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Abstract

This paper surveys some recent advances relating positivity, accuracy and opti-

mal bases. In particular, high relative accuracy computations for some structured

classes of matrices adequately parametrized are considered. Some applications of

these classes of matrices are commented.

1 Introduction

In many mathematical models, positivity is one of the fundamental underlying hy-

potheses because the involved variables only have meaning when they are nonnegative.

This also implies that nonnegative matrices also play a crucial role in many mathe-

matical models dealing with problems of the real world or arising in other scientific

or technical fields. Spectral properties of nonnegative matrices are also remarkable

because, by the Perron–Frobenius theorem (cf. [12]), the nonnegativity is inherited

by an eigenvalue of the matrix with maximum absolute value and by a corresponding

eigenvector, properties that also play a key role in many mathematical models. For

instance, in the Leontief input–output model, very important in Economy (cf. [12]).

More recent applications of positivity are related with the advantages of positivity in
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the context of numerical computations in floating point arithmetic, as explained in

Section 2. In this sense, we mention two main sources of such applications. On the

one hand, applications related to the factorization of a nonnegative sparse matrix as

a product of two nonnegative matrices, which are natural applications in the context

of Big Data (cf. [114, 82]). On the other hand, applications related to the search of

numerical methods adapted to the structure of the classes of matrices and leading

to computations with high relative accuracy. This will be one of the topics surveyed

in this paper. In spaces of nonnegative functions arise optimal bases under different

viewpoints. This problem was first studied in the context of Total Positivity and

later extended to a more general framework, and it is another topic considered in this

paper.

The paper is organized as follows. Section 2 presents some basic concepts about

the errors obtained when computing with floating point arithmetic. The classical error

analysis involves concept such as growth factor and conditioning. This leads to present

some optimal bases and to recall that, in some problems related with positivity, it

is possible to find a parametrization of the data and an algorithm leading to small

roundoff errors in spite of a bad conditioning with its initial parametrization. Section

3 is devoted to optimal bases for several properties in the context of Total Positivity

and more general contexts. In particular, we point out some optimal properties of

the Bernstein basis of the space of polynomials.

Up to now, methods with high relative accuracy for algebraic computations (such

us the eigenvalues, singular values or inverses) independently of the conditioning have

been found mainly for classes of matrices related with positivity and coming from one

of the two following sources: generalizations of diagonally dominant matrices (consid-

ered in Section 4) and subclasses of totally positive matrices (considered in Section

5). In both cases, we comment the parameterizations of the matrices leading to

the computations with high relative accuracy as well as some applications. These

parameterizations lead to some matrix factorizations that are used by algorithms

with high relative accuracy: rank revealing decompositions, obtained for classes of

matrices generalizing diagonal dominance, and bidiagonal factorization, obtained for

nonsingular totally positive matrices. In Section 5 we provide some details of the

accurate computations and bidiagonal factorizations of matrices of matrices related

to the following five subclasses of nonsingular totally positive matrices: Pascal ma-

trices, rational Bernstein-Vandermonde matrices, Jacobi-Stirling matrices, Laguerre

matrices and Bessel matrices.
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2 Error analysis, optimal bases and high relative accuracy

When we apply an algorithm and perform the computations with floating point arith-

metic, since we do not know the exact error performed with our computations, it is

convenient to try to derive upper bounds of this error, usually known as forward error

bounds. However, it is usually very difficult to get directly such bounds. An alterna-

tive approach that has been very successful in the field of Numerical Linear Algebra,

and later in other fields, bounds the forward error through the backward error. If

we consider that our computed solution is the exact solution of a perturbed problem,

the backward error measures the distance between the perturbed problem and the

initial problem. The backward error depends on the numerical method that we have

used and it is well known that the growth factor of an algorithm is an indicator of its

backward stability (cf. [68], [71]). Let us recall that the growth factor of a numerical

algorithm is usually defined as the quotient between the maximal absolute value of

all the elements that occur during the performance of the algorithm and the maxi-

mal absolute value of all the initial data. The optimal growth factor for a numerical

method is 1. Hence optimal methods under this viewpoint are methods with growth

factor 1 (cf. [106, 108, 27]).

The conditioning of the problem measures the effect of data perturbations on the

solution of the problem. In general, when we have defined the corresponding forward

error, backward error and the condition number for a given problem, one tries to

prove the relation:

forward error ≤ condition number× backward error,

which allows us to obtain a forward error bound through the backward error. Al-

though the computed solution has a small backward error, it can be amplified by the

condition number leading to a large forward error. So, in contrast to the backward

error, which depends of the used method, the conditioning can become an intrinsic

cause to get a large forward error bound. In conclusion, under this approach, in order

to get a small forward error we need a small conditioning and using a method with

small backward error.

In the problem of evaluating a real function of a finite dimensional vector space

of functions, the conditioning depends on the basis that we use. The problem of

finding bases with minimal condition number has been analyzed in the context of

bases of nonnegative functions, which play an important role in many problems of
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approximation theory or computer aided geometric design (cf. [53]). The optimal

bases in this context for the evaluation of a function are bases b of nonnegative

functions that cannot be expressed, up to permutation and positive scaling, in the

form vK, where v is another basis of nonnegative functions and K is a nonnegative

matrix (see [25, 105, 106]). Examples of these optimal bases are the Bernstein basis

[52] for the space of polynomials on a compact interval, the B-spline basis [101] or

the bases of spaces of real multivariate functions given in [84]. Let us recall that the

Bernstein basis (bn0 (t), . . . , bnn(t)) of the space Pn of polynomials of degree at most n

on [0, 1] is given by

bni (t) =

(
n

i

)
ti(1− t)n−i, t ∈ [0, 1], i = 0, 1, . . . , n.(1)

and it is the polynomial basis most used in computer aided geometric design. In the

next section, we consider again this basis and other optimal properties that it satis-

fies. The conditioning for the representations associated to polynomial interpolation

problems (depending on the nodes distribution and ordering) and to least squares

approximations have been analyzed recently (see [16, 17, 18, 19]). Coming back to

the problem of evaluating a function, in addition to bases with minimal condition

number, backward stable methods are also required in order to obtain small forward

errors. These backward stable methods and their corresponding error analysis can be

seen in [85, 109, 110, 8, 9, 34, 36, 10, 38, 42].

