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Abstract

Quantum electrodynamics (QED) is the understanding of how light and matter

interact. In this lecture, I give an overview of the non-relativistic limit of the theory,

which is the foundation of quantum optics. I introduce cavity and waveguide QED

and explain its role in the construction of a quantum computer. Finally, I review the

many-body physics emerging when light and matter interact beyond the perturbative

regime. The lecture is focused on the theoretical tools typically used.

1 Introduction

Because of its extreme complexity, most physicists will be glad to see the end of QED.

P. A. M. Dirac, 1937.

Light and matter interact. Attracted by the Earth’s magnetic field, charged particles

pass through the atmosphere, ionising it and triggering the emission of visible light. This

form the auroras and it is beautiful consequence of that interaction. Other examples are

lasers, the scattering of an electron and positron in two muons, the functioning of a quantum

computer or, in a healthy eye, the photodetection that allows to read this manuscript. These

dissimilar phenomena are understood within the theory of quantum electrodynamics and

is perhaps the best fundamental physical theory that we have 1.

1Here, I steal the words of Peskin and Schroeder in their popular book An Introduction to Quantum

Field Theory.

41

http://complex.unizar.es/~zueco/


In this manuscript, I will review the theory and its nonrelativistic limit, which is the

basis of quantum optics. Then, I will discuss selected topics on quantum optics and the

many-body phenomena occurring because of this interaction. I will spend some time to

explain different theoretical tools used to do the calculations. To fit the lecture in a rea-

sonable extension, I will focus on the strongly correlated phenomena occurring when the

interaction enters into the nonperturbative regime.

1.1 The interaction (in a tiny nutshell)

Here, I will follow the excellent explanations of Nolting & Ramakanth [50, Sects. 2.2 and

2.3] and Snoke [74, Sect. 10.9] and the standard treatises of Peskin & Schroeder [54] and

Tong [71].

In the modern viewpoint, gauge invariance is promoted to a general principle [28]. A

gauge transformation is:

(1) A′µ(x) = Aµ(x)− 1

e
∂µλ(x) ,

for the potential vector, Aµ = (φ,A). Here, ∂µ = (1
c
∂t,∇) and xµ = (ct,−x), e is the

charge of an electron and c is the speed of light in vacuum. Besides, the wave function

transforms as,

(2) ψ′(x) = ψ(x)exp[ieλ/~c]

It turns out that the transformations (1) and (2) fix the interaction between light and

matter. In particular, the Dirac equation for an electron, of mass me interacting with the

electromagnetic field is

(3) (i~��D −mec)ψ(x) = 0

Here, we use the field theoretical notation ��D ≡ ∂µ+ieAµ(x), which makes explicit the gauge

invariance of the Dirac equation. Notice that ψ = (ψ1, ψ2, ψ3, ψ4)T is a four-component

spinor. The Dirac equation is really famous. It was invented to provide a relativistic

version of the Schrödinger equation. It comes with the appearance of negative energy

solutions which form the Dirac sea. In the non-relativistic limit, v � c with v the the
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particle velocity, two components of the solutions for (3) are small enough so the the

theory is effectively a two-component one. In this limit, the theory reduces to the Pauli

Hamiltonian:

(4) H =
1

2me

(p + eA)2 − eφ+
µB

~
σ ·B .

Here, we have introduced the Bohr magneton µB = e~/2me, σ = (σx, σy, σz) are the Pauli

matrices 2 and B = ∇×A is the magnetic field. It is difficult to exaggerate the importance

of the Hamiltonian (4). It is the starting point of every quantum optics book. It is the light-

matter Hamiltonian. Due to its relevance, it deserves to appreciate the way it was found.

Notice that only gauge and Lorentz invariance (Dirac equation) and the nonrelativistic

limit was used. Grounded in such a general laws, in its validity we trust.

1.2 Light Quantization

The career of a young theoretical physicist consists of treating the harmonic oscillator

in ever-increasing levels of abstraction.

Sidney Coleman.

Gauge invariance fixes the interaction form [cf. Eqs. (3) and (4)] and introduces a

redundancy. The piece of reality that emerges from gauge invariance is that the phase

space is enlarged, foliated by gauge orbits. Every point in the orbit must be reached by a

gauge transform. Then, in our calculation, we pick one point from each orbit. Obviously,

the output of the calculation must be independent of this choice. Picking a point in each

orbit means to fix the gauge. Important examples are the Lorentz, Coulomb or dipole

gauges. In particular, here we are interested in quantizing the EM field in (4). In this way

we treat on equal footing both matter and light. In the quantization, it is convenient to

choose the Coulomb gauge,

∇ ·A = 0 .

2The Pauli matrices are

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1
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In doing so, we have only the transversal component of the field.

The details of quantization would occupy a regular sized book, so I will just sketch the

idea and I will argue how the result is reasonable. In other words, I am going to summarise

the Cohen-Tannoudji, Dupont-Roc and Gryberg book [12] in a single paragraph. In these

books the quantization is rigorously done by identifying the action in terms of the fields

(at the classical level). Then, the canonical variables are found. Finally, they tackle the

quantization program. Here, however, I will take a non-rigorous shortcut and quantize

arguing why the electromagnetic field is a collection of harmonic oscillators (photons) and

that A (and B and E) are linear combinations of creation-anhilation operators. In the

Coulomb gauge, the equation for A is the wave equation ∂µ∂
µA = 0, which is solved via

separation of variables with the ansatz, A =
∑

l ql(t)ul(r) with ul(r) orthogonal functions

(in free space they are Fourier series). Using the Maxwell equations, E = −∂tA and B =

∇×A we express the electromagnetic (EM) fields in terms of dimensionless time-functions

qk, q̇k. Introducing these expressions in the EM-energy, UEM =
∫
dV ε0E

2(r)/2+µ0B
2(r)/2,

we arrive to [64]

(5) UEM = ~
∑
k

1

2
q̇2
k +

1

2
ω2
kq

2
k ,

where ωk = c|kk| is the solution of the Helmhotz equation −∇2uk = k2
kuk. Identifying

q̇k ∼ pk (pk is the momentum) the above is nothing but the Hamiltonian of uncoupled

harmonic oscillators. Introducing the creation operator a†k = 1√
2~ωk

(ωkqk + ipk) and the

Hermitean conjugate anhilation operators, ak, we arrive to the quantum Hamiltonian for

the EM:

(6) HEM =
∑
l

ωka
†
kak ,
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and the corresponding expressions for the fields A, B and E:

A =
∑
l

√
~

2ε0Vkωk
uk (ak + a†k) ,(7)

B =
∑
k

√
~

2ε0Vkωk
∇× uk (ak + a†k) ,(8)

E =
∑
k

√
~ωk

2ε0Vkωk
uk i(ak − a†k) .(9)

A final word of caution. The quantum operators have been derived in the Coulomb gauge.

