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Abstract

This article is a continuation of the study of the Model Full Two-Body Problem

(F2BP) using nodal polar variables (r, θ, h,R,Θ, H) and Andoyer (ν, µ, λ,N,M,Λ).

We consider a 2-DOF approximation Hr,ν determined from the only dependent term

of the variables (r, ν) of the potential by MacCullagh. In the analytical study of

the relative equilibria, we recover the classical equilibria of the unperturbed model, as

well as equilibria of the roto-orbital model in global variables called inclined equilibria,

characterized by being dependent on the radius of triaxiality ρ = J22/J2, specifically

related to the critical value ρ = 1/3, perpendicular equilibria and special shaped

equilibria, where we exclude the equilibria defined in the limit or coplanar case. It is

also shown the explicit influence of the slow nature of the rotations for the existence

of these equilibria.

In addition, numerical simulations are carried out between this model and the

MacCullagh model with values close to these equilibria under conditions of systems

of similar mass, in particular for the Didymos-Dymorphos asteroid system and the

DART asteroid-spacecraft system. From the corresponding numerical analysis we

conclude that our model has better performance in the case of families of relative

equilibria when ν = π/2, 3π/2 with N 6= 0 and when the secondary field is more close

to line symmetry.
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1 Introduction

In this work we analyze the roto-orbital dynamics of celestial systems based on binary
sets of stars. The system called 65803 Didymos is current, formed by a main body
(Didymos) and a secondary one called Dimorphos. In the [Dell’Elce et al, 2017] article,
data related to physical and dynamic parameters of the roto-orbital system are shown, as
well as an astrodynamic study of a restricted three-body problem. There are other models
such as the Moshup and Squannit (KW4) system, studied in [Oliveira, Prado, 2020], where
the main body can be considered spherical and the secondary body is triaxial. We are also
interested in artificial asteroid-satellite models, so that we can determine interesting orbital
zones for future space missions.

In our study, for the analysis of these systems, we consider a particular case of the
F2BP, which is the result of several simplifications due to a series of physical assumptions,
so that we define an approximate non-integrable model of the main problem designed by
adding some terms from the gravitational gradient perturbation. Our intention through this
approximate model is to know the roto-orbital dynamics of binary systems like Didymos-
Dimorphos and establish a degree of validity of our approximation.

Our study is parallel to the article [Zapata and al., 2019] where the relative equilibria
in slow rotation in Poisson variables of the model Hr,ν are analyzed, so that the equilibria
in the singularities of the variables can be analyzed. We also find in [Crespo, Ferrer, 2018]
a model where the value ρ = 1/3 connects a family of relative equilibria with unstable
equilibria of the free rigid body. The relative equilibria that are analyzed in our work differ
from the classic model and capture some equilibria of these works.
Other works or articles exist under this scenario of treatment of the roto-orbital dynamics,

see [Kinoshita, 1972, Ferrándiz, 1979], or [Ferrer, Molero, 2014a, Ferrer, Molero, 2014b],
where two roto-orbital intermediates are analyzed with an extra simplification, based on
considering that the secondary body is in a relative equilibrium of the orbital dynamics,
in particular describing a circular orbit around the central body. Other more current
articles whose methodology we follow in this work are [Cantero, Crespo, Ferrer, 2018],
[Cantero, Crespo, Ferrer, 2019] where a radial intermediary is shown.
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This article is a new contribution to the previous models, which we denote by Hr,ν ,
which is an approximation of 2-DOF, defined with the contribution of the Hamiltonian
of the orbital part, not contemplated in the [Ferrer, Molero, 2014a] model, in which the
secondary body is considered to be in an orbit of constant or circular radius.

Regarding the coordinate system, we use Nodal Polar variables (orbital movement) and
Andoyer variables (rotational movement), see [Soler, 2016].

The structure of the article is as follows: in Section 2 we present the general problem,
in Section 3 we introduce the model under study, in Section 4 the relative equilibria are
studied and in Section 5 the numerical analysis is carried out.

2 Approximate models for the FG2BP

In the first place, we define some hypotheses on which we will rely in order to simplify
or reduce the initial problem, called the Full Two-Body Problem (F2BP).

• H1 Relative motion coordinates: The inertial reference frame is on the main body

• H2 Shape and mass distribution of Bp: The main body Bp (mass mp) has spherical
symmetry.

• H3 Size of the bodies: The dimensions of the secondary body are small compared to
the distance between the centers of mass of the two bodies.

We are interested in the roto-translatory dynamics of two bodies, under gravitational-
gradient interaction, when we assume that the main body is a sphere (Hypothesis H2 ). In
other words, we focus on the dynamics of the second body, being this an asteroid, satellite,
etc. In addition, the distance between both bodies at all times is assumed such that the
development of the potential can be truncated considering the MacCullagh approximation
[MacCullangh, 1840] (Hypothesis H3 ). Then, denoting by TO, TR the orbital and rotational
energy and P the potential, the Hamiltonian function is given by

H = TO + TR + P

= TO + TR −
κm

r
+ V

= HK +HR + V, (1)
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where
eq : masareducidaκ = G(mp +ms), m =

mpms

mp +ms

,

where we have that G is the gravitational constant, r is the distance between the centers of
mass of both bodies and m is the reduced mass. The potential is usually divided into two
parts: a term that depends only on 1/r and V , called the disturbing potential. As a result
of this, we have HK = TO − κm/r is the Keplerian part of the system and HR = TR refers
to the system of the free solid.