We now comment an alternative approach to assure small forward errors and

that can be applied in fields where positivity plays a key role. In some prob-

lems it is possible to find a parametrization of the data and an algorithm lead-

ing to small forward error bounds in spite of a bad conditioning with its initial

parametrization. The desired goal is to guarantee high relative accuracy (HRA). We

say that we have performed an algorithm with HRA if the following formula holds:

relative forward error ≤ Ku, for some constant K, where u is the unit roundoff. It is

not always possible to guarantee HRA for a given problem. An example of a simple

problem for which an HRA algorithm cannot be found is provided by the sum of

three real numbers x+ y+ z (see [44]). For some structured classes of matrices, HRA

algorithms can be found, as we shall recall in this paper. However, there are classes of

structured matrices for which we again have that these algorithms cannot be found.

For instance, accurate linear algebra for the problem of calculating determinants or

minors is impossible on the class of Toeplitz matrices (see corollaries 3.43 and 3.45 of
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[44]). Let us recall that a Toeplitz matrix B has the following simple structure:

B =



a0 a1 · · · an−2 an−1

a−1 a0
. . . an−2

...
. . .

. . .
. . .

...

a−n+2
. . .

. . . a1

a−n+1 a−n+2 · · · a−1 a0


.

There exists a sufficient condition to assure the HRA of an algorithm that we

now recall. Given an algorithm using only additions of numbers of the same sign,

multiplications and divisions, and assuming that each initial real datum is known to

HRA, then it is well known that the output of the algorithm can be computed to

HRA (cf. [45, p. 52]). Moreover, in (well implemented) floating point arithmetic,

HRA is also preserved even when we perform true subtractions when the operands

are original (and so, exact) data (cf. p. 53 of [45]). So, the sufficient condition to

assure the HRA of an algorithm is called “no inaccurate cancellation” (NIC) and it is

satisfied if it only uses additions of numbers of the same sign, multiplications, divisions

and subtractions (additions of numbers of different sign) of the initial data. In order

to find algorithms with HRA for some classes of matrices, it is usually necessary to

reparameterize the matrices belonging to these classes, since HRA will be satisfied

independently of the conditioning of the matrices. Up to now , the main classes of

matrices for which algorithms with HRA have been found are closely related with

positivity and the corresponding algorithms are in fact NIC algorithms. We show

many examples of these classes of matrices in sections 4 and 5.

3 Optimal bases

In the previous section, we have mentioned the bases of nonnegative functions that

are optimal, with respect to the corresponding condition number, for the problem of

evaluating a real function of a finite dimensional vector space of functions. Let us

now recall this condition number. Given a basis u = (u0, . . . , un) of a real vector

space U of real functions defined on a subset S of Rm (m ≥ 1) and a function f ∈ U ,

we can write f(x) =
∑n
i=0 ciui(x) for all x ∈ S, where ci ∈ R for all i = 0, . . . , n. The

stability of the basis U with respect to the evaluation at a point is measured by the

function Cu : U × I → R+ given by

Cu(f, x) :=
n∑
i=0

|ciui(x)|.(2)
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Given two bases of nonnegative functions u, v, let A the matrix of change of basis

such that v = uA. The following result compares the conditioning of the bases by

means of the nonnegativity of K. The result can be proved with the adaptation to

the condition number (2) of the proof of Lemma 3.1 of [84], which proves a similar

result for a relative condition number derived from the previous one.

Lemma 3.1 Let U be a finite dimensional vector space of functions defined on a

subset S of Rm. Let u, v be two bases of nonnegative functions of U . Then

Cu(f, x) ≤ Cv(f, x), ∀ f ∈ U , ∀x ∈ S(3)

if and only if the matrix A such that v = uA is nonnegative.

In the case of the space Pn of polynomials of degree at most n on an interval [0, 1],

Theorem 3 of [52] leads to the optimality result of the Bernstein basis given by (1).

Theorem 3.2 Let b = (bn0 , . . . , b
n
n) be the Bernstein basis. Then there does not exist

(up to reordering and positive scaling) another basis u = (u0, . . . , un) of nonnegative

functions in Pn such that Cu(p, t) ≤ Cb(p, t) for all t ∈ [0, 1] and p ∈ Pn.

Similar results to the previous one are satisfied, for instance, by the B-spline basis

[101] or by the bases of spaces of real multivariate functions given in [84] (see also

[105]).

Now we shall focus on optimal bases for shape preservation in Computer Aided

Geometric Design (CAGD). We shall see that they are closely related with the op-

timal bases for the evaluation commented previously. We start with the definition

of collocation matrix of a system of functions, which will be used later to introduce

special bases. Given a system of functions U = (u0, . . . , un) defined on I ⊆ R, the

collocation matrix of U at t0 < · · · < tm in I is given by

M

(
u0, . . . , un
t0, . . . , tm

)
:= (uj(ti))i=0,...,m;j=0,...,n.(4)

We now recall some concepts of CAGD. Given a sequence of functions (u0, . . . , un)

on I = [a, b] , and a sequence of points (C0, . . . , Cn) in Rk, we may define a parametric

curve

γ(t) =
n∑
i=0

Ciui(t), t ∈ [a, b].

The points Ci, i = 0, . . . , n, are called control points. The control polygon of the curve

γ is the polygonal arc with vertices C0, . . . , Cn. In CAGD, it is usually required that
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the functions ui, i = 0, . . . , n, are nonnegative and
∑n
i=0 ui(t) = 1 for all t ∈ I (i.e., the

system u = (u0, . . . , un) is normalized, or equivalently, the functions form a partition

of unity). A normalized system of nonnegative functions is called a blending system.

An important property for curve design is the convex hull property: for any control

polygon, the curve lies always in the convex hull of the control polygon. The convex

hull property holds if and only if the system of functions is blending. These geometric

properties correspond to some properties of the collocation matrices of the system of

functions. Observe that u is blending if and only if all its collocation matrices are

stochastic (that is, nonnegative and such that the sum of the entries of each row is

one).

More shape preserving properties of the systems of functions require in turn ad-

ditional properties to their corresponding collocation matrices. In interactive design

we also desire that the shape of a parametrically defined polynomial curve mimics

the shape of its control polygon in order to predict or manipulate the shape of the

curve by suitably choosing or changing the control polygon. This leads to the con-

cept of totally positive systems and totally positive matrices, due to the variation

diminishing property of these matrices. A matrix is totally positive (TP) if all its

minors are nonnegative and a system of functions is totally positive (TP) if all its

collocation matrices (4) are totally positive. If all minors of a matrix are positive,

then the matrix is called strictly totally positive (STP) matrix. TP and STP matrices

have been also called in the literature as totally nonnegative and totally positive,

respectively. If a system u is normalized totally positive (NTP) then the curve γ

inherits many shape properties of the control polygon.Let us mention that, in addi-

tion to the space of polynomials on a compact internal and polynomial spline spaces,

many other spaces containing algebraic, trigonometric and hyperbolic polynomials

also posses NTP bases (cf. [90, 86, 20, 87, 88, 21, 22]).