Therefore, the quantum version of (4) with (7) must be named with the surname in the

Coulomb gauge. Obviously, we can always change of gauge by the corresponding unitary

transformation. We will come to this point later. For a general discussion see [12, Chap.

IV].

1.3 What is Quantum Optics?

The quantum vacuum is not empty

Anonymous.

Quantum optics deal with the simplest objects: few level systems and photons. In

particular, quantum optics is the entanglement of light and matter. The most basic phe-

nomenon, the emission of light (with is certainly important for life and electrical companies)

is a manifestation of entanglement and, in addition, an elementary example of particle cre-

ation from a field theoretical point of view. In simple words, light emission occurs when

an atom changes from one state to another and, then, emits a photon. Let me describe

the experimental fact and we will see how the light-matter entanglement builds up in the

emission.

Consider a spinless neutral atom, e.g. strontium or helium. Therefore, the Zeeman cou-

pling, the last term in (4), does not play any role. For further convenience, we write the

rest of the Hamiltonian in the dipole gauge. This is done with the Power–Zienau–Woolley

unitarty transformation yielding [12]

(10) H(D) = HEM +Hatom + id
∑
l

√
~ωk
2ε0

uk(r0)a†k + h.c. .
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Here d is the atom dipole. Besides, to make our life even simpler I consider that only two

states of the atom are relevant in the dynamics. Thus, the atom in projected in a two

level system (2LS) with energy difference ∆ and a space spanned in the basis {|0〉, |1〉} 3.

Typically, the atomic states have a well defined parity. Since the dipole operator d is an

odd operator, its matrix elements are thus 〈0|d|0〉 = 〈1|d|1〉 = 0 and 〈0|d|1〉 = 〈1|d|0〉 ≡ d.

So (10) can be rewritten (after the two level projection) as (from now on I will set ~ = 1)

(11) H(D) =
∆

2
σz +

∑
l

ωka
†
kak + σx

∑
l

ck(a
†
k + ak) .

with ck = d
√

~ωk

2ε0
uk(r0), cf. Eq. (10). This is an important and familiar model for the

coupling of a two level system (or qubit) with the electromagnetic field. It is also well

known beyond the quantum optics community. It models impurity models in condensed

matter and it is the paradigmatic model in open systems [41, 72].

Consider now that, driven via an external field, the atom is excited from the ground state,

Figure 1: Light-matter entanglement. Given the state at t = 0 the system can be
evolved with the total unitary operator UT = e−iH

(D)t . If the observables act on the 2LS
only trace over the EM-field is taken. Alternatively, we can take the trace at the beginning
and find the non-unitary map E .

|0〉, to the excited state |1〉 and that this driving is sufficiently fast to avoid correlations

3Through the rest of the manuscript I will restrict the discussion that the atoms can be model with

two level systems (2LS). In the modern terminology they are named as qubits.
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between the atom and field. Then, the density matrix at time t0 can be written as %T =

|1〉〈1| ⊗ %EM(t0). %EM(t0) is the equilibrium density matrix for the electromagnetic field at

a given temperature T . I will consider the case T = 0 4. This initial density matrix may be

evolved with the total Hamiltonian (11). Then, the time evolution of Pe = 〈σ+σ−〉 can be

computed. This way of computing is represented in the upper path in figure 1. Because Pe

is a 2LS observable, an alternative is to find the map for the reduced density matrix %(t) =

E%(0) in the space spanned by the two atomic relevant states {|0〉, |1〉}. This is the lower

path indicated in the figure 1. During the time evolution some light-matter entanglement

is built up, %(t) becomes a mixed state and the map cannot be unitary 5. Let me sketch

a simpler way of finding E . I restrict myself to linear operators [24]. Adding an imaginary

term in the energy, Pe = e−i(∆−iΓ)t, is a phenomenological way of introducing dissipation.

However, the corresponding equation %̇ = −i[∆/2σz, %] − {Γ/2σz, %} = −i[∆σ+σ−, %] −
{Γσ+σ−, %} does not conserves the trace, d

dt
Tr(%) = −Γ%11. This is unacceptable. Then,

we realize that, appart from dissipation, fluctuations should be introduced (fluctuation-

dissipation theorem). These are jumps that transform |1〉 → |0〉 with some rate Γ′. They

are conveniently written as the transformation for %: Γ′σ−%σ+. It turns out that imposing

Tr(%̇) = 0 yields Γ′ = 1
2
Γ. Therefore, the differential form for the map E is

(12) %̇ = −i[∆σ+σ−, %] +
Γ

2

(
σ−%σ+ − {σ+σ−, %}

)
This is a Lindblad-type master equation 6. I argued that it provides a bona fide evolution,

it was built ensuring all the density matrix properties. The only free parameter is the

value for the spontaneus rate Γ. It is computed using the spin-boson model (11). Using

4Finite temperature can be done in a similar way.

5The exponential decay means that %11 = exp(−Γt) and %00 = 1 − exp(−Γt). Then, the purity

(≡ Tr(%2)) equals to 1 + 2 exp(−2Γt)− 2 exp(−Γt) < 1.

6The equation was found independently by Lindblad and Kossakowski, Gorini and Sudarshan in 1976.

However, following the well know rule that regardless of what most physicists do there is always a Russian

paper which “did it first”. In 1969, Belavin, Zel’dovich, Perelomov and Popov found the Lindblad equation

before Lindblad. Though unfair, I will use the standard notation and I will refer to (12) as the Lindblad

equation.
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perturbation theory the Fermi’s golden rule is obtained:

(13)
Γ

∆
=

∆2d2

3πε0~c3
=

4α

3

∆2r2

c2
.

In the second equality I have introduced the fine-structure constant α = e2/4πε0~c ∼= 1/137.