For the orbital part of the motion we will use the nodal polar variables (r, θ, h, R,Θ, H)

[Whittaker, 1937] and the rotational part the Andoyer variables (ν, µ, λ,N,M,Λ), see
[Andoyer, 1923], also named after Serret [Tisserand, 1891, Deprit, Elipe, 1993]. so the
Hamiltonian expression has the following form

HK =
1

2m

(
R2 +

Θ2

r2

)
− κm

r
, (2)

HR =
q

2

[(
sin2 ν

A
+

cos2 ν

B

)
(M2 −N2) +

N2

C

]
, (3)

where q = m/ms, and {A,B,C} are the three main moments of inertia, defined in such a
way that A ≤ B ≤ C.

(a) (b)

Figure 1: (a) Nodal Polar variables. (b) Andoyer Variables

The set of variables
(r, θ, h, ν, µ, λ,R,Θ, H,Λ,M,N)

is a set of symplectic variables with singularities at I = 0, π, and J = 0, π. See figure1
where the different sets of variables are represented.
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Gravity-gradient perturbing potential. The MacCullagh approximation.

For the purpose of formulating the perturbing potential, we assume that the dimensions
of the rigid solid are small compared to with the distance to the disturbing body, which
allows us to write V :

V = − κm

2msr3
(A+B + C − 3D) + h.o.t., (4)

where
D = Aγ21 +B γ22 + C γ23 , (5)

is the moment of inertia of the rigid body with respect to an axis in the direction of the
line joining the center of masses with the disturber, of direction cosines γ1, γ2, y γ3.

Replace (5) in (4) and taking into account that γ21+γ22+γ23 = 1, see [Arribas, Elipe, 1993],
we have to

V = − Gm
2msr3

[
(C −B)(1− 3γ23)− (B − A)(1− 3γ21)

]
, (6)

If the orbital plane is chosen as the inertial reference frame, since the variables h is not
present, then the reference frame can be expressed in the associated solid by the following
composition of rotations:

γ1

γ2

γ3

 = R3(ν)R1(J)R3(µ)R1(I)R3(φ)


1

0

0

 , (7)

where φ = λ− ϑ and ϑ is the polar coordinate of orbital motion.
So that, substituting γ1 y γ3 given in (7), in disturbing potential (6), and after some

calculations we have defined the potential of the so-called Full Model

V = − κm

32msr3

[
(2C −B − A)V1 +

3

2
(B − A)V2

]
, (8)

where the potential V is composed of V1, “axial-symmetrical part”, given by

V1 = (4− 6s2J) (2− 3s2I + 3s2I C2,0,0)

−12sJcJsI [(1− cI)C−2,1,0 + 2cI C0,1,0 − (1 + cI)C2,1,0]

+3s2J [(1− cI)2C−2,2,0 + 2s2I C0,2,0 + (1 + cI)
2C2,2,0] ,

which is independent of ν, y V2, “tri-axial part”, given by

59



V2 = 6s2Is
2
J (C2,0,−2 + C2,0,2)− 4(1− 3c2I)s

2
J C0,0,2

+(1 + cJ)2 [(1− cI)2C−2,2,2 + 2s2I C0,2,2 + (1 + cI)
2C2,2,2]

+(1− cJ)2 [(1− cI)2C−2,2,−2 + 2s2I C0,2,−2 + (1 + cI)
2C2,2,−2]

+4sIsJ (1 + cJ) [(1− cI)C−2,1,2 + 2cI C0,1,2 − (1 + cI)C2,1,2]

−4sIsJ (1− cJ) [(1− cI)C−2,1,−2 + 2cI C0,1,−2 − (1 + cI)C2,1,−2] ,

that carries ν.
Note also that

Ci,j,k ≡ cos(iφ+ jµ+ kν),

and that the notation has been abbreviated by writing

cI ≡ cos I, sI ≡ sin I, cJ ≡ cos J, y sJ ≡ sin J.

Since the variable h does not appear in the Hamiltonian induces that it is an integral
of the motion. The angles are given as a function of the Andoyer rotational moments, by
the following expressions

cos I = Λ/M, cos J = N/M.

