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Abstract

This Note presents an explicit relation between time and true anomaly for Keple-

rian orbits, with no need to use the Kepler’s equation which introduces an intermedi-

ary angle, the eccentric anomaly for elliptic motions and the hyperbolic anomaly for

hyperbolic orbits, and which is the common way in computing the position on the

orbit. Because of some properties of complex numbers, we prove that our formula is

a real valued function, and thus it is valid for all type of Keplerian orbits, that is, the

formula is valid for elliptic as well as for hyperbolic orbits, and the classical formula

for parabolic ones is also obtained as the limit when the eccentricity tends to one.
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1 Introduction

One of the key points in orbital dynamics is to determine the position of a spacecraft on

its orbit at any instance of time, that is, r = r(t). In a Kepler motion, the radial distance

usually is given in terms of the true anomaly

r =
p

1 + e cos f
,
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thus, it will suffice to have a “time equation” of the type f = f(t) to know the sough

position.

Traditionally, as can be found in every textbook of Mechanics, such time equation

is given by means of another different angle, the eccentric anomaly E for elliptic orbits

through Kepler’s equation√
µ/a3(t− t0) =

2π

T
(t− t0) = E − e sinE,

resulting that the radial distance is r = a(1− e cosE).

For hyperbolic orbits, a new similar anomaly is introduced, the hyperbolic eccentric

anomaly, F , in such a way that
√
µ/a3(t− t0) = e sinhF − F , and r = a(e coshF − 1).

The only case in which we find in textbooks an explicit relation between the true

anomaly and time is for the parabolic case. Indeed, the relation is

1

3
tan3 f

2
+ tan

f

2
=

√
µ

2q3
(t− t0), (1)

where 2q is the semilatus rectum of the parabola, that is the limit of p when e → 1 and

a→∞.

Thus, it seems that nobody dared to try to obtain an equation time relating directly t

and f , which could be dirctly obtained by integrating the differential equation r2 df = Gdt.

We found in the textbook of Schaub and Junkins [4, p. 405] a justification to do not

proceed in such way, with the sentence “analytically solving it involves finding a solution to

a nonstandard elliptic integral, clearly not a very attractive proposition.” But this statement

is not true, because there is no square root involved, and hence no possibility of having

elliptic functions. This motivated us to compute from the aerial relation, r2 df = Gdt, the

quadrature
G

p2
(t− t0) =

µ2

G3
(t− t0) =

∫ f

0

1

(1 + e cos s)2
ds ≡ Φ(f ; e), (2)

where we assumed that f = 0 at t = t0, and used the well known relation p = G2/µ ,

with p the semi latus rectum of the conic, G the constant norm of the angular momentum

(G = ‖G‖ = ‖r × ṙ‖), µ the Keplerian parameter, and e is the eccentricity of the conic,

that will be considered as a parameter, while f is the true anomaly.

Let us make some remarks about the function Φ(f ; e).

1. For all e ≥ 0, the function Φ(f ; e) is an strict monotonically increasing function of f

112



2. For e ∈ [0, 1), the function Φ(f ; e) is well defined for all f ≥ 0.

3. For e = 1, the integral (2) is singular for f = π; besides, Φ(π; 1) = +∞. Therefore,

Φ(π; 1) is only defined for f ∈ [0, π) and when f < π, the limf→π Φ(f ; 1) = +∞.

4. For e > 1, the function Φ(f ; e) is only defined in the interval [0, fe], such that cos fe =

1/e and besides, when f < fe, the limf→fe Φ(f ; e) = +∞.

In the Note, first, we managed to solve the quadrature (2) straightforward, by hand.

After that, we obtained another equivalent solution by using an algebraic manipulator.

The result is a not very apealing equation (3), but at least we have a ley horaria. In

the obtaining of this function, we did not any assumption on the value eccentricity, then

this formula is valid for whatever value of the eccentricity, no matter its value. To have

a unique time law formula for both elliptical and hyperbolic motions is quite relevant in

orbital problems where the osculating eccentricity may pass from values lesser than one

to others greater than the unit. In those cases the so-called universal variables based on

Stumpff’s functions are usually employed, see e.g. Abad’s textbook [1, Chap. 10]. With

our equation, we may skip universal variables and use the more natural formulation in

terms of the true anomaly and classical orbital elements.

Just in the last stage of writing the manuscript, we discovered in Geyling and Wester-

man’s monograph [3, Chapter 2] (a text mostly unknown in universities libraries) a formula

equivalent to ours. However, they did not perform any quadrature, but they used classical

formulas relating true and eccentric anomalies to convert Kepler’s equation into a function

depending on the true anomaly. They did the same for the hyperbolic case ending up with

another function for hyperbolic orbits. In so doing, they did not realize the general use of

the sough formula.

2 The obtaining of the time equation

The formal integration of formula (2), after some cumbersome process gives

Φ(f ; e) =
2

(1− e2)3/2
arctan

(√
1− e
1 + e

tan
f

2

)
− e sin f

(1− e2)(1 + e cos f)
.