The latter is a dimensionless combination of fundamental constants including the electron

charge. It accounts for the coupling strength in electrodynamics. Besides, I have replaced

the dipole d = er, with r being the inter-atomic distance. We can make r ∼ 10−10m while

the optical wavelength is of the order 107cm−1, so Γ/∆ ∼ 10−8. This is a rather small

number saying that atoms and photons in free space are weakly coupled.

I have just sketched the most fundamental phenomenon in quantum optics. Let me

enumerate another important examples that can be computed from (11) or more generally

from (10) . In the interaction Hamiltonian the leading terms are σ−ak + h.c., i.e. a one

photon transition, thus 2LS are single photon emitters. Another, paradigmatic example

is the amplification of the emission when a collection of atoms emit coherently. Consider

N atoms place at the same point 7. In this case, the coupling is through the total spin

operator,
∑
σx =

√
NJx. Thus, in the second part of Eq. (12) σ± is replaced by

√
NJ± and

Γ→ NΓ, i.e. the emission is N−enhanced, this is nothing but superradiance. Finally, there

is the Mollow triplet that occurs when an atom is driven with a sufficiently large intensity

and the atom is dressed by the EM-field. For all of them, the ultimate responsibility is the

light-matter entanglement.

2 Cavity and waveguide QED

In the early 1980’s, reaching this situation, now called the strong coupling regime of

cavity QED, became our Holy Grail.

Serge Haroche, 2012 (Nobel Prize lecture)

7This is a good approximation when the atom separations are smaller than the emitted light-wavelength
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2.1 Cavity QED

In free space, when a photon is emitted it does so in a irreversible way. Eq. (12) generates

an irreversible time evolution 8. Therefore it is not possible to generate interactions in a

coherent way, i.e. exchanging light and matter in a periodic fashion. The solution to both

problems is to trap photons in a cavity. Naively speaking, the photon would travel back and

forward inside the cavity enlarging the effective atomic cross section. Besides, if the atom is

excited and emits a photon, this cannot escape and eventually is re-absorbed obtaining the

desired periodic (or coherent) coupling. Te setup of atoms interacting with cavity photons

is known as cavity QED. The leaders of the first two groups that measured this coherent

interaction,Haroche and Wineland, were awarded with the Nobel prize in 2012. In the

following few lines I will explain the model for cavity QED and its main consequences.

A cavity is a box where the walls are made of mirrors. The finite volume of the cavity

fixes the extension of the photon selecting its allowed wavelengths. You can think in a one

cylin drical cavity with radial symmetry, see figure 2a). Then, the stationary waves have

the frequencies ωn = cπn/L. The lowest frequency mode has ωc = cπ/L (it is named as the

fundamental mode). It fits half of the wavelength, thus it is also known as the λ/2-mode.

If an atom is placed inside the cavity the light-matter coupling is given by (11) where the

EM-frequencies are restricted to ωn. The difference between two consecutive normal modes

is ωn+1 − ωn = ω0. Since the light-matter coupling is sufficiently weak, the 2LS is mainly

coupled to the mode which is closest to the atom level spacing ∆. Therefore, we can single

out one mode from (11) e.g. ω0, yielding the third Hamiltonian of this lecture, also quite

important,

(14) HqR =
∆

2
σz + ωca

†a+ gσx(a+ a†)

This equation is known as the quantum Rabi model. Here, the key parameter is the

single photon-atom coupling g/(ωc + ∆). It determines how fast light and matter exchange

excitations. Its importance in the physics of cavity QED deserves to estimate its value.

In the single-mode approximation, the electric field inside the cavity can be written as

E(r) = E(r)(a†+a), see Eq. (9). Therefore, g = d·E(r). Besides, 〈0|E(r)·E(r)|0〉 = |E(r)|2,

8Recall that it was built by adding two terms, one of them is an anti-hermitean operator, see the

discussion above Eq. (12).
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and the vacuum EM energy is 〈0|
∫
dV ε0E

2(r)/2+µ0B
2(r)/2|0〉 = 1

2
~ωc. To give numbers,

like in the previous section, I assume a cylindrical cavity with radius R. The volume of

integration is V = πR2λ/2, with λ the wavelength of the fundamental mode. Putting all

together an upper bound for the coupling is found,

(15)
g

ωc
≤ r

R

2α

π
.

As in the spontaneous emission calculation (13), I took the dipole: d = er. Again, the

interaction strength is bounded by the fine structure and the ratio between two magnitudes,

the interatomic one r and the radial dimension of the cavity R. This bound is reasonable.

The photon occupies the whole cavity so the interaction must depends on this ratio between

lengths. Up to 2004, experiments confirmed that the coupling was rather small 2c). In this

case, the Hamiltonian can be approximated by the so called Jaynes-Cummings model,

obtained in perturbation theory up to terms (g/ωc)
2,

(16) HqR
∼= HJC =

∆

2
σz + ωca

†a+ g(σ+a+ σ−a†) .

InHJC there are not the counterrotating terms σ+a†+σ−a, both of them create (annihilate)

one photon and one atom excitation at the same time and they are irrelevant when g/ωc �
1. HJC is simpler to solve than HqR because [HJC, N ] = 0, with N = a†a + σ+σ− being

the number of excitations. The diagonalization is done in subspaces with fixed N . They

are two dimensional: {|n0〉, |n − 1, 1〉}, with a†a|n〉 = n|n〉. Recall that |0〉 and |1〉 are

the fundamental and first excited state of the 2LS respectively. Besides, the ground state

is the trivial vacuum |GS〉 = |0; 0〉. In particular, at resonance ∆ = ωc, the eigenvectors,

conveniently labelled by the number of excitations are

(17) |ψn,±〉 =
1√
2

(
|n1; 〉 ± |n− 1, 0〉

)
,

with energies

(18) En,± = nωc ±
√
ng .

Notice that these states are light-matter entangled states. In the literature they are called

polaritons. Knowing the spectrum, the dynamics can be easily obtained. Consider as initial
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condition that the atom is excited, |ψ(0)〉 = |0; 1〉 then (this state overlaps equally with

|ψ1,±〉)

(19) Pe = Trc(|1〉〈1| |ψ(t)〉〈ψ(t)|) = cos(2gt) .

These are the quantum Rabi oscillations. The frequency of the oscillations is given by 2g.