3 Approximate model Hr,ν 2-DOF

We consider as the system defined by the following Hamiltonian function

Hr,ν = HK +HR + Vr,ν(r,−,−, ν,−,−, N,M,Λ),

where HK and HR are the expressions defined in 2 where the potential Vr,ν is a function of
the variables r, ν and the three rotational moments

Vr,ν = − κm

32msr3
[
(2C −B − A)(4− 6s2J)(2− 3s2I)− 6(B − A)(1− 3c2I)s

2
J cos 2ν

]
. (9)

Before starting the analysis of the model, we scale the moments of the system per unit
mass reduced m, and the moments of inertia per unit mass of the satellite or secondary
object ms. In other words, we perform the transformation
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R′ = R/m; Θ′ = Θ/m; H ′ = H/m, M ′ = M/m; N ′ = N/m; Λ′ = Λ/m, (10)

with
A′ = A/ms; B′ = B/ms; C ′ = C/ms. (11)

However, for the sake of simplicity for the rest of the article, we will eliminate the raw
variables and continue with the initial notation, knowing that the scaling proposed has
been carried out. In that case, in variables (r, θ, h, ν, µ, λ,R,Θ, H,N,M,Λ), we can express
the Hamiltonian per unit mass of the following form

Hr,ν =
1

2

(
R2 +

Θ2

r2

)
− κ

r
(12)

+
q

2

[(
sin2 ν

A
+

cos2 ν

B

)
(M2 −N2) +

N2

C

]
+
κ

r3
τ

(
2

3
− sin2 I

)(
2

3
− sin2 J(1− ρ cos 2ν)

)
.

We will put
ρ =

B − A
2C −B − A

> 0, τ = − 9

16
(2C −B − A) < 0.

where we have assumed that A < B < C.
For more information to the reader, the flattening coefficient ρ is defined as ρ = 2

J22
J2

,

where J2 =
2C −B − A

2 r2s
and J22 =

B − A
4 r2s

, where rs is the mean radius of the secondary

body, and where J2 and J22 are the ellipticity coefficient and the harmonic coefficient
associated.

We define the expression that is part of the disturbance as

∆∗ ≡ ∆∗(ν,N) = κ τ

[(
2

3
− sin2 I

)(
2

3
− sin2 J(1− ρ cos 2ν)

)]
, (13)

which depends or is a function of the angle ν and the moment N . In the appendix we
present the unperturbed roto-orbital model.

Triaxial body orbiting a sphere. Equations of motion.

We are going to study the case where the secondary body has triaxial geometry. In this
study we will make numerical comparisons and on the other hand we will look for possible
relative balances of the model in both sets of variables. We start with our initial model.
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The system of differential equations associated with the Hamiltonian (12) is given by

ṙ = R,

Ṙ =
1

r4
(
rΘ2 − κr2 + 3∆∗

)
,

ν̇ = N

[
q

D
(1− χ cos 2ν) +

κ

r3
2τ

M2

(
2

3
− sin2 I

)
(1− ρ cos 2ν)

]
,

Ṅ = (A−B) sin2 J

[
q

2AB
M2 +

9κ

8r3

(
2

3
− sin2 I

)]
sin 2ν,

(14)

where we have used for abbreviation the constants defined by Andoyer and Kinoshita
1

D
=

1

C
− 1

2

(
1

A
+

1

B

)
, χ =

C(B − A)

C(A+B)− 2AB
.

In addition, we have the following equations that may be solved by quadratures.

θ̇ =
Θ

r2
,

µ̇ =
qM

2

(
1

A
+

1

B

)[
1− B − A

A+B
cos 2ν

]
− κ

r3
2τ

M

{
cos2 I

(
cos2 J − 1

3

)
+ cos2 J

(
cos2 I − 1

3

)
+ ρ

[
cos2 I(1− cos2 J)−

(
cos2 I − 1

3

)
cos2 J

]
cos 2ν

}
,

λ̇ =
κ

r3
2τ

M
cos I

[(
2

3
− sin2 J

)
+ ρ sin2 J cos 2ν

]
,

(15)

and the integrals of the motion

ḣ = Ḣ = Θ̇ = Ṁ = Λ̇ = 0. (16)

The non-dependence of the Hamiltonian on the moment H induces that the variable
ḣ =0, so this variable is constant, and we can consider any inclination of the orbital plane.

Looking at these equations, note that this first Hamiltonian we just made is not
completely separable, as indicated by the subsystem (ν̇, Ṅ) of (14), which is not decoupled
since it contains the radial variable r, and the rotational variable N is not part of the set of
integrals of (16). In other words, the first model we have found is of two degrees of freedom
(2-DOF), or what is the same, the most basic non-integrable approximate intermediate that
we can find from roto-orbital motion. However, by basic we do not intend to say trivial,
since we are faced with a model that presents 5 integrals (parameters distinguished) and 3
physical parameters (the moments of inertia). In short, a system that depends on 8 fixed
quantities requires a deep analysis and thorough to know all the subcases of its dynamics.
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4 Relative equilibria

In this section we are going to determine the families of relative equilibria of the
differential system of motion (14) and (15). We start by recovering the classic equilibriums
of the roto-orbital problem. The reader can see Appendix A for the unperturbed roto-orbital
model and its associated relative equilibria.