Now we consider the problem of comparing two NTP systems of the same space.

Given two NTP bases (p0, . . . , pn) and (b0, . . . , bn) of a space of functions U , let K be

the nonsingular matrix given by

(p0, . . . , pn) = (b0, . . . , bn)K.

Since both bases are normalized we conclude that each row of K has sum 1. If we now

assume that the matrix K of change of basis is TP, then it is an stochastic nonsingular

TP matrix The following properties of the control polygons B0 · · ·Bn (with respect

to (b0, . . . , bn)) and P0 · · ·Pn (with respect to (p0, . . . , pn)) can be obtained (see [65]
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and [67]):

1. If P0 · · ·Pn is convex, then so are B0 . . . Bn and the curve γ, and B0 · · ·Bn lies

between P0 · · ·Pn and γ.

2. Length γ ≤ length B0 · · ·Bn ≤ length P0 · · ·Pn.

3. If P0 · · ·Pn turns through an angle < π, then I(γ) ≤ I(B0 · · ·Bn) ≤ I(P0 · · ·Pn),

where I(β) denotes the number of inflexions of a curve β.

4. θ(γ) ≤ θ(B0 · · ·Bn) ≤ θ(P0 · · ·Pn), where θ(β) denotes the angular variation of

a curve β.

Therefore, the curve γ imitates better the form of the control polygon B0 . . . Bn

than the form of the control polygon P0 . . . Pn. This motivates that an NTP basis

with optimal shape preserving properties satisfies the following definition.

Definition 3.3 Let (u0, . . . , un) be a TP basis of a space U . Then (u0, . . . , un) is a

B-basis if for any other TP basis (v0, . . . , vn) of U the matrix K of change of basis

(v0, . . . , vn) = (u0, . . . , un)K

is TP.

By the previous reasoning, a normalized B-basis has optimal shape preserving

properties. A space with an NTP basis has a unique normalized B-basis (see [24]).

Example of normalized B-bases are the Bernstein basis (1) and the B-spline basis (see

[23, 24]).

Another optimal property of normalized B-basis is related to the progressive iter-

ation approximation property (see [35]), which is satisfied by NTP bases. Given

a sequence of points (Pi)
n
i=0 such that the ith point is assigned to a parameter

value ti for i = 0, 1, . . . , n and a basis (u0, . . . , un), we construct a starting curve

γ0(t) =
∑n
i=0 P

0
i ui(t) with P 0

i = Pi for all i ∈ {0, 1, . . . , n}. Then, computing the

adjusting vector ∆0
i = Pi − γ0(ti) we can take P 1

i = P 0
i + ∆0

i , for i = 0, 1, . . . , n,

and construct a new curve as γ1(t) =
∑n
i=0 P

1
i ui(t). Iterating this process we can

get a sequence of curves {γk}∞k=0. The progressive iteration approximation property

holds when this curve sequence converges to the polynomial curve interpolating the

given initial sequence of points. This property holds for NTP bases and we proved in

Theorem 4 of [35] the optimal convergence speed of the normalized B-basis.
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Theorem 3.4 The normalized B-basis of a space U with an NTP basis provides a

progressive iterative approximation with the fastest convergence rate among all NTP

bases of U .

Other optimal properties of normalized B-bases can be found in [25, 102].

Now, we finish this section presenting the optimal conditioning of the collocation

matrices of the Bernstein basis. Given a nonsingular matrix A = (aij)1≤i,j≤n, let us

consider the classical condition number

κ∞(A) := ‖A‖∞ ‖A−1‖∞.

Denoting by |A| the matrix whose (i, j)-entry is |aij |, the Skeel condition number of

a nonsingular matrix A is defined as

Cond(A) := ‖ |A−1| |A| ‖∞.

The following result corresponds to Theorem 2.1 of [37]. It shows that the collocation

matrices of the Bernstein basis are the best conditioned among all the corresponding

collocation matrices of NTP bases of the space Pn of polynomials of degree at most

n on [0, 1], and a similar result using the Skeel condition number of the transposes of

the collocation matrices.

Theorem 3.5 Let (bn0 , . . . , b
n
n) be the Bernstein basis, let (v0, . . . , vn) be another NTP

basis of Pn on [0, 1], let 0 ≤ t0 < t1 < · · · < tn ≤ 1 and V := M
(
v0,...,vn
t0,...,tn

)
and

B := M
(
bn0 ,...,b

n
n

t0,...,tn

)
. Then:

κ∞(B) ≤ κ∞(V ), Cond(BT ) ≤ Cond(V T ).

The previous result deals with the conditioning of certain totally positive matrices,

In Section 5 we shall show some subclasses of totally positive matrices for which many

algebraic computations can be performed with high relative accuracy (HRA).

4 Generalizing diagonal dominance: computations with HRA and

applications

For some classes of matrices closely related with diagonal dominance, some alge-

braic calculations can be performed with HRA: singular values, inverses, the solu-

tion of some linear system and, in some cases, even the eigenvalues. An adequate
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parametrization of the matrices has been needed. Let us first recall some related

classes of matrices. A square real matrix is called a P -matrix if all its principal mi-

nors are positive (the principal minors use the same rows and columns). Examples

of subclasses of P -matrices with many applications are the nonsingular TP matri-

ces (considered in the next section) and the nonsingular M -matrices. A real matrix

with nonpositive off-diagonal entries is called a Z-matrix. A matrix A = (aij)1≤i,j≤n

is (row) diagonally dominant (resp., strictly (row) diagonally dominant) if, for each

i = 1, . . . , n, |aii| ≥
∑
j 6=i |aij | (reps., |aii| >

∑
j 6=i |aij |). If AT is row diagonally

dominant, then we say that A is column diagonally dominant. Given a matrix

M = (mij)1≤i,j≤n, its comparison matrix M̃ = (m̃ij)1≤i,j≤n is the Z-matrix defined

by m̃ii := |mii| and m̃ij := −|mij | if i 6= j, 1 ≤ i, j ≤ n. Let us recall (cf. [12])

that if a Z-matrix A can be expressed as A = sI − B, with B ≥ 0 and s ≥ ρ(B)

(where ρ(B) is the spectral radius of B), then it is called an M -matrix. A Z-matrix

A is a nonsingular M -matrix if and only if A−1 is nonnegative (cf. [12]). Nonsingular

M -matrices have important applications, for instance, in iterative methods in numer-

ical analysis, in the analysis of dynamical systems, in economics and in mathematical

programming (see [12]). Finally, we say that a matrix is an H-matrix if its compar-

ison matrix is a nonsingular M -matrix. A is a nonsingular H-matrix if and only if

there exists a diagonal matrix D such that AD is strictly diagonally dominant, and

so these matrices are also called generalized diagonally dominant matrices.