Why was it so difficult to observe these oscillations? (the first experimental observation

was achieved in 1992). The reason is that the cavity is not perfect and it has some leak-

age. In addition, the two level system can decay in other channels apart from the cavity

photons. Both the leakage and the non-radiative channels can be modelled as a coupling

to a continuum set of modes, see Appendix A and Eq. (12). The full dynamics, including

these dissipative channels, is governed by a master equation of the form

(20) %̇ = −i[HJC, %]− κ(a%a† − 1
2
{a†a, %})− γ(σ−%σ− − 1

2
{σ+σ−, %}) ,

with κ and γ are decay rates. Solving the master equation, the Rabi oscillations decay on

time,

(21) Pe = e−(κ+γ)t cos
(

2
√
g2 − (γ − κ)2/4t

)
.

Therefore, for resolving the Rabi oscillations g must be greater the losses κ and γ. This

is the strong coupling regime. Reaching this limit opens the possibility of doing quantum

operations at the single photon limit and winning a Nobel prize.

In 2004, in Yale, instead atoms and cavities they used superconducting circuits, see

figure 2d) [76] . The cavity used was a superconducting coplanar waveguide (CPW) and

the atom was a charge qubit9. Circuits mimicking cavity QED are named circuit QED.

The coupling measured was g/ωc ∼ 10−3, See 2c). The reason of such a sizeable coupling

is that the CPW was esentially one-dimensional (reducing the cavity volume) and that the

artificial atom was huge, few microns-size. Thus, lengths in (15) approach each other.

In 2010, in the Walther Meissner Institut, a new milestone occur. A coupling g/ωc ∼= 0.1

was reached by increasing the cross talk between the superconducting circuit (in this case it

9Superconductors are used to minimise loses and to use Josephson junctions for having nonlinearities

[15]. All of these circuits operate in the microwave regime.
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Figure 2: Cavity QED a) Cylindrical cavity. b) A generic cavity QED system with the
main rates indicated. c) The time evolution for the maximum coupling achieved in the lab
between a two level system and a single mode cavity (data taken from [21]. d) Spectrum
for the quantum Rabi model (14) [solid lines] and the JC model (16) [shaded lines]. c) A
circuit QED sketch (the qubit, in red, is not in scale). g) a magnetic molecule coupled to
a superconducting cavity.

was of a flux-type) and the microwave cavity [49]. Apart from this number, the interesting

feature is that the experimental results can not be understood within the JC-model HJC

but require the full quantum Rabi model. When this occurs, i.e. that the full model is

needed, the light-matter in said to be in the ultrastrong coupling regime (USC). In a similar
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experiment, in Delft, the USC was also reached using an LC-resonator [22] 10.

Model (14) is known to be integrable since a few years ago [7]. However its solution

is not practical, but one can always diagonalize it in a computer. The eigenvalues for

the quantum Rabi, compared to the ones of the JC, are shown in figure 2d). Several

features need to be discussed. At very large coupling, the eigenstates of HqR are two-

fold degenerate. In the limit of large coupling, the full model can be approximated by

HqR
∼= ωca

†a + gσz(a† + a), i.e. a displaced harmonic oscillator. This displacement can

be positive or negative depend on the eigenvalues of σz. The energy do not depend on

the sign of the displacement, explaining the degeneracy. Besides, the ground state is not

longer the trivial but |gs〉 =
∑

2 ncn|2n, 0〉 + c′n|2n − 1, 1〉. Notice that this is a sum

over states with an even number of excitations. The reason is that the model is parity-

conserving, [HqR, P ] = 0, with P = σzeiπa
†a. In a more pedestrian way, this symmetry can

be appreciated by noticing that the interaction term in (14) creates (destroys) excitations

by pairs. Finally, a striking feature in the USC is the subtlety with the gauge principle

[14, 16]. In short, the gauge principle must be satisfied (of course). However a problem

arises when using the dipole and the Coulomb gauges within the two level approximation

as they yield non equivalent Hamiltonians. The solution to the puzzle, is to show that

the two level approximation is accurate in the dipole gauge but not in the Coulomb one.

Therefore, the two level projection should be done in the latter gauge and transformed to

the Coulomb one. The transformation must be projected in the two level subspace. Finally,

the correct gauge-invariant Hamiltonian in the Coulomb gauge was found [16]. Due to its

importance, let me write the correct quantum Rabi model in the Coulomb gauge

(22) H(C)
qR = ωca

†a+
∆

2

(
σz cos

[
2g

∆
(a+ a†)

]
+ σy sin

[
2g

∆
(a† + a)

])

Expanding the cosine and sine in powers of g/∆ we recover (14), thus both Coulomb and

dipole gauges coincide and the issues disappear. Therefore, the USC also serves for testing

the gauge invariance in cavity QED.

10In this history, I have only discussed circuits because they are exact realisations of the qR model (a

two level system coupled to a single mode cavity). Other light-matter systems as exciton polaritons or

intersuband polaritons have also reached couplings of 0.1 ωc and beyond. A full history of the USC regime

can be read in two recent reviews [21, 34].
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2.2 Waveguide QED

We can still insist in our desire to connect distant atoms through the EM field. Several

people do. Propagating photons are the ideal carriers of information. To enhance the atom

cross section, the electromagnetic field is confined in one dimensional waveguides [58]. The

waveguide QED Hamiltonian in the dipole gauge is given by (11). It turns out that the

the spin boson is classified with the spectral density,

(23) J(ω) = 2π
∑
k

c2
kδ(ω − ωk) .

In particular, the spontaneous emission (13) in the line is Γline = J(∆). The factor

β = Γline

Γline+γ
measures the atom-waveguide coupling compared to another channels of atom

dissipation with rate γ. Experiments in waveguide QED are done with superconducting

circuits [4, 73, 43, 26], optical waveguides [19] among others [44, 11] with β-factors ap-

proaching one. Thus, waveguide QED has an clear application for emitting single photons.

Another advantage of being one dimensional is that a single atom can act as a perfect

mirror [4] for single photons. This paves the way to control the transport of photons or

create atomic cavities. Besides, it is also quantifiable the induced interaction between dis-

tant atoms mediated the propagating photons in the waveguide [18, 81]. After tracing out

the waveguide modes the the master equation [See App. A] is obtained,

(24) %̇ = −i[∆(σz1 + σz2 + J12σ
+
i σ
−
j , %]−

∑
i,j=1,2

γij(σi%σ
†
j − 1

2
{σ+

i σ
−
j , %}) .