4.1 Scenario 1. Extension of classical relative equilibria.

Consider the values for the variables ν and their conjugate moment N , ν = 0, π, N = 0

or the values ν = π/2, 3π/2, in the equation of λ̇ = 0 of the differential system (15) so we
have that

λ̇ =
κ

r3
2τ

M

(
±ρ− 1

3

)
= 0, (17)

so we have the options
cos I = 0⇒ Λ = 0, (18)

ρ =
1

3
, only if ν = 0, π, (19)

therefore we have that in the perturbed model there are relative equilibria for Λ = 0 and
there is a family of rigid bodies represented by the condition (19) for any arbitrary value
of M , see figure (2).

Figure 2: Family of solids represented in the parameter space as the red line L0 that represents the
equation ρ = 1/3. L1 is the line of solids of type prolate. L2 is the solid line of type flat. L3 is the solid
line of type oblate.

The modules of the radius vectors are given by the expression

r =
Θ2 +

√
Θ4 + 12κ∆∗

2κ
> rp, (20)
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where
∆∗ =

−κ τ
3

(
−1

3
± ρ
)
, (21)

where we take the minus when ν = 0, π and the plus if ν = π/2, 3π/2. So we can establish
the following result:

Proposition 4.1. Let the differential system of motion given by (14) and (15), there are
relative equilibria for the classical values N = 0, ν = 0, π or N = 0, ν = π/2, ν = 3π/2,
where the conditions (18) and (19) hold, and where the radius vectors have as modulus the
expression (20).

These equilibria correspond to the equilibria of [Crespo, Ferrer, 2018], which are called
Perpendicular Equilibria (Λ = 0), and Special Shape Equilibria (ρ = 1/3).

These equilibria are also determined in the article by [Kinoshita, 1970], where the
so-called spoke equilibria are determined, which are equilibria with the secondary body
aligned with the radius vector, but for axialsymmetric solids.

4.2 Scenario 2. Relative equilibria with N = 0 and Λ 6= 0.

Next, we begin the study of general relative equilibria in the perturbed model. In the
same way as before, we are going to start by analyzing when the differential equation for
λ̇ vanishes.

Estudio de la ecuación λ̇ = 0. We are interested in studying the possible values
when λ̇ = 0. In the first place, for any triaxial body, since sin 2I = 0, λ remains fixed for
I = k π/2, so the possible values of the moment are Λ = 0 and the limiting case M = |Λ|,
which is analyzed in [Crespo, Ferrer, 2018].

Another case for λ to be fixed, and solving for the equation λ̇ = 0 is the expression

cos 2ν =
3 sin2 J − 2

3ρ sin2 J
, (22)

where we consider N 6= M . We start from the assumption that N 6= 0. If we substitute
this value in ν̇ we get an expression of the form

ν̇ =
6Mqr3χ+ 4Dκ ρτ(1− 3 cos2 I) + 9Mqr3(ρ− χ) sin2 J

9 sin2 J DM2 ρ r3
N,

so if we want ν̇ = 0 then

6M2qr3χ+ 4Dκρτ(1− 3 cos2 I) + 9M2 q r3(ρ− χ) sin2 J = 0,
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and
r3ν =

−4κDρ τ(1− 3 cos2 I)

M2q(6χ+ 9(ρ− χ) sin2 J)
,

in moments of inertia

r3ν =
3κABC(A+B − 2C)(1− 3 cos2 I)

4M2q
(
(A+B − 2C)C + 3(A− C)(B − C) sin2 J)

) . (23)

This expression must verify the condition of rν > 0, which is verified in a certain region.
You should also check that rν > rp. Next, we will compare this expression with the one
that appears when studying the zeros of Ṅ = 0.
• Study of equations ṙ = Ṙ = ν̇ = Ṅ = 0. Apart from the fact that R = 0 is

immediate, the structure of the system defined for the other three equations suggests that
their study goes from the bottom up.

Considering Ṅ = 0. has four factors. In the following it is assumed that A 6= B. So,
there is only one type of possible solution under study associated with

q

2AB
M2 +

9κ

8r3

(
2

3
− sin2 I

)
= 0.

So we have to
r3N =

1

εA

1− 3 cos2 I

M2
> 0 (24)

where we have introduced εA as a function of the physical parameters

εA =
4

3

q

κ

1

AB
,

and 1− 3 cos2 I > 0, this means that we have the condition

0 < |Λ| <
√

1/3M. (25)

We equate the expressions (23) and (24). By clearing and simplifying we are left with
sin2 J = 0, which tells us that N = M , therefore it is a borderline case, since it is not in
the domain of Andoyer variables and is postponed for a later work. Therefore the only
possible case for ν̇ = 0 to be checked is for N = 0.

Now, if we substitute the condition N = 0 into (22), then we have

cos 2ν =
1

3ρ
< 1. (26)
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Therefore, there is a region in the parameter space, which represents a family of solids,
where we have relative equilibriums for different values of the angle ν. This expression
is decisive for all our subsequent analysis. These equilibria correspond to tilted equilibria
type 2 of [Crespo, Ferrer, 2018].