An important concept related with the construction of algorithms with HRA for

the computation of the singular values of a matrix is the rank revealing decomposition.

A rank revealing decomposition of a matrix A is defined in [45] as a decomposition

A = XDY T , where X,Y are well conditioned and D is a diagonal matrix. In [45]

it was proved that the singular value decomposition can be computed with HRA

and efficiently for matrices possessing rank revealing decompositions with HRA. We

have mentioned previously the need to reparametrize matrices in order to obtain

accurate computations. In the class of diagonally dominant M -matrices, the natural

parameters that permit obtaining efficient algorithms with HRA are the off-diagonal

entries and the row sums (or the column sums): see [2] and [3]. These parameters

can even have a meaningful interpretation when such matrices arise in in the field

of digital electrical circuits: the column sums are given by the quotient between the

conductance and capacitance of each node (see [2]). For n × n diagonally dominant

M -matrices, an algorithm of [3] computes to HRA the LDU factorization if the

off-diagonal entries and the row sums are given. It modifies Gaussian elimination to
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compute the off-diagonal entries and the row sums of each Schur complement without

performing subtractions.

In order to obtain, rank reveling decompositions, pivoting strategies were later

used. For a diagonally dominant M -matrix A, a symmetric pivoting leading to an

LDU -decomposition of A is equivalent to the following factorization of A: PAP T =

LDU , where P is the permutation matrix associated to the pivoting strategy. Sym-

metric complete pivoting was used in [46] to compute well conditioned L and U

factors because U is row diagonally dominant and the off-diagonal entries of L have

absolute value less than 1. This factorization is a special case of a rank revealing

decomposition. To implement symmetric complete pivoting, the algorithm in [46]

calculates all the diagonal entries and all Schur complements and this increases the

cost in O(n3) flops with respect to standard Gaussian elimination. In [107] another

symmetric pivoting strategy (called diagonally dominant pivoting) was used, also with

a subtraction-free implementation and a similar computational cost, but improving

the conditioning of L because it leads to both triangular matrices L and U column

and row diagonally dominant, respectively. In [6], an accurate algorithm for the same

LDU -decomposition of [107], but requiring O(n2) elementary operations beyond the

cost of Gaussian elimination (instead of O(n3)), was presented. This method can also

be applied for diagonally dominant matrices satisfying certain sign patterns: with off-

diagonal entries of the same sign or satisfying a chessboard pattern. The problem

of computing an accurate LDU decomposition of diagonally dominant matrices from

adequate parameters has been solved by Ye in [117], although in this case it is not

used a subtraction-free algorithm. Diagonally dominant matrices with arbitrary sign

patterns were also considered in [48]. For a class of n × n nonsingular almost row

diagonally dominant Z-matrices, and given adequate parameters, an efficient method

to compute its LDU decomposition with HRA is provided in [7]. It adds an addi-

tional cost of O(n2) elementary operations over the computational cost of Gaussian

elimination. In all these cases, we can later apply the method of [45] to calculate all

the singular values with HRA.

Let us now recall another class of matrices generalizing diagonally dominant. Let

us start by defining the concept of a Nekrasov matrix (see [115]). We can define

recursively for a complex matrix A = (aij)1≤i,j≤n with aii 6= 0, for all i = 1, . . . , n,

h1(A) :=
∑
j 6=1

|a1j |, hi(A) :=
i−1∑
j=1

|aij |
hj(A)

|ajj |
+

n∑
j=i+1

|aij |, i = 2, . . . , n.(5)
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We say that A is a Nekrasov matrix if |aii| > hi(A) for all i = 1, . . . , n. A Nekrasov

matrix is a nonsingular H-matrix [115]. Therefore, a Nekrasov Z-matrix with positive

diagonal entries is a nonsingular M -matrix. In [98], computations with HRA for the

class of Nekrasov Z-matrices were studied. The proposed n2 parameters used for an

n× n Nekrasov Z-matrix A = (aij)1≤i,j≤n with positive diagonal are: aij , i 6= j

∆j(A) := ajj − hj(A), j ∈ N
(6)

A is a Nekrasov Z-matrix with positive diagonal if and only if the first n2−n param-

eters are nonpositive and the last n parameters ∆j(A) (j = 1, . . . , n) are positive. In

[98], this parametrization was used to compute the inverse of a Nekrasov Z-matrix

with positive diagonal with HRA.

Let us now focus on some applications of the tools and classes of matrices con-

sidered in this section. For instance, the graph Laplacian matrices (see [95]) are

positive semidefinite symmetric diagonally dominant M -matrices with zero row sums

and zero column sums. Let us recall that these matrices and their spectral properties

have important applications to chemistry, mathematical biology, information theory,

quantum graphs or pattern recognition problems.

Diagonal dominance is closely related with the obtention of results for localizing

the eigenvalues of a matrix. It is well known that the nonsingularity of a strictly

diagonally dominant matrix is equivalent to the first part of the Gerschgorin circles

Theorem for the localization of the eigenvalues of a matrix. More general nonsin-

gularity conditions than diagonal dominance lead to sharper localization regions of

the eigenvalues. On the other hand, it is also well known that a strictly diagonally

dominant matrix with positive diagonal entries has positive determinant. In [15],

it was proved that a matrix with positive row sums and all its off-diagonal elements

bounded above by their corresponding row means has also positive determinant. This

condition was used in [103] for the localization of the real eigenvalues of real matri-

ces, which complement the information provided by the Gerschgorin circles. Sharper

conditions were obtained in [104, 28, 29].

The next application corresponds to the field of optimization. Let us recall the

linear complementarity (LC) problem. The LC problem consists of finding vectors

x ∈ Rn satisfying

Mx+ q ≥ 0, x ≥ 0, xT (Mx+ q) = 0,(7)
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where M is an n×n real matrix and q ∈ Rn. We denote this problem by LCP(M, q)

and its solutions by x∗. A linear complementarity problem has always a unique

solution if and only if the associate matrix M is a P -matrix. Many problems can be

posed in the form (7): problems in linear and quadratic programming, the problem of

finding a Nash equilibrium point of a bimatrix game or some free boundary problems

of fluid mechanics (see Chapter 10 of [12], [94] and [30], and references therein). It is

well-known that an H-matrix with positive diagonals is a P -matrix (see, for instance,

Theorem 2.3 of Chapter 6 of [12]) and that a strictly diagonally dominant matrix is

an H-matrix. In [94], error bounds for ‖x−x∗‖ were derived when M in (1.1) is a P -

matrix. When M in (7) is an H-matrix with positive diagonals, sharper error bounds

were obtained in [26]. Sharper bounds can be obtained for particular subclasses of

H-matrices or P -matrices: see, for instance, [56, 59], [57, 99] for Nekrasov matrices,

or [58] for BR
π -matrices. The class of BR

π -matrices (introduced in [97]) has also been

extended in [100] to define a new class of tensors. Tensors (also called hypermatrices)

provide, joint with the Kronecker product of matrices, a very useful tool for the

treatment of Big Data (see also [81, 111]).