Two spin-spin interactions are generated. A coherent tight-binding interaction between

atoms with strength Jij = J(∆) cos(∆/vd12) and a cross-dissipation rate given by γ12 =

J(∆) sin(∆/vd12). Here, v is the light propagation velocity in the waveguide and γ11 =

γ22 = J(∆) . Both interactions, the coherent and the dissipative can be qualitatively

understood. The former, occurs for λ/4 distances. The first atom emits a photon. The

wavepacket is maximum in the second atom. The latter, however, happens when the

atoms are separated λ/2. In this case, both points are equivalent (except a phase) and the

atoms emit collectively [cf. the discussion on enhanced transmission in Section 1.3]. This

interaction could be used to generate entanglement or gates. However they are not optimal,

since there is always a dissipative term (the last term in (24). In fact, one can guess that
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only 50% of efficiency can be reached at maximum. When one atom emits a photon half

of it goes in the bad direction (the one which is opposite to the other atom). This can

be fixed using mirrors [61] or chiral waveguides [45]. Another alternative is by looking

for waveguides supporting bound states [69, 9, 63]. These are dressed light-matter states

localized (non propagating) arround the qubit. A necessary condition for their existence

is the photonic band to be finite. The bound state energies must lie outside the photonic

band. See figure 3b). With the help of bound states several spin-like models can be obtained

where all the interactions are dissipationless making them an attractive approach for, e.g.

quantum simulations.

2.3 The quantum technology

Quantum information science has put quantum optics into the spotlight of modern physics

Ulf Leonhardt in Essential Quantum Optics [42].

While writing this manuscript, newspapers arround the world announced that the quan-

tum supremacy has been reached. That’s it, the demonstration that a computational task

that can be done in a quantum computer cannot be made in a classical computer without

spending thousands of years. John Martinis and his group in the Google lab were able to

generate a random quantum state of 53-qubits and measuring (calculate) the bit distri-

bution [3]. This is extremely hard for a classical computer. This problem may not seem

the most interesting one but building a quantum computer of 53 qubits is a remarkable

technological milestone. Importantly enough for this manuscript, the functioning of the

computer is based on the light-matter-like interaction.

A quantum computer is a set of two level systems that can be coupled and decoupled

performing logical gates. Besides, qubit preparation and readout is also needed. In the

superconducting prototypes, the qubits are artificial atoms that may interact via cavity

photons or directly because of the cross talk between them [5, 31]. The coupling-decoupling

is done by tuning on/off resonance the qubits. The readout is done via their coupling to

a cavity. In the case of the Google prototype, each qubit is coupled to a cavity mode, see

[5]. If the two level system and the cavity mode are conveniently detuned they do not

share real but virtual excitations. In this regime, called dispersive, the Hamiltonian (14) is
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Figure 3: Waveguide QED a) Sketech of waveguide QED: an atom (here a two level
system) coupled to a one dimensional waveguide. b) Qubits coupled to a cavity array.
Each one is coupled to one cavity of the array with strenght g [cf. (14)]. The cavity array
has the Hamiltonian H = ω0

∑N
n a
†
nan − γ

∑N
n

(
a†nan−1 + H.c.

)
that gives the dispersion

relation ωk = ωc − 2γ cos(k). Each two level system coupled to the cavity array contribute
to one bound state E1. If the qubits are closer enough E1 lifts its degeneracy and the bound
states are coupled. c) Comparison of spatial boson distributions from the PT, the RWA
and exact diagonalisation (small chains, here are of 12 sites, can be diagonaized within a
classical computer). They correspond to ∆ = 0.3, and g = 0.05, g = 0.1 and g = 0.2
respectively from left to right. Solid lines are used to indicate polaron results, dashed lines
for RWA results and dots for exact diagonalisation results.

equivalent to [82]

(25) HqR
∼=

∆

2
σz + ωca

†a+ g2

(
1

∆− ωc
+

1

∆ + ωc

)
σza†a
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I emphasize that this Hamiltonian is valid provided g � |∆−ωc| Notice that the frequency

of the cavity is shifted by ±g2
(

1
∆−ωc

+ 1
∆+ωc

)
depending on the state of the qubit. This

can be used to do the readout. At the same time, if a second qubit is coupled to the cavity

mode and both are in the dispersive regime they couple through a term ∼ Jijσ
†
iσj + h.c.

[Cf. Eq. (24)] [82]

(26) Jij = gigj

(
1

∆i − ωc
+

1

∆j − ωc
− 1

∆i + ωc
− 1

∆j + ωc

)
This has been used to generate interactions between the qubits via the cavity wich plays the

role of a quantum bus [47]. Therefore, both the interaction and the readout, ingredients of

a quantum computer are based on the light-matter Hamiltonian (14). In this manuscript,

I have focused on the superconducting circuit architecture. Other quantum computers are

based on the ion-trap technology. In that case, the functioning is based on the coupling

between ions and light [78].

3 Many-body quantum optics in the non perturbative regime

I:Mom, how do I know that the water is boiling?

Mom: You will.

My mom, giving the best explanation of a phase transition the day I introduced myself in

the fine art of cooking an egg.

There are many works doing quantum many-body physics with light-matter systems

[27, 2, 40]. In this section, I focus on the strongly correlated phenomena occurring because

the coupling between light and matter enters into the nonperturbative or USC regime.

3.1 Many body cavity QED

A two level system coupled to a single mode cavity is not a many-body system. A quantum

many-body system can be build by coupling N 2LS to a single mode cavity. The Dicke

model is the generalisation of (14) to N -qubits,

(27) HDicke =
∆

2

N∑
j

σzj + ωCa
†a+ g

N∑
j

σxj (a+ a†) .
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For simplicity, let me consider equal atoms that are equally coupled to the cavity. It

turns out that this model has a phase transition, called superradiant. Understanding this

transition is easy. In the mean field approximation (27) a+ a† → α, with α a real number.

The ground state energy is given by E = ωα2 − N
2

√
∆2 + 4g2α2. Energy minimisation

yields that if g < gc =
√
ωc∆/2

√
N then α = 0 while if g > gc, α 6= 0. α is the order

parameter and this phase transition belongs to the mean-field Ising universality class [33].

This transition has not been observed yet. The reason is that the realization of (27) is not

trivial. Model (27) does not account for N independent atoms in single mode cavity. In

the dipole gauge it reads however,

(28) H(D) = HDicke +
g2

∆

∑
σxi σ

x
j .