Following our analysis, from (24), rN is a function only of the rotational moment.
Therefore, since we also have the physical constraint imposed by the radius of the main
body rp we must also take into account the restriction for rotational integrals. Λ and M :

εA r
3
p <

1− 3 cos2 I

M2
. (27)

Note also that from Eq. (27) the following astrodynamic constraint between rN andM :

M <
1

√
εA r

3/2
p

, (28)

Also, substituting the above expressions in Eq. ν̇ = 0 we find that it is satisfied when
N = 0, when the plane of the body is inclined π/2 with respect to the plane of angular
momentum and therefore cos J = 0.

Finally, considering Eq. Ṙ = 0 we get the equation

rΘ2 − κr2 + 3∆∗ = 0,

where the equilibrium radius r = rN where is a function only of the parameters. So
considering the expression for ∆∗ when N = 0, and also cos 2ν =

1

3ρ
we get that

Θ2 = κrN , (29)

where rN is the expression (24), so that

Θ2 =
κ

(εA)1/3
(1− 3 cos2 I)

1/3

M2/3
, (30)

so that the orbital moment is a function of Θ = Θ(Λ,M), and of the moments of inertia,
where rN > r0, where r0 is the radius of the main body, and where M checks the condition
(28) and Λ checks the condition (25). This last expression expresses the coupling of the
dynamic system.
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Theorem 4.2. Let the differential equations of motion be given by the expressions (14)
and (15), there are general relative equilibria for the case Λ 6= 0 when the condition for
the rotational angular momentum given by (28), and the condition for the orbital angular
momentum given by (30), and also the value of the angle ν is given by the expression (26).

The condition (26) tells us the following about the equilibria.

From that equation it follows that the line of equation y =
1

3
x +

2

3
follows, where

y = B/C and x = A/C, that is, the normalized moments of inertia. It is also equivalent
to B = (C + A)/2, (see Fig.3).

Figure 3: Region of existence R2 in the parameter space, for relative equilibria so that λ̇ = 0 for case (a)
(N=0). The red line L0 represents the equation ρ = 1/3.

Since the relative equilibria in the unperturbed model are verified for the values of
N = 0 and ν = π/2, we have that the angle ν fluctuates between 0 < ν < 35.2644◦ in the
plane N = 0, therefore the relative equilibria in unperturbed model is bifurcated.
• In the equation of µ̇, we can introduce the equilibrium conditions so that ν fixes

(N = 0) and λ fixes cos 2ν = 1/3ρ , so we are left with

µ̇ =
2(A+B)− C

3AB
M q, (31)

It is trivial to check that µ behaves as in the classical case.

4.3 Scenario 3. Relative equilibria with N,Λ 6= 0.

Let us now see the case when sin 2ν = 0 is verified in the equation of Ṅ = 0. We then
have that it can be ν = 0,

π

2
, π,

3π

2
, but now we suppose that N 6= 0 .
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4.3.1 Subcase ν =
π

2
,
3π

2

• Study of equation λ̇ = 0. When λ̇ = 0 we get the equation

2− 3 sin2 J − 3ρ sin2 J = 0, (32)

so that
sin2 J =

2

3(ρ+ 1)
< 1, (33)

which is verified in the entire domain of ρ, and from the point of view of conjugate moments√
2

3
M > N >

√
1

3
M.

This last expression induces that the relative equilibria appear in two sections of a
parallel phase flow, so they are tilted type 3 equilibria of [Crespo, Ferrer, 2018].

The equation of ν̇ = 0 is of the form

q

D
(1 + χ) +

κ

r3
2τ

M2

(
2

3
− sin2 I

)
(1 + ρ) = 0,

so the radius of the orbit at equilibrium is the expression

r3ν =
3κAC

4qM2

(
1− 3 cos2 I

)
> 0, (34)

rν is just a function of rotational momentum. Therefore, we have the physical constraint
imposed by the radius of the main body rp. We must also take into account the restriction
for rotational integrals Λ y M :

εBr
3
p <

(1− 3 cos2 I) ,

M2
(35)

where
εB =

4q

3κAC
,

and also cos2 I < 1/3, that is, 54.7356◦ < I < 90◦. Then

M <
1
√
εB

1

r
3/2
p

, (36)

therefore we obtain a bounded condition of the rotational angular momentum. If we isolate
the orbital angular momentum from the equation of Ṙ, the expression remains

Θ2 = κrν − 3
κ τ

rν

(
1− 3 cos2 I

)(2

3
− sin2 J(1 + ρ)

)
.
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which tells us the dependency with rν , and by (33) we get

Θ2 = κrν ,

and thus
Θ2 =

κ

(εB)1/3
(1− 3 cos2 I)1/3

M2/3
. (37)

• Study of the equation µ̇ = 0. We substitute the values of ν = π/2, 3π/2 and the
expression (33) so we have

µ̇ =
(−2A+B + C)q − 3C

3AC
M, (38)

so that µ̇ 6= 0.

4.3.2 Subcase ν = 0, π.

• Study of the equation λ̇ = 0. For this case, if we want λ̇ = 0, it must be

2− 3 sin2 J + 3ρ sin2 J = 0, (39)

so that
sin2 J =

2

3(1− ρ)
< 1, (40)

therefore we have the condition of ρ and the conjugate moments of the form

ρ <
1

3
, N <

M√
3
.