By using a symbolic processor like Mathematica, the result is

Φ(f ; e) =
−2

(e2 − 1)3/2
arctanh

(
e− 1√
e2 − 1

tan
f

2

)
+

e sin f

(e2 − 1)(1 + e cos f)
.
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It can be numerically proved that both equations coincide. Hence, for the equation of time

we choose a mix of both formulas, namely

µ2

G3
(t− t0) = Φ(f ; e) =

2

(1− e2)3/2
arctan

(√
1− e
1 + e

tan
f

2

)
+

e sin f

(e2 − 1)(1 + e cos f)
.

(3)

Obviously, this formula is singular at e = 1 (parabolic motion). However we may avoid

this singularity by computing the limit when e tends to one. Indeed,

lim
e→1

Φ(f) =
1

12
sec

f

2

(
3 sin

f

2
+ sin

3f

2

)
=

1

2

(
1

3
tan3 f

2
+ tan

f

2

)
,

which is the well known Baker’s time equation for parabolic motion (1).

Equation (3) has two drawbacks. The first one, is that there is a discontinuity at f = π,

because limx→π− tanx/2 = +∞ and limx→π+ tanx/2 = −∞, hence

lim
f→π−

Φ(f ; e) = 2(1− e2)−3/2π/2, lim
f→π−

Φ(f ; e) = −2(1− e2)−3/2π/2.

Thus, the graphic has “jumps” at f = π, 3π, . . .. But this difficulty can be avoided by

using instead of the function arctan(y/x) the equivalent one for numerical computations

atan2(y,x), quite common in programming languages like C++ or even in Mathematica

(in this case, the function is ArcTan[x,y]). With this change, the function Φ(f) is an

increasing and continuous function in the domain [−2π, 2π]. But with this trick we moved

the singularity from f = π to f = 2π, 4π, . . .. One possible way to circumvent this obstacle

is by defining a new function as

Φ̃(f ; e) = Φ(f ; e) +
⌊(f + π

2π

)⌋
2(1− e2)−3/2,

where b�c denotes the floor function of expression �. With this, the function Φ̃(f ; e) still

is not defined for f = 2π, 4π, . . ., but its letft- and right-hand limits are equal and it is

possible to define a continuous extension.

The second challenge, and the most important, is that we claim that Eq. (3) is valid

for both elliptic and hyperbolic motions. However, in the formula there is the expression
√

1− e. How can it be possible that the formula be still valid when e > 1?
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In formula (3) there are two places where a pure imaginary number appears when e > 1.

First, in factor (1− e2)−3/2. The other place is due to the expression
√

(1− e)/(1 + e), but

(1− e2)−3/2 = i (|1− e2|)−3/2,
√

1− e
1 + e

= i

√
|1− e|
1 + e

,

with i =
√
−1.

Let us now recall the relation [2, formula (4.6.16)], arctan(z) = i arctanh z, hence, since

both factors are pure imaginary numbers, its product is a real number, and consequently,

the function Φ(f) is a real valued function. In Figure 1 we show several examples of the

function Φ(f) for several eccentricities (e = 0.4, 0.7. 0.9 and 1.4). Note in the plots that

for the elliptic orbits the t -period is different in each case. The reason is that we keep

G constant, hence, since a(1 − e2) = G2/µ, an increase of the eccentricity also implies an

increase of the semimajor axis and therefore of the period.

Figure 1: The function t = t(f) in the interval (−2π, 2π] for different eccentricities: Left)

e = 0.4 (dashed line), e = 0.7 (continuous line); and Right) e = 0.9 (dashed line) and

e = 1.4 (continuous line). In this last case, f is limited by the asymptote of the hyperbola.

The most complicate aspect of this formulation, is the obtaining of the inverse function

f = Φ−1(t; e) with respect to f ; the eccentricity e plays the role of parameter. It has to

be solved numerically. It is not our goal in this Note to give efficient methods to find the

inverse function Φ−1(t; e). We show in Figure 2 two samples for eccentricities e = 0.8 and

e = 1.8, obtained with Mathematica’s function FindRoot. Note that for the hyperbolic

case, the true anomaly tends asymptotically to the asymptote of the hyperbola, while for

the elliptic case, the true anomaly increases continuously.
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Figure 2: The function f = Φ−1(t; e) for two eccentricities: elliptic case e = 0.8 (dotted

line) and hyperbolic case e = 1.8 (continuous line). Note that in this last case the graphic

asymptotically tends towards the asymptote of the hyperbola.

3 Conclusions

We propose in this Note a direct formula t = Φ(f) for Kepler motion, with no need to

use the eccentric anomaly as intermediate step. This formula is a real valued function

whatever the value of the eccentricity, which could be of interest in computing ephemeris.

Thus, there is no need to have a different formulation for each type of orbit, and neither is

needed the use of universal variables or Stumpff’s functions.
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