître-Robertson-Walker metric.

(2) On the other hand, if we define a = 1 for all values of t, then the time symmetry
causes the non-diagonal components of the metric to cancel out. Also, given the unit
value of the scale factor, this would reduce the value of the diagonal to the same as the
Schwarzschild metric diagonal. However, it should be noted that we can only define
a = 1 constant if also Tµν = Λgµν = 0 as null constants: otherwise, even if a = 1, if
it is also true that ∂cta > 0 then the metric will not reduce to the Schwarzschild one.
Therefore, the expression of α is completely unknown, since it does not necessarily
reduce to 1 when r → ∞ due to the lack of time symmetry.

3 Theoretical consequences of the metric

3.1 Black and white holes can only coexist when Λ = 0

By the properties of the Christoffel symbols, the Ricci tensor will not be affected by the
sign we choose in gur = gru for the case r → ∞. Thus, we arrive via Eq. (3) by equating
Rur = Λgur:

Λ = ∓

[
GMα′

c2r2α2
+

α′α̇

cα3
− GMα′′

c2rα2
− GM (α′)2

c2rα3
− 3α̇′

cα2
− 2α̇

crα2

]
(12)

Where the content inside the brackets is a constant equivalent to the cosmological constant.
For brevity, we have added a dot on top of the corresponding letters to represent the partial
derivative with respect to u and the primed ones represent their partial derivatives with
respect to r.

Because of a property of the Ricci tensor, which does not change its components sign
even when the metric does, then the expression inside the bracket in Eq. (12) must also
keep its sign for both the ingoing and outgoing versions of Eq. (11). However, the presence
of ∓ does change the value of the cosmological constant to positive or negative as the case
may be. As we can see, for an ingoing metric ∓ becomes positive, while for the outgoing
one the negative counterpart is chosen. This means that in order to have a black hole or
a white hole, cosmological constants of opposite sign or equal to zero (where the ∓ term
would be irrelevant) are necessary. Considering that we have only sighted black holes and
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the measurements point to a positive cosmological constant [CK01], we deduce that the
expression inside the parenthesis is also positive. Thus, the equation tells us that a black
hole (ingoing) can only occur with Λ ≥ 0 and a white hole (outgoing) only with Λ ≤ 0,
being both able to coexist in the same universe only when Λ = 0.

Other works in the literature have also discussed theoretical hurdles to encounter a
white hole. They would suffer an exponentially growing instability that converts them into
black holes [E23], effectively denying us the ability to witness one. Furthermore, even if
formally possible, causality does not hold in classical white hole solutions and thus they
lack of physical sense [G22a], making them impossible to form in reality. Our solution goes
to a more fundamental level, directly negating their existence in a universe with Λ > 0.
Used in combination with cited works, there is a good chance that white holes do not
appear in a universe with Λ ≤ 0 either.

3.2 Gaining energy

The volume V of this metric is given by the spatial integral over the volume component in
the region Ω occupied by the black hole, which is:

V =

∫
Ω

√
−g dr dθ dϕ (13)

The volume expression reduces to Schwarzschild’s scaled by a3 for an observer infinitely far
from the body:

V =
4

3
πR3a3 (14)

As we have said, this is correct as long as we consider a large r. In our case, where we have
a cosmological black hole, this principle also holds, so the volume of our imaginary body
grows proportionally to a3. Thus, equating R = rs, we have:

V =
8πG3M3a3

3c6
(15)

For a black hole whose radius always remains fixed at the Schwarzschild radius as the
expansion proceeds. However, if this property is fulfilled, whereby although the space
within the black hole’s event horizon increases and its amount of energy and baryonic
matter remains constant, then if the black hole’s volume keeps growing constantly and
proportionally to a3 this leads us to conclude that the body gains mass for each additional
infinitesimal radial unit whose volume growth reflects.
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As we posed at the beginning of the paper, this energy increment proportional to a3

must be, in case of occurring, due to the expansion of space inside the black hole. For a
sufficiently large one, the spacetime of an interior region close to its event horizon is closely
Minkowskian. This implies, that the expansion of the universe may happen on it. Rolling
this logic back to small black holes, any level of expansion inside any black hole would
produce an attainment of mass equivalent to the dark energy “produced” by the interior
expansion, meaning that this form of energy interacts with the black hole and should be
taken into account to measure its total mass.