This last expression induces that the relative equilibria bifurcate in two sections of a parallel
phase flow, as described in the article by [Crespo, Ferrer, 2018], Inclined Equilibriums of
type 1.

The equation of ν̇ = 0 is of the form

q

D
(1− χ) +

κ

r3
2τ

M2

(
2

3
− sin2 I

)
(1− ρ) = 0,

so the radius of the orbit at equilibrium is the expression

r3ν2 =
3κBC

4qM2

(
1− 3 cos2 I

)
> 0, (41)
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rν2 it is just a function of the rotational moment. Therefore, we have the physical constraint
imposed by the radius of the main body rp.

We must also take into account the restriction for rotational integrals Λ and M :

εCr
3
p <

(1− 3 cos2 I) ,

M2
(42)

where
εC =

4q

3κBC
,

and also cos2 I < 1/3, that is, 54.7356◦ < I < 90◦. Then

M <
1
√
εC

1

r
3/2
p

, (43)

therefore we obtain a bounded condition of the rotational angular momentum. If we isolate
the orbital angular momentum from the equation of Ṙ, the expression remains

Θ2 = κrν2 − 3
κ τ

rν2

(
1− 3 cos2 I

)(2

3
− sin2 J(1− ρ)

)
.

which shows the de- pendency with rν , and by (40) we get

Θ2 = κrν2,

from the way

Θ2 =
κ

(εC)1/3
(1− 3 cos2 I)1/3

M2/3
. (44)

• Study of the equation µ̇ = 0. We substitute the values of ν = 0, π and the
expression (33) so we have

µ̇ =
(A− 2B + C)q − 3C

3BC
M, (45)

so that µ̇ 6= 0.

Theorem 4.3. Let the differential equations of motion be given by the expressions (14) and
(15), there are general relative equilibria for the case of N 6= 0 and Λ 6= 0 for the values
of the angle ν = π/2, 3π/2 or ν = 0, π and when the condition for the rotational angular
momentum given by ( 36) and (43), and the condition for the orbital angular momentum
given by (37) and (44) respectively.
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5 Numerical simulation

In this section we are going to show through numerical integrations the differences
between the original problem (Full Model-FM) and the model Hr,ν . We want to check the
effects on the dynamics for various values of dynamic constants of movement (integrals),
specifically the rotational angular momentum and physical parameters (moments of inertia),
that is, triaxiality.

We are going to analyze two binary systems for the numerical simulations, one formed by
the asteroid11997AE12 and the DART spacecraft and the other by the Didymos-Dimorphos
asteroid system. The equilibria under study are those previously analyzed analytically,
which were defined as Scenario 2 and Scenario 3 with ν = π/2.

5.1 Systems data

Case 1: System 11997 AE12 and spaceship DART

The numerical simulation is first established with a system formed by an asteroid where
the main body is spherical with mass mp = 3.23492 ·1012 kg and mean radius rp = 0.420 km
and the secondary body is an spaceship called DART with mass ms = 624 Kg and mean
radius rs = 0.0196 km and moments of inertia a = 0.00194 ms R2

p, b = 0.01196 ms R2
p, c =

0.01234 ms R2
p.

The gravitation constant takes the value

G = 6.67384 · 10−11N m2/Kg2 = 9.29 · 10−28 r3p/min2 Kg,

and the value of κ = 0.003792 r3p/min2 y q = 0.999582.

Case 2: Binary System Didymos-Dimorphos In this case we have a primary body
that has an approximate diameter of 780 m and the secondary body called Dymorphos at
a distance of 1.2 km from the main body. The physical parameters for the main body are
mp=2, 253 · 1012 kg, with an average radius of rp=766 km, and for the secondary body we
have the dimensions x=285.5 m, y=231, 5 m, and z=174.5 m, with ms=2, 488 · 1011 kg, so
a = 0.0132463 ms r2p, b = 0.0187063 ms r2p y c = 0.0210626 ms r2p.

Besides, the simulations have been carried out for five orbital periods. The computations
have been developed with a package written in [Wolfram Mathematica 12.0].
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Figure 4: Representation of the secondary bodies (DART and DIMORPHOS) on the parameter space
of the moments of inertia. The red line represents the equation ρ = 1/3. Note that the closeness of the
function line ρ = 1/3 indicates a greater triaxiality. We are interested in how this difference in triaxiality
affects numerical simulations.

5.2 Data of the variables in the equilibria

• (Scenario 2)

Case 1: System 11997 AE12-DART For this equilibrium we take a value for the
rotational angular momentum M0 close to the value of the relative equilibrium determined
by the expression (28), so we take the value M0 = 0.000034 r2p/min. The initial values of
the angles of the system are

θ0 = 0, ν0 = 34.49◦, µ0 = 0, λ0 =
π

2
.
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The value of the angles that define the inclination of the planes of the body and of
Andoyer are due to the condition in equilibrium takes the value J = 90◦, and the angle I
is chosen, so we have that

I = 70
π

180
rad, J = 90

π

180
rad,

therefore the conjugate moments have initial values equal to

R0 = 0, N0 = M0 · cos J = 0, Λ0 = M0 · cos I = 0.00034 r2p/min

In this way we have by the expressions (24) and (29) we have the values requi = 2.75Rp,
and Θequi = 0.077 r2p/min.