This term ruins the phase transition. Notice, that pretty much like in the gauge issues

discussed in section 2.1, this term is important whenever g
√
N is large enough. This is the

regime where the transition is expected to occur. Currently, there is an enormous interest

for searching systems to observe this phase transition [13].

Many-body spin-spin interactions is mediated by the cavity field (remind the previous

section) [1, 75, 51]. In the detuned cavity-atoms case the interaction is of the tipe σxi σ
x
j

with the coupling constants given in (26). Recently, we have found a novel way of obtaining

a hybrid spin-spin-boson model [46]. The starting point is again the Dicke model with a

parity breaking (second term below) for the spins [Cf. Eq. (14)]

(29) H =
∆

2

∑
σzj +

ε

2

∑
σzj + ωc a

†a+ g(â+ â†)
∑

σxj .

When ε 6= 0,H can couple states differing by an odd number of excitations. For example, an

avoided level crossing, originating from the coupling of the states â†|0, j,−j〉 ↔ Ĵ2
+|0, j,−j〉,

is expected when the resonance frequency of the cavity ωc ' 2ωq = 2
√

∆2 + ε2 [23]. We

label the states as |n, j,m〉, where the quantum number n describes the Fock states of

the cavity, and j = N/2 is the total angular momentum and m = −j + Nexc is the
∑
σzj

eigenstate, where Nexc describes the number of excited atoms. Notice that this transition

is allowed only if the counter-rotating terms are included. Using perturbation theory [66]
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the following effective interaction Hamiltonian can be obtained:

(30) Ĥeff = geff

(
âĴ2

+ + â†Ĵ2
−

)
,

where

(31) geff = −4g3 cos2 θ sin θ

3ω2
q

,

with sin θ = ε/
√

∆2 + ε2. This procedure also gives rise to a renormalization of the atomic

frequencies, which can be reabsorbed into ωq. This yields a two-axis twisting like-interaction

among the spins wich can be used to generate macroscopic spin entanglement [46].

3.2 Many body with spin-boson type models

In the previous section I was considering a single mode cavity. Now, let me discuss the

coupling with a collection of modes. This is a more general case. It covers many situations

described with the Hamiltonian (11), by choosing different functional forms for J(ω), Eq.

(23). Three examples are drawn in figure 4. The first is a one dimensional waveguide,

figure 3a). There, J(ω) ∼ ω [53]. A second example is the cavity QED considering the

leakage of photons, figure 2. In this case, J(ω) is a Lorentzian-type function peaked in the

cavity frequency ωr. Finally, a cavity array is considered, figure 3b) where the density of

states diverge at the band edges [62, 59].

In all its generality, the spin-boson Hamiltonian (11) does not have a known solution.

See [72, Chap. 18.1] and [41] . However, if the coupling constant is small enough, the

rotating wave approximation (RWA) can be used, by which the interaction term becomes

[Cf. Eq. (16)]

(32)
∑
k

ck

(
σ−a†k + σ+ak

)
.

It is clear now that ground state (GS) is |GS〉 = |0;0〉. In addition, the Hamiltonian

preserves the number of excitations N , [H, N ] = 0 with N =
∑

k a
†
kak + σ+σ−. Owing

to these properties, within the RWA, the g.s physics and the single excitation dynamics

is trivial. Notice that this is the generalization of the JC-model (16) to the multimode

case. In this lecture, however I am interested in the regime where the RWA fails. Different
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Figure 4: Spectral density J(ω) for different situations. They correspond to coupling to
a one dimensional transmission line, Fig. 3a), to a dissipative cavity, Fig 2 and to a cavity
array Fig. 3b) respectively from left to right.

numerical techniques have been used to solve (11) beyond the RWA. These are matrix-

product state (MPS) [53, 62, 59] , density matrix renormalization group (DMRG) [56] or

path integral approaches [25, 39]. Analytical treatments are also used. They are based on

different varational anstazs: polaron-like [70, 6, 17, 67, 80, 60] or Gaussian ones [68]. In

this overview I will sketch the polaron-like approach that allows to find, in an analytical

way, the low energy equilibrium and non-equilibrium dynamics.

In order to understand the motivation behind the polaron ansatz, it is convenient to

analyse the asymptotic limits where the Hamiltonian is exactly solvable. In the case where

ck = 0, the coupling vanishes and the problem splits into a 2LS and a bosonic bath which

can both be solved independently. The GS is therefore |GS〉 = |0;0〉, which is clearly

localised, in the sense that the spin ket is an eigenstate of σz. In the opposite case, ∆ = 0,

the Hamiltonian becomes that of a set of displaced oscillators. One can choose a state of

the form

(33) |ψ〉 = |±〉 ⊗ |osc.〉 ,

where |±〉 can be either eigenstate of σx and |osc.〉 is an unknown state for the oscillators.
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Now it can be seen that

(34) H |ψ〉 = |±〉 ⊗

(∑
k

ωka
†
kak ±

∑
k

ck

(
a†k + ak

))
|osc.〉 ,

so the direction of the displacement is determined by the qubit state. By defining new

bosonic operators: Ak = Ak± ck/ωk and A†k = A†k± ck/ωk with [Ak, A
†
k] = 1, one arrives at

(35) H |ψ〉 = |±〉 ⊗

(∑
k

ωkA
†
kAk −

∑
k

c2
k

ωk

)
|osc.〉 .

It is clear now that the GS for this Hamiltonian is |±〉 ,0 and the energy is independent on

the spin state and equal to −
∑

k c
2
k/ωk. In this instance the GS is delocalised, as the qubit

state can be in either the symmetric or antysimmetric superpositions of the eigenstates of

σz 11. Here I have introduced the redefined bosonic operators rather ad hoc, but they can

also be reached by means of the displacement operator, which is presented below in its

most general form,

(36) D(α) = exp
[
αa† − α∗a

]
.

The displacement operator is a unitary transformation, since D(α)† ≡ D(−α), which jus-

tifies that the energy deduced from the transformed Hamiltonian is the same as for the

original one. If the operator is tweaked to produce displacements corresponding to the

redefined bosonic operators one has

(37) D

(
± ck
ωk

)
= exp

[
σx
∑
k

ck
ωk

(
a†k − ak

)]
.

The presence of σx in the exponent serves to generate the plus or minus sign that deter-

mines the direction of displacement, upon acting on the corresponding eigenstate.