[F23] provided observational evidence consistent with our results, although by using a
distinct theoretical background. They support their findings based on a Kerr metric embed-
ded in an expanding universe, with strong spin, arbitrary Robertson-Walker asymptotics,
dynamical mass, and interior vacuum energy equation of state. Even though they do not
propose a formal solution with all these properties, they arrived at a value of k = 3.11+1.19

−1.33

for V ∝ ak at 90% confidence by examining the growth of supermassive black holes in
elliptical galaxies over 0 < z ≲ 2.5. As we can see, k = 3 falls within the range of possible
values at this interval, excluding k = 0 at 99.98% confidence.

The simplest solution including both the cosmological constant and a spherical body in
general relativity is the de Sitter-Schwarzschild metric, which describes a black hole in a
causal patch of de Sitter space. This spacetime has a non-zero cosmological constant that
affects its dynamics, counting with a cosmological horizon. Nonetheless, in this solution the
black hole does not undergo any expansion, consequently assuming no interaction between
it and dark energy takes place. Other approaches have demonstrated how, considering a
black hole universe, an expansion inside a black hole can occur in co-moving coordinated
without having to draw upon dark energy to explain it [G22b,23], as rs can work as a
cosmological constant (with Λ = 3/r2s). In physical or proper coordinates though, its
behaviour becomes asymptotically static.

3.3 Evaporation

The increase in mass of the black hole we are analysing occurs at a much faster rate than
that of the Hawking radiation, so it is of interest to find out what size requirements the
body would have to meet in order to actually evaporate. The time it takes to evaporate is
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given by [LP03]:

tev =
5120πG2M3

ℏc4
=⇒ M =

3

√
ℏc4tev

5120πG2
(16)

If we consider that spacetime doubles in size every 1010 years, we can define tev ≈ 1010 yr
and rs = 2GM/c2 as the Schwarzschild radius, giving rs ≈ 7.3 × 10−19 m with M ≈
4.92 × 108 kg ≈ 2.46 × 10−22M⊙, where M⊙ is a solar mass. In case it’s dark energy
the cause of the universe’s expansion, as all black holes should interact with this energy
according to our solution, it follows that these calculations tell us that no known black
holes, whose masses are greater than a solar mass, will ever eventually evaporate. It is also
difficult to devise a process by which a black hole of radius rs ≈ 7.3× 10−19 m could ever
form [Y23] —if anything, we know that it would be caused by fluctuations in the density
of the universe [H13]— so it is possible that nature itself is settled for a strict lack of such
a process so that no black hole could ever disappear. However, because we are not certain
that the universe could be arranged in such a way, we cannot say that 7.3 × 10−19 m, is
any lower limit to the radius a black hole can have. Even though it is difficult to think of a
way to concentrate 4.92× 108 kg in a perfectly symmetrical sphere smaller than the upper
limit for a quark.

4 Conclusion

In this article, we have presented a new solution to the Einstein field equations in which
we consider the possible effects that the expansion of the universe could have on the be-
haviour and evolution of a black hole. For this purpose, we have considered a Schwarzschild
black hole whose radial coordinate is scaled according to the Friedman-Lemaître-Robertson-
Walker scale factor. Thanks to this, we have been able to develop the equations to find a
set of mathematical expressions helping us to conclude:

(1) In a universe there can only and exclusively be white or black holes, depending on
Λ < 0 or Λ > 0, respectively. Both bodies could only coexist (even though not
necessarily) when Λ = 0.

(2) Black holes whose interior expands (presumably all black holes, not only large ones),
gain mass by incorporating to theirs the emerging dark energy. That is the only
way an expanding black hole can keep from disappearing (caused by a reduction in
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pressure) if it does not absorb any outer mass. Nonetheless, this does not mean that
black holes are the source of dark energy; rather, it implies that these bodies can
interact with it.

(3) No expanding black hole can ever evaporate, since Hawking radiation is extremely
slow compared to the emergence of additional mass.

For these three conclusions to be fulfilled, the assumption we have made throughout the
article must also be correct:

(4) The expansion of the universe takes place in the interior of black holes too, whose
volume must therefore grow at a rate directly proportional to a3 for an observer at a
large distance from it.

Consequently, the black hole gains mass (energy) whose source is presumably dark energy
itself. This last point, that a black hole grows at a rate equivalent to the rate of the universe,
is a prediction that can be experimentally verified by observation. As we mentioned,
recently [F23] provided substantial evidence pointing to the fact that for low redshift (z ≲

2.5) the prediction is true at a 90% confidence level. On the other hand, [Le23] did not find
any correlation whatsoever for active galactic nuclei at high redshifts of z > 4. Further and
more precise data is required yet to validate or reject the proposals of this paper.
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