Carrying out a study of the integration times and the time spent on the variable µ
around an orbital period, we obtain a rotation period of Tr = 647 min=10.78 h and an
orbital period of To = 613 min =10.21 h. Then 1:1 resonance is observed.

Caso 2: System Didymos-Dimorphos

In this case we obtain the values of Mequi = 0.0001 r2p/min, requi = 2.93776 rp and
Θequi = 0.08 r2p/min. The values of the initial angles, plane angles, and moments are the
same as in the previous case.

For this case we have a rotation period of Tr = 16.72 h and an orbital period of
To = 11.28 h. We have in this case a 3:2 resonance.

• Scenario 3 with ν = π/2

Case 1: System 11997 AE12-DART

In the first place, the value of the rotational angular momentum will be a value close
to equilibrium determined by the condition (43), so we take the initial value M0 equal to
0.00034 r2p/min.

The initial values of the angles of the system are

θ0 = 0 , ν0 = π/2 , µ0 = 0 , λ0 =
π

2
.

The value of the angles that define the inclination of the planes of the body and Andoyer
are for the equilibrium condition with J = 36◦, and I = 75◦ chosen, therefore the conjugate
moments have initial values equal to

R0 = 0, N0 = M0 cos J = 0, Λ0 = M0 cos I = 0.0018 r2p/min
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In this way we have by the expressions (41) and (44) that requi = 2.95 rp and Θequi =

0.08 r2p/min. The numerical simulation shows for this case a rotation period of Tr = 553

min=9.21 h and an orbital period To = 681.6 = 11.36 h.

Case 2: System Didymos-Dimorphos

In this case and following the same previous expressions, we have that the rotational
moment takes the value Mequi = 0.0001 r2p/min, and requi = 2.93776Rp and Θequ =

0.08 r2p/min. The angles of the planes are J = 41.2◦, I = 75◦ (chosen). The values of
the initial angles and moments are the same as in the previous case. Carrying out a study
in the numerical simulation we obtain a rotation period of Tr = 12.77 h and an orbital
period of To = 12.52 h. Is observed 1:1 resonance.



(a) ∆r = 0.002 Rp

(b) ∆R = 0.00005 Rp/min

(c) ∆ν = 2 rad

(d) ∆µ = 4 rad

(e) ∆λ = 4 rad

Figure 5: FM vs. Model Hr,ν (Scenario 2) DART ν = 34.49◦. M = 0.00034 r2p/min, I = 70◦. We can
observe in this figure the differences in equilibria (A) in the orbital variables in the first 2 graphs. The
difference in the variable r can be seen from time to time, as well as at the moment R. Taking into account
that each orbital period is To = 613 min=10.21 h, then a difference of 0.002Rp is observed in 5 orbital
periods. For rotational variables, we can establish that for the variable ν we have a maximum difference
of 2 rad, in a semiperiodic movement, for the variable µ there is a maximum difference in the 5 orbital
periods of 4 rad, and a descending drift is observed and for the variable λ it is 1.5 rad, and the differences
maintain a quasi-periodic movement.
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(a) ∆r = 0.006 Rp

(b) ∆R = 0.00005 Rp/min

(c) ∆ν = 2 rad

(d) ∆µ = 4 rad

(e) ∆λ = 1.5 rad

Figure 6: FM vs. model Hr,ν . (Scenario 3) DART ν = π/2. M = 0.000034 r2p/min. I = 75◦. J = 36◦.,
variables ν, µ and λ. We can observe in this figure the differences in equilibria (B). In this case, since
the orbital period is To = 681.6=11.36 h, the difference in the variable r the differences are periodic in all
orbital periods. The maximum difference in 5 periods is 0.006 Rp. In the rotational variables, which we can
see in the same figure, we can establish in the variable ν a maximum difference of 2 rad in a semiperiodic
movement or a certain periodicity. Regarding µ the difference is 4 rad. The variable λ reaches a maximum
difference of 1.5 rad and there are differences that change from 1 rad in one orbital period to change to
a difference of −1 rad that is maintained in one orbital period. A 1:1 resonance is shown in this relative
equilibria.
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(a) ∆r = 0.02 Rp

(b) ∆R = 0.002 Rp/min

(c) ∆ν = 2 rad

(d) ∆µ = 6 rad

(e) ∆λ = 1 rad

Figure 7: FM vs. Model Hr,ν (Scenario 2) Didymos-Dimorphos system. ν = 25.08◦. M = 0.0001 r2p/min,
N = 0. I = 75◦. We can see in this figure the comparisons in two orbital variables and the three rotational
ones. We observe that in the case of equilibrium (A), we can observe how the differences in the orbital
variables increase. We have a periodic movement in the variables ν pro with descending drift. In the
variable µ a descending drift of up to 6 rad difference and in the variable λ if a periodicity of the differences
with a maximum difference of 1 rad is observed.
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(a) ∆r = 0.01 Rp