11 For those who have a condensed-matter background, the spin-boson is paradigmatical in impurity

models. In those formulations that naturally lead to a double-well interpretation of the 2LS, the roles of σx

and σz are switched in the Hamiltonian. In that case, ck = 0 is viewed as the delocalised regime whereas

∆ = 0 is viewed as the localised regime.
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Therefore, one seeks a unitary transformation that renders the Hamiltonian diagonal-

isable, with a non-trivial ground state that merges the two asymptotic solutions. Unfor-

tunately, the former condition is not completely satisfied by the polaron transform, but it

does produce a quasi-solvable Hamiltonian whose GS can be calculated with the use of a

simple ansatz. The transformation is

(38) UP = exp

[
−σx

∑
k

fka
†
k − f

∗
kak

]
,

and the variational ansatz is

(39) |GS〉 = UP |S;0〉 .

Where |S〉 is an unknown spin state and fk are free parameters to be determined by the

application of the variational method. Minimization yields the self-consistent relation

(40) fk =
−ck/2

∆r + ωk
with ∆r = ∆ e−2

∑
k f

2
k .

We have seen that in the polaron picture the GS is trivial, then it is expected that the low

energy dynamics consists on single particle excitations over this GS. Exactly, the unitary

transformed Hp = U †pHUp reads

Hp = ∆rσ
+σ− +

N∑
k=1

ωka
†
kak − 2∆r

(
σ+

N∑
k=1

fkak + H.c.

)

− 2∆rσz

N∑
k,p=1

f ∗kfpa
†
kap

+
∆

2
+

N∑
k=1

(ωk|fk|2 − g∗kfk − f ∗kgk) + h.o.t.(41)

Here, h.o.t. stands for higher-order terms of order O(f 3) with two and more excitations.

Note how the transformed Hamiltonian conserves the number of excitations and can be

treated analytically like in the RWA approximation. With this tools at hand, we can

overview the main features for the low energy physics of the spin boson model, rather

independently of J(ω), both at equilibrium and non-equilibrium.
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Ground state properties.- Notice that due to the coupling to the photons the qubit fre-

quency is renormalized to ∆r, Cf. (41) and [41]. Besides, from (40), it renormalizes to zero.

Rewriting ∆r in terms of J(ω)

(42) ∆r = ∆e−1/2
∫ ωc
0 J(ω)/(ω+∆r)2

is obtained. Notice that ∆r means localised (delocalised) 2LS (see footnote 11). Whether

this occurs through a phase transition or not depends only on J(ω). The most studied

cases are J(ω) ∼ ωs. Depending on the value of s, there exist three distinct cases known as

sub-Ohmic (s < 1), Ohmic (s = 1), and super-Ohmic (s > 1) regimes. It has been shown

that the transition is of second order in the sub-Ohmic regime and Kosterlitz-Thouless type

in the Ohmic regime. In the super-Ohmic regime there is no phase transition [79]. Other

J(ω) are currently been investigated together with their critical properties.

Vacuum emission.- Apart from this phase transition, another interesting phenomena oc-

curing in the spin boson model is its vacuum emission as we recently calculated [60]. The

idea is that the ground state (39) depends on fk. The latter depend on the light-matter cou-

pling strenght. Physically, the ground state photon occupation is different from zero around

the qubit, see fig (3)c). Then, by modifying the light-matter interaction non adiabatically

the ground state emits light, pretty much like in the Casimir effect [10, 38, 48, 37, 77].

Spontaneous emission.- Within the polaron picture Hp, the model resembles the weak

coupling-RWA one. In this case, it is expected that standard perturbative techniques hold

here too. In fact, in [80] we have shown that the spontaneous emission is given by

(43) Γline = J(∆r)

recovering Fermi’s golden rule at the weak-coupling limit and a quenching of the emission

at large couplings, which recalls the effective decoupling in the USC regime [21, 34].

Spin-spin interactions in waveguide QED.- Generalising the polaron transformation to

several qubits coupled to a one dimensional field, a direct spin-spin interaction of the

form, Jσxi σ
x
j emerges. Our calculations with the cavity array, figure 3b) confirm that J

decays exponentially with the distance. Therefore, we expect the occurrence of transitions
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belonging to the Ising class type (recall our discussion on the superradiance transition)

[35]. Finally, in the polaron picture (41), bound states can be also computed. It turns out

that the existence of bound states is guaranteed at any coupling strength and that can be

computed, see figure 3c). Therefore, non dissipative spin-spin interactions build up also in

the USC regime of waveguide QED.

Therefore, the polaron transformation is a convenient tool for discussing the physics

of waveguide QED in the USC. This regime is still in its infancy, here I just listed the

first calculations but further and more exotic phenomena are currently been investigated

[55, 20].

4 Concluding remarks

All right.

Ignatius Farray.

A lot of stuff was not explained here, maybe too much. For example, I did not say

anything about magnetic molecules coupled to the cavity field through the last term in

(4) [29], see figure 2f). Here, some issues on the gauge principle and/or the superradiance

transition may be of relevance. Besides, they are also proposed as prototypes of a quantum

computer [30]. I omitted most of the phenomena of quantum optics as the generation of

squeezed light, measurement or timely topics as topology and photonics. I have written a

naive explanation of a quantum computer. Famous reports on the topic and its relation

with the light-matter coupling are Refs. [52, 36]. In addition, I have done an extremely

partisan review of the many body physics done with light. As said, I focus on how many

body effects emerge due to the entrance in the USC. However, light-matter systems are

being used to generate strongly correlated models even without the USC as explained in

Refs. [40, 11].

With respect to the topics covered, some of them are still incomplete and need further

investigation. Some of them are the occurrence of a localized-delocalized phase transition

for J(ω) besides J(ω) ∼ ωs, the extension of the polaron technique for finite temperature

systems and the study of multimode cavities or going beyond the two level paradigm, for

e.g. to build quantum simulators for higher spin systems are some examples. Another topic

of current interest is to tune the physical and chemical properties of quantum materials

inside quantum cavities [65, 32].
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Let me say goodbye with a reflection. Quantum mechanics is reaching the level of

a technological solution. Apart from the understanding of the fundamental interactions

young physicists should acknowledge the big heroes of physics for the existence of job offers

where knowing quantum physics is mandatory.