5 Totally positive matrices: computations with HRA and applica-

tions

Let us recall that totally positive (TP) matrices are matrices whose minors are all

nonnegative (see Section 3, where STP matrices are also defined). These matrices

present important applications (see [72], [55], [5], [60], [51], [112]) in many fields such

as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differen-

tial Equations, Mechanics or Computer Aided Geometric Design (CAGD). TP and

STP matrices satisfy some remarkable properties, such as the variation diminishing

property (see Section 5 of [5]), which is fundamental in their applications. They also

satisfy nice spectral properties (see Section 6 of [5]), for instance the nonnegativity of

the eigenvalues of TP matrices or the positivity of the eigenvalues of STP matrices

The parametrization of TP matrices leading to HRA algorithms is provided by

their bidiagonal factorizations, which are in turn closely related to an elimination pro-

cedure known as Neville elimination. In some papers by M. Gasca and G. Mühlbach

([61], for example) on the relationship between interpolation formulas and elimina-

tion techniques, it became clear that what they called Neville elimination had special

interest for TP matrices. It is a procedure to make zeros in a column of a matrix by
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adding to each row an appropriate multiple of the previous one and had been already

used in some of the first papers on TP matrices. However, in later papers such as

[62] and [63], a better knowledge of the properties of Neville elimination was devel-

oped and permitted to improve many previous results on those matrices. Given a

nonsingular matrix A = (aij)1≤i,j≤n, the Neville elimination (NE) procedure consists

of n− 1 steps and leads to the following sequence of matrices:

A =: A(1) → Ã(1) → A(2) → Ã(2) → · · · → A(n) = Ã(n) = U,(8)

where U is an upper triangular matrix. The matrix Ã(k) = (ã
(k)
ij )1≤i,j≤n is obtained

from the matrix A(k) = (a
(k)
ij )1≤i,j≤n by a row permutation that moves to the bottom

the rows with a zero entry in column k below the main diagonal. For nonsingular TP

matrices, it is always possible to perform NE without row exchanges (see [62]). If a

row permutation is not necessary at the k-th step, we have that Ã(k) = A(k). The

entries of A(k+1) = (a
(k+1)
ij )1≤i,j≤n can be obtained from Ã(k) = (ã

(k)
ij )1≤i,j≤n using

the formula:

a
(k+1)
ij =


ã
(k)
ij −

ã
(k)
ik

ã
(k)
i−1,k

ã
(k)
i−1,j , if k ≤ j < i ≤ n and ã

(k)
i−1,k 6= 0,

ã
(k)
ij , otherwise,

(9)

for k = 1, . . . , n− 1. The (i, j) pivot of the NE of A is given by

pij = ã
(j)
ij , 1 ≤ j ≤ i ≤ n.

If i = j we say that pii is a diagonal pivot. The (i, j) multiplier of the NE of A, with

1 ≤ j ≤ i ≤ n, is defined as

mij =


ã
(j)
ij

ã
(j)
i−1,j

=
pij

pi−1,j
, if ã

(j)
i−1,j 6= 0,

0, if ã
(j)
i−1,j = 0.

The multipliers satisfy that

mij = 0⇒ mhj = 0 ∀h > i.

Pivots and multipliers of the NE of A and AT characterize nonsingular TP and

STP matrices, as the following result shows. It follows from theorems 4.1 and 4.2 of

[63] and p. 116 of [63].

Theorem 5.1 A matrix A is nonsingular TP (STP, respectively) if and only if the

NE of A and AT can be performed without row exchanges, all the mutipliers of the

NE of A and AT are nonnegative (positive, respectively) and all the diagonal pivots

of the NE of A are positive.
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A direct consequence of the well known Cauchy-Binet identity for minors of the

product of matrices (see formula (1.23) of [5]) is that the product of TP matrices is

again a TP matrix. Therefore, one of the topics in the literature of TP matrices has

been their decomposition as products of simpler TP matrices. In particular, in view

of applications, the most interesting factorization seems to be in terms of bidiagonal

nonnegative matrices which, obviously, are always TP matrices. In addition, this

factorization provides the mentioned parametrization for the HRA algorithms with

TP matrices. In fact, nonsingular TP matrices can be expressed as a product of

nonnegative bidiagonal matrices using again the pivots and multipliers of the NE of

A and AT . The following theorem (see Theorem 4.2 and p. 120 of [63]) presents this

factorization, which is called the bidiagonal decomposition.

Theorem 5.2 (cf. Theorem 4.2 of [63]) Let A = (aij)1≤i,j≤n be a nonsingular TP

matrix. Then A admits the following representation:

A = Fn−1Fn−2 · · · F1DG1 · · ·Gn−2Gn−1,(10)

where D is the diagonal matrix diag(p11, . . . , pnn) with positive diagonal entries and

Fi, Gi are the nonnegative bidiagonal matrices given by

Fi =



1

0 1
. . .

. . .

0 1

mi+1,1 1
. . .

. . .

mn,n−i 1


,(11)

Gi =



1 0

1
. . .
. . . 0

1 m̃i+1,1

1
. . .
. . . m̃n,n−i

1


,(12)
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for all i ∈ {1, . . . , n− 1}. If, in addition, the entries mij and m̃ij satisfy

mij = 0⇒ mhj = 0 ∀h > i,

m̃ij = 0⇒ m̃hj = 0 ∀h > i,
(13)

then the decomposition is unique.

In the bidiagonal decomposition given by (10), (11) and (12), the entries mij and

pii are the multipliers and diagonal pivots, respectively, corresponding to the NE of

A (see Theorem 4.2 of [63] and the comment below it) and the entries m̃ij are the

multipliers of the NE of AT (see p. 116 of [63]). In [76] the following matrix notation

BD(A) was introduced to represent the bidiagonal decomposition of a nonsingular

TP matrix

(BD(A))ij =


mij , ifi > j,

m̃ji, ifi < j,

pii, ifi = j.