(b) ∆R = 0.0001 Rp/min

(c) ∆ν = 2 rad

(d) ∆µ = 3 rad

(e) ∆λ = 1 rad

Figure 8: FM vs. Model Hr,ν . (Scenario 3) Didymos-Dimorphos case ν = π/2. M = 0.00005 r2p/min.
I = 25◦. J = 38◦. We can see in this figure the comparisons in two orbital variables and the three
rotational ones. We observe that in the equilibrium case (B), we can observe how the differences in the
orbital variables are periodic, contrary to the previous case. We have a periodic movement in the variables
ν with a maximum difference of 2 rad. In the variable µ an ascending drift of up to 3 rad difference and
in the variable λ if a periodicity of the differences with a maximum difference of 1 rad is observed.
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6 Conclusions and future work.

This work is a continuation of other studies already started in [Ferrer, Molero, 2014a]
and [Crespo, Ferrer, 2018], where an intermediary model is presented. Our study takes
up the concept of an approximate model, introducing a 2-GDL approximation, which
unlike previous models, establishes the relative equilibria in the Polar Nodal and Andoyer
variables. This makes the study simpler than in other works that define the model with
Variables Total Angular Momentum.

We find three relative equilibrium scenarios associated with this model, which are
determined with an upper bound condition for the rotational angular momentum and
an equation that establishes the coupling of the system. It was to be expected that the
Coplanar equilibria in [Crespo, Ferrer, 2018] are outside our domain in Andoyer variables.
Numerical analysis close to the relative equilibriums show better global results in the case
of Scenario 3, which is shown in the study of both the Didymos-Dimorphos system and
the 11997 AE12-DART system. The differences observed in the numerical comparisons
determine that we have to add the resonant term. In relation to triaxiality, we see that
the model behaves better for a more axial-symmetric body such as DART than for a more
triaxial body such as Dimorphos.

On the other hand, unlike the Global or Poisson variables, we cannot establish equilibria
in the regions with singularities associated with the variables. Still, this roto-orbital model
captures the classical equilibria and the classical dynamics of the free rigid solid is not
maintained in the determined relative equilibria, since there is a bifurcation of them. This
type of degeneration is not the one observed in previous works, so we consider as future
work the analysis of additional perturbations with terms of type cos 4ν, with the intention
of trying to determine completely. We also plan to implement applications to cases of
artificial satellites, comparing simulations with real observations.
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A Appendix

A.1 Unperturbed roto-orbital model.

The Hamiltonian of the unperturbed system is given by H = HK +HR, (2) and (3),

H =
1

2

(
R2 +

Θ2

r2

)
− κ

r
(46)

+
q

2

[(
sin2 ν

A
+

cos2 ν

B

)
(M2 −N2) +

N2

C

]
,

where q = m/ms. The system of differential equations associated with the Hamiltonian
(46) is given by

ṙ = R, ν̇ =q N

(
sin2 ν

A
+

cos2 ν

B

)
+
q N

C
,

Ṙ =
Θ2

r3
− κ

r2
, Ṅ =

q(A−B)

2AB
(M2 −N2) sin 2ν,

(47)

and the squares

θ̇ =
Θ

r2
, µ̇ = q

(
sin2 ν

A
+

cos2 ν

B

)
M, λ̇ = 0, (48)

θ̇ =
Θ

r2
(49)

with
ḣ = Ḣ = Ṁ = Λ̇ = 0.

The first integrals λ, Λ and M reflect what we already know: that they are associated
to the angular momentum vector which is an integral vector of the model. In other words,
they tell us that we have an invariant rotational plane.

A.2 Relative equilibria

Relative balances orbital part. The orbital part is Kepler’s problem.
We have the following equation when Ṙ = 0 so

Θ2

r3
− κ

r2
= 0, (50)
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so we have to
r =

Θ2

κ
, R = 0, (51)

which are orbits of constant radius.
Relative equilibria rotational part. The rotational part is the Rigid body in free rotation.
In the generic case (A 6= B are different and M 6= 0), we have relative equilibria when

N = 0 and ν =
π

2
k, (k = 0, 1, 2, 3). In other words, we have special periodic orbits

Pi(µ, ν,Λ,M,N)(t) given by:

P1(t) =

(
qM

B
t, 0,Λ,M, 0

)
, P2(t) =

(
qM

B
t, π,Λ,M, 0

)
,

P3(t) =

(
qM

A
t, π/2,Λ,M, 0

)
, P4(t) =

(
qM

A
t, 3π/2,Λ,M, 0

)
.

Note that for all Λ the value of λ is constant. Let us now analyze the energy integral.
Substituting the values in the equilibrium we have the following expression

H = −1

2

κ

Θ2
+

q

2B
M2, (52)

which depends on the orbital moment Θ and the rotational moment M .
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