Acknowledgments. I am indebted with so many people that this section would be too

large. So, in the spirit of this overview in a nutshell, I will do my best to shorten the list.

It is an honour to acknowledge the members of the Real Academia de Ciencias de Zaragoza

for this prize. Thanks to my students. Specially to the QED crew: Fernando Quijandŕıa,

Eduardo Sánchez-Burillo, Virginia Ciriano, Juan Román-Roche and Sebas Roca. I learnt

a lot from you. To my colleagues-friends. Specially to José Luis Garćıa-Palacios, Fernando

Luis, Juanjo Garćıa-Palacios, Luis Mart́ın-Moreno, Charles Downing, Salvatore Savasta,

Franco Nori and Peter Hänggi. It is a pleasure to do physics with you. Finally, I also

acknowledge the funding from the Spanish Goverment, the EU comission and the Aragón

regional funds.

A The master equation

Even if one can argue that the Universe follows a Schrödinger-type equation in some limit,

it is difficult to defend that practical calculations must include the Hamiltonian for the

whole Universe. In fact, most of the physicists are interested in a corner (typically small)

of the Universe. This corner interacts with the rest. Denoting it as the system of interest

and the rest is denoted the environment the total Hamiltonian is splitted:

(44) HT = HS +HE +HI

And the relevant object is the reduced density matrix % ≡ TrE(%T ). I remind you that, for

any observable acting on the system (OS = OS⊗IE), its average is given by 〈OS〉 = Tr(OS%).

Writen like this, HS describes an open system and it would be nice to have a dynamical

equation for %. The latter is a master equation. Below, within the style of this lecture,

I will sketch the derivation of a generic master equation with emphasis in its conceptual

roots rather than in the algebra.

Notice the exact time evolution for the reduced density matrix given the HT in (44) [Cf.
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figure 1],

(45) %(t) = TrE

(
UT(t, t0)%T(t0)U †T(t, t0)

)
.

Consider first the case where both system and environment are in a product state at t0

(they are not correlated; neither classically nor quantum). Then, %T(t0) = %S(t0)⊗ %B(t0).

In this case,

(46) %(t) =
∑
α,β

K†α,β(t, t0)%S(t0)Kα,β(t, t0) ≡ E(t, t0)%(t0)

with Kα,β(t, t0) =
√
λα〈λα|U(t, t0)|λβ〉. This last formula is rather direct from (45) using

the diagonalization for the bath initial density matrix %B(t0) =
∑

α λα|λα〉〈λα|. The last

equivalence is a convenient notation that highlights the fact that this is nothing but a map

that transforms a density matrix in another density matrix. We emphasize that this result

is exact and that the operators K (so the map E) are independent of the state. However,

it lies in the assumption that at t0 the density matrix was a product state. This, marks t0

as an special time. In general, however the state is

(47) %T(t0) = ρS(t0)⊗ ρE(t0) + δ%

Here, %S = TrE(%T), %E = TrS(%T) and δ% = ρ − ρS ⊗ ρE wich encapsulates the system-

bath correlations. Introducing the latter in (45) the expression for %(t) adds the extra

term TrE

(
UT(t, t0)δ%U

†
T(t, t0)

)
. This term depends on the initial condition δ%. Therefore,

is not always possible to find a Universal dynamical model (this is the standard name)

independent on the state of the system density matrix at time t0. This is annoying. In

general, it is not possible to find a differential operator such that, %̇ = L[%]. In other words,

we cannot always find a local equation for the evolution of an open system . This is not

surprising, the same occurs for classical systems. Thus, an approximation is necessary. I am

going to assume that the map (46) is Markovian, wich means that satisfy the composition

(∀t2, t0, t1),

(48) E(t2, t0) = E(t2, t1) E(t1, t0)
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In practice, this means that (46) can be used for any t and t0. Obviously this is not

true, however let me continue and justify the Markovian approximation at the end. The

differential version for (46) can be found noticing that

(49)
d%

dt
= lim

ε→0

E(t+ ε, t)− ε
ε

%(t) ≡ L[%] .

Doing two pages of calculations (not shown here) it is found that

(50)
d%

dt
= −i[HS, %] +

N2−1∑
i,j

γij

(
Li%L

†
j −

1

2
{L†iLj, %}

)
This is the Lindblad equation discussed in the main text. Here the operators L form an

orthogonal basis in the space N2 and the coefficients are related to the coefficients for the

expansion. See [8, Chapter 3] and [57, Chapter 4] for a more detailed discussion.

My final comment on the main approximation used: Eq. (50) has been found under

the Markovian condition. This approximation, in practice, neglects the correlated part δ%

in (47). This seems to contradict my discussion on the importance of entanglement done

in Sect. 1.3. However, it does not. We are not neglecting the entanglement, which would

mean that %S is a pure state all the time. We are neglecting δ%, a correction to the density

matrix that is, at least, of the order of the system-bath coupling. Therefore, Eq. (50) is

expected to hold whenever the system and bath are weakly coupled.
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Marco Schiró, Many-body quantum electrodynamics networks: Non-equilibrium condensed

matter physics with light, Comptes Rendus Physique 17 (2016), no. 8, 808–835.

[41] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg, and

W. Zwerger, Dynamics of the dissipative two-state system, Reviews of Modern Physics 59

(1987), no. 1, 1–85.

[42] Ulf Leonhardt, Essential quantum optics: from quantum measurements to black holes, Cam-

bridge University Press, 2010.

[43] Yanbing Liu and Andrew A Houck, Quantum electrodynamics near a photonic bandgap,

Nature Physics 13 (2017), no. 1, 48.

[44] Peter Lodahl, Sahand Mahmoodian, and Søren Stobbe, Interfacing single photons and single

quantum dots with photonic nanostructures, Reviews of Modern Physics 87 (2015), no. 2,

347.

[45] Peter Lodahl, Sahand Mahmoodian, Søren Stobbe, Arno Rauschenbeutel, Philipp

Schneeweiss, Jürgen Volz, Hannes Pichler, and Peter Zoller, Chiral quantum optics, Nature

541 (2017), no. 7638, 473.
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[80] David Zueco and Juanjo Garćıa-Ripoll, Ultrastrongly dissipative quantum rabi model, Phys-

ical Review A 99 (2019), no. 1, 013807.

[81] David Zueco, Juan J Mazo, Enrique Solano, and Juan José Garćıa-Ripoll, Microwave pho-
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