(14)

In the particular case that the nonsingular n × n TP matrix A is also stochastic

(the entries of every row sum up to 1), the bidiagonal factorization of A can be trans-

formed into a bidiagonal factorization of n− 1 lower triangular bidiagonal stochastic

matrices and n − 1 upper triangular bidiagonal stochastic matrices. This idea had

been used in important applications of several fields. For instance, through this fac-

torization Frydman and Singer ([54], Theorem 1) showed that the class of transition

matrices for the finite state time-inhomogeneous birth and death processes coincides

with the class of nonsingular stochastic TP matrices. The fact that those transition

matrices for birth and death processes are all stochastic TP had already been pointed

out inby Karlin and Mc Gregor (see [73] and [74]) with probabilistic arguments. All

these results have been surveyed in 1986 by G. Goodman [64], who extended them to

compound matrices, that is, matrices whose elements are the values of the minors of

a certain order m of a given matrix A. On the other hand, factorizations of stochastic

TP matrices as product of bidiagonal stochastic TP matrices are also important in

the field of Computer Aided Geometric Design (CAGD). In fact, the main family of

algorithms used in this field, called corner cutting algorithms, can be represented in

this way. In [66], Goodman and Micchelli showed, again through the mentioned fac-

torization of stochastic TP matrices, that the existence of a corner cutting algorithm

transforming a control polygon of a curve into another one with the same number of
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vertices was equivalent to the fact that both polygons were related by a nonsingular

stochastic TP matrix.

More recently, the bidiagonal factorization has been used to compute accurately

with these matrices (see [75, 76]). In fact, if we have the BD(A) of a nonsingular TP

matrix with HRA, then we can perform many computations of A with HRA, such as

computing its inverse or computing its eigenvalues or its singular values (cf. [76, 77]).

There are some subclasses of nonsingular TP matrices for which this factorization

can be obtained to HRA, and so, the computations mentioned previously can be

also performed with HRA. For instance, for Vandermonde positive matrices [47], for

Cauchy-Vandermonde positive matrices [93], arising in rational interpolation and that

include the famous example of ill-conditioned matrices given by Hilbert matrices, or

for Schoenmakers-Coffey matrices [33], arising in Finance. From now on, we shall

illustrate other subclasses of TP matrices for which the BD(A) can be computed

with HRA or for which we can perform computations with HRA.

5.1 Bidiagonal decomposition and HRA with Pascal matrices

A Pascal matrix of order n is the symmetric matrix

P = (pij)1≤i,j≤n; pij :=

(
i+ j − 2

j − 1

)
.(15)

Pascal matrices have a long history (cf. [1, 49, 83]) and arise in important applications

in filter design and image and signal processing (cf. [49]), as well as in probability,

combinatorics, numerical analysis and electrical engineering (cf. [13]), among other

fields.

Conditioning and the bidiagonal factorization of Pascal matrices was analyzed in

[4] (see also [76]). The BD(P ) can be obviously computed with HRA because it is

extremely simple:

BD(P ) =


1 · · · 1
...

...

1 · · · 1

 .

5.2 Bidiagonal decomposition and HRA with rational Bernstein-Vandermonde

and related matrices

A collocation matrix of the Bernstein basis (1) is called a Bernstein-Vandermonde

matrix. The bidiagonal factorization and computations with HRA of Bernstein-
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Vandermonde matrices were obtained in [91]. The Said-Ball basis is another in-

teresting basis used in CAGD and their collocation matrices are called Said-Ball-

Vandermonde matrices. Their bidiagonal factorization and computations with HRA

were obtained in [92]. Now we shall consider the corresponding rational bases and ma-

trices, whose bidiagonal factorizations and computations with HRA were considered

in [39].

Given a basis u = (un0 , . . . , u
n
n) of nonnegative functions on [a, b] and a sequence

of strictly positive weights (wi)
n
i=0, we can construct a rational basis r = (rn0 , . . . , r

n
n)

defined by

rni (t) =
wi u

n
i (t)

W (t)
, t ∈ [a, b], i ∈ {0, 1, . . . , n},(16)

where W (t) =
∑n
j=0wj u

n
j (t). If the initial basis u is the Bernstein basis, then the

corresponding rational basis r is called the rational Bernstein basis. In CAGD, the

usual representation of a polynomial curve is the so called Bernstein-Bézier form, that

is, these curves are expressed in terms of the Bernstein basis (1). The Bernstein basis

is a rational Bernstein basis with all weights equal to 1: wi = 1 for all i = 0, . . . , n.

Bidiagonal decompositions and computations with HRA have been also obtained

for other bases used in CAGD and closely related with the Bernstein basis. For

instance, for the q-Bernstein basis [41], for the Lupaş basis [43] or the Bernstein-like

bases (which are normalized B-bases, see Section 3) of the spaces mixing algebraic,

trigonometric and hyperbolic polynomials [89].

The corresponding square collocation matrices of the rational Bernstein basis at

a sequence of parameters 0 < t0 < t1 < . . . < tn < 1, given by (rnj (ti))0≤i,j≤n, where

functions rni are given by (16) with uni = bni for i = 0, 1, . . . , n, will be called rational

Bernstein-Vandermonde (RBV) matrices.

In [39], the HRA calculations with RBV matrices through their bidiagonal decom-

positions and those of their inverses in terms of the diagonal pivots and multipliers

of their Neville elimination and the multipliers of the Neville elimination of their

transposes were obtained. We now recall the bidiagonal decomposition of a RBV

matrix.

Theorem 5.3 Let A = (wjb
n
j (ti)/W (ti))0≤i,j≤n be a RBV matrix whose nodes satisfy

0 < t0 < t1 < · · · < tn < 1. Then A admits a factorization of the form

A = FnFn−1 · · ·F 1DG1 · · ·Gn,(17)
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where F i and Gi, i ∈ {1, . . . , n}, are the lower and upper triangular bidiagonal ma-

trices given by

F i =



1

0 1
. . .

. . .

0 1

mi0 1

mi+1,1 1
. . .

. . .

mn,n−i 1


,

G
T
i =



1

0 1
. . .

. . .

0 1

m̃i0 1

m̃i+1,1 1
. . .

. . .

m̃n,n−i 1


,

and D the diagonal matrix diag(p00, p11 . . . , pnn). The entries mij, m̃ij and pii are

given by

mij = W (ti−1)
W (ti)

(1−ti)n−j(1−ti−j−1)
(1−ti−1)n−j+1

∏i−1

k=i−j
(ti−tk)∏i−2

k=i−j−1
(ti−1−tk)

, for 0 ≤ j < i ≤ n,(18)

m̃ij = wi
wi−1

n−i+1
i

tj
1−tj , for 0 ≤ j < i ≤ n,(19)

pii = wi
W (ti)

(n
i

) (1−ti)n−i∏i−1

k=0
(1−tk)

∏i−1
k=0(ti − tk), for 0 ≤ i ≤ n.(20)

5.3 HRA with Jacobi-Stirling matrices Matrices

In [50], the Jacobi-Stirling numbers were presented as the coefficients of the integral

composite powers of the Jacobi differential operator

Iα,β[y](t) =
1

(1− t)α(1 + t)β

(
−(1− t)α+1(1 + t)β+1y′(t)

)′
,(21)

with α, β real numbers greater than −1. The Jacobi-Stirling numbers JS
(j)
n (z) of

the second kind only depend on the parameter z = α+ β + 1(> −1) and satisfy the
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following recurrence relation

JS
(j)
n (z) = JS

(j−1)
n−1 (z) + j(j + z) JS

(j)
n−1(z) (n, j ≥ 1),(22)

JS
(0)
n (z) = JS

(j)
0 (z) = 0, JS

(0)
0 (z) = 1.(23)

Again, the Jacobi-Stirling numbers Jc
(j)
n (z) of the first kind only depend on the

parameter z = α+ β + 1 and satisfy the following recurrence relation

Jc
(j)
n (z) = Jc

(j−1)
n−1 (z) + (n− 1)(n− 1 + z) Jc

(j)
n−1(z) (n, j ≥ 1),(24)

Jc
(0)
n (z) = Jc

(j)
0 (z) = 0, Jc

(0)
0 (z) = 1.(25)

The Jacobi-Stirling numbers Jc
(j)
n (z) of the first kind are a generalization of the

Legendre-Stirling numbers because for z = 1 we obtain the Legendre-Stirling num-

bers.

In Theorem 4.2 of [96] the Jacobi-Stirling numbers of the second kind JS
(j)
n were

defined via the following expansion of the n-th composite power of Iα,β[y](t):

(1− t)α(1 + t)βIα,β[y](t) =
n∑
j=0

(−1)j(JS(j)
n (α+ β + 1)(1− t)α+j(1 + t)β+jy(j)(t))(k),

where Iα,β[y](t) is the Jacobi differential operator (21).

The Jacobi-Stirling numbers JS
(j)
n (z) of the second kind satisfy

xn =
n∑
j=0

JS(j)
n (z) 〈x〉j (z) (n ∈ N),

where

〈x〉j (z) :=
j−1∏
i=0

(x− i(i+ z))

for all j ≥ 1 and 〈x〉0 (z) := 1. The (unsigned) Jacobi-Stirling numbers of the first

kind Jc
(j)
n (z) are defined via

〈x〉n (z) =
n∑
j=0

(−1)n+jJc(j)n (z)xj (n ∈ N).

Here we consider the infinite matrices JS(z) = (JS
(j)
i (z))i,j≥0 and Jc(z) =

(Jc
(j)
i (z))i,j≥0 and their corresponding truncated matrices given by the formulas

JSn(z) = (JS
(j)
i (z))0≤i,j≤n−1 and Jcn(z) = (Jc

(j)
i (z))0≤i,j≤n−1 formed by the Jacobi-

Stirling numbers of the first and second kind, respectively. In [40], the HRA calcula-

tion of singular values and inverses of the matrices JSn(z) and Jcn(z) was presented

through their bidiagonal decomposition.
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The following result is a consequence of Proposition 4 of [96] and states the bidi-

agonal decomposition of the matrices JSn(z).

Theorem 5.4 The Jacobi-Stirling matrix JSn(z), n ∈ N, admits a factorization of

the form

JSn(z) = G
2
1 · · ·G

2
n−1,(26)

where G
2
i , i ∈ {1, . . . , n−1}, are the n×n upper bidiagonal triangular matrices given

by

G
2
i =



1 0 · · · · · · · · · · · · · · · 0
. . .

. . .
...

1 0
...

1 mi+1,1
...

1 mi+2,2
...

. . .
. . . 0

1 mn,n−i

1



,(27)

where mij = j(z + j) for 1 ≤ j < i ≤ n.

The next result is also a consequence of Proposition 4 of [96] and provides the

bidiagonal decomposition of the matrices Jcn(z).

Theorem 5.5 The Jacobi-Stirling matrix Jcn(z), n ∈ N, admits a factorization of

the form

Jcn(z) = G
1
1 · · ·G

1
n−1,(28)

where G
1
i , i ∈ {1, . . . , n−1}, are the n×n upper bidiagonal triangular matrices given

by

G
1
i =



1 0 · · · · · · · · · · · · · · · 0
. . .

. . .
...

1 0
...

1 mi+1,1
...

1 mi+2,2
...

. . .
. . . 0

1 mn,n−i

1



,(29)

where mij = (i− j)(z + i− j) for all 1 ≤ j < i ≤ n.
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5.4 HRA with Laguerre matrices and Lah numbers

Laguerre polynomials form a classical family of orthogonal polynomials (cf. [11]) and

present many applications. For instance, they are used for Gaussian quadrature to

numerically compute integrals. The larger family of generalized Laguerre polynomials

presents important applications in quantum mechanics (see [78]). For α > −1, the

generalized Laguerre polynomials are given by

L(α)
n (t) =

n∑
k=0

(−1)k
(
n+ α

n− k

)
tk

k!
, n = 0, 1, 2, . . .(30)

and they are orthogonal polynomials on [0,∞) with respect to the weight function

xαe−x.

Given a real number x and a positive integer k, let us denote the corresponding

falling factorial by

xk) := x(x− 1)(x− 2) · · · (x− k + 1).

Let us also denote x0) := 1. Let M :=
(
L
(α)
j−1(ti−1)

)
1≤i,j≤n+1

be the collocation

matrix of the generalized Laguerre polynomials at (0 >)t0 > t1 > . . . > tn, let PU be

the (n+ 1)× (n+ 1) upper triangular Pascal matrix with
(j−1
i−1
)

as its (i, j)-entry for

j ≥ i and let Sα and J be the (n+ 1)× (n+ 1) diagonal matrices:

Sα := diag
(
(α+ i)i)

)
0≤i≤n

, J := diag
(
(−1)i

)
0≤i≤n

.(31)

The following result, corresponding to Theorem 2 of [31], assures that, given the pa-

rameters (0 >)t0 > t1 > . . . > tn, many algebraic computations with these collocation

matrices M can be performed with HRA, as well as the strict total positivity and a

particular factorization of these matrices.

Theorem 5.6 Let M :=
(
L
(α)
j−1(ti−1)

)
1≤i,j≤n+1

for (0 >)t0 > t1 > . . . > tn with

α > −1, let PU be the (n+ 1)× (n+ 1) upper triangular Pascal matrix, let Sα and J

be the (n+ 1)× (n+ 1) diagonal matrices given by (31) and let V := (tj−1i−1 )1≤i,j≤n+1.

Then M = V JS−1α PUS
−1
0 Sα is an STP matrix and, given the parametrization ti (0 ≤

i ≤ n), the following computations can be performed with HRA: all the eigenvalues,

all the singular values and the inverse of M , as well as the solution of the linear

systems Mx = b, where b = (b0, . . . , bn)T has alternating signs.

The particular case α = 0 corresponds to the classical Laguerre polynomials.

Extending (30) to the case α = −1, it was obtained in [31] an analogous result to
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Theorem 5.6 for the particular set of polynomials:

L
(−1)
0 (t) = 1, L(−1)

n (t) =
n∑
k=1

(−1)k
(
n− 1

n− k

)
tk

k!
, n =, 1, 2, . . . ,

The interest of these polynomials arises from the close relationship between their

coefficients and the unsigned Lah numbers (cf. [14]), and which will be described

below:
L
(−1)
n (t) = 1

n!

∑n
k=1(−1)kL(n, k)tk for n ≥ 1

with L(n, k) :=
(n−1
k−1
)
n!
k! , k ≤ n.

The unsigned Lah numbers L(n, k) are included as the sequence A105278 in the On-

line Encyclopedia of Integer Sequences (OEIS). The Lah numbers were introduced by

Ivo Lah in 1955 (see [80]) and arise in applications such as combinatorics and analysis

(see pages 44–45 of [113]).

5.5 HRA with Bessel matrices

Bessel polynomials arise in many fields such as partial differential equations, number

theory, algebra and statistics (see [69]). They form an orthogonal sequence of poly-

nomials and are related to the modified Bessel function of the second kind (cf. pp.

7 and 34 of [69]). They are also closely related to the reverse Bessel polynomials,

with many applications in Electrical Engineering, in network analysis of electrical

circuits (cf page 145 of [69]). The coefficients of the reverse Bessel polynomials are

also known, in Combinatorics, as signless Bessel numbers of the first kind. The Bessel

numbers are also closely related to the Stirling numbers [70, 116]. Bessel polynomials

also occur naturally in the theory of traveling spherical waves (cf. [79]) and are very

important for some problems of static potentials, signal processing and electronics.

The zeros of Bessel polynomials and generalized Bessel polynomials also play a cru-

cial role in applications in Electrical Engineering and are related with the length of

the parameter domain where cycloidal spaces admit shape preserving representations

([22]).

Let us recall that the Bessel polynomials are defined by

Bn(x) =
n∑
k=0

(n+ k)!

2k(n− k)!k!
xk, n = 0, 1, 2 . . . .(32)

Given a real positive integer n, let us define the corresponding semifactorial by

n!! =

[n/2]−1∏
k=0

(n− 2k).
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Let A = (aij)1≤i,j≤n be the lower triangular matrix such that

(B0(x), B1(x), . . . , Bn−1(x))T = A(1, x, . . . , xn−1)T ,(33)

that is, the lower triangular matrix A is defined by

aij :=


(i+j−2)!

2j−1(i−j)!(j−1)! = (2j−2)!
2j−1(j−1)!

(i+j−2
i−j

)
, if i ≥ j,

0, if i < j.
(34)

We now recall Theorem 3 of [32], which proves the total positivity of A, and

provides BD(A).

Theorem 5.7 Let A = (aij)1≤i,j≤n be the lower triangular matrix in (33) defined by

(34). Then we have that

(i) the pivots of the NE of A are given by

pij = 1
2j−1

(i−1)!
(i−j)!

∏j−1
r=1

(2i−r−1)
(i−j+r) , 1 ≤ j ≤ i ≤ n,(35)

and the multipliers by

mij = (2i−2)(2i−3)
(2i−j−1)(2i−j−2) , 1 ≤ j < i ≤ n,(36)

(ii) A is a nonsingular TP matrix

(iii) and the bidiagonal factorization of A is given by

BD(A)ij =



(2i−2)(2i−3)
(2i−j−1)(2i−j−2) , if i > j,

1, if i = j = 1,

(2i− 3)!!, if i = j > 1,

0, if i < j,

(37)

and can be computed to HRA.

Let us now introduce the collocation matrices of the Bessel polynomials. Given a

sequence of parameters 0 < t0 < t1 < · · · < tn−1, we call the collocation matrix of

the Bessel polynomials (B0, . . . , Bn−1) at this sequence of parameters,

M = M

 B0, . . . , Bn−1

t0, . . . , tn−1

 = (Bj−1(ti−1))1≤i,j≤n,

a Bessel matrix.

The following result corresponds to Theorem 4 of [32] and shows that the Bessel

matrices are STP and that some usual algebraic problems with these matrices can be

solved to HRA.
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Theorem 5.8 Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1, the

corresponding Bessel matrix M is an STP matrix and given the parametrization ti

(0 ≤ i ≤ n−1), the following computations can be performed with HRA: all the eigen-

values, all the singular values, the inverse of the Bessel matrix M , and the solution

of the linear systems Mx = b, where b = (b1, . . . , bn)T has alternating signs.

By reversing the order of the coefficients of Bn(x) in (32), we can introduce the

reverse Bessel polynomials:

Br
n(x) =

n∑
k=0

(n+ k)!

2k(n− k)!k!
xn−k, n = 0, 1, 2 . . . ,(38)

Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1 we call the collocation

matrix of the reverse Bessel polynomials (Br
0, . . . , B

r
n−1) at that sequence,

Mr = M

 Br
0, . . . , B

r
n−1

t0, . . . , tn−1

 = (Br
j−1(ti−1))1≤i,j≤n

a reverse Bessel matrix.

The following result, which corresponds to Theorem 6 of [32], shows that the

reverse Bessel matrices are STP and that some usual algebraic problems with these

matrices can be solved to HRA.

Theorem 5.9 Given a sequence of parameters 0 < t0 < t1 < · · · < tn−1, the corre-

sponding reverse Bessel matrix Mr is an STP matrix and given the parametrization

ti (0 ≤ i ≤ n − 1), the following computations can be performed with HRA: all the

eigenvalues, all the singular values, the inverse of the reverse Bessel matrix Mr, and

the solution of the linear systems Mrx = b, where b = (b1, . . . , bn)T has alternating

signs.
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[59] Garćıa-Esnaola, M., Peña, J.M.: 2019, On the asymptotic optimality of error

bounds for some linear complementarity problems, Numerical Algorithms 80,

521-532.

[60] Gasca, M., Micchelli, C.A. (eds.): 1996, Total positivity and its applications.

Mathematics and its Applications 359. Kluwer Acad. Publ. Dordrecht.

35
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