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Abstract

Fractal interpolation that possesses the ability to produce smooth and nonsmooth inter-

polants is a novice to the subject of interpolation. Apart from appropriate degree of smooth-

ness, a good interpolant should reflect shape properties, for instance monotonicity, inherent

in a prescribed data set. Despite the flexibility offered by these shape preserving fractal

interpolants developed recently in the literature are well-suited only for the representation

of self-referential functions. In this article we present hidden variable A-fractal interpo-

lation function as a tool to associate an entire family of R2-valued continuous functions

f [A] parameterized by a suitable block matrix A with a prescribed function f ∈ C(I,R2).

Depending on the choice of parameters, the members of the family may be self-referential,

or non-self-referential, and preserve some properties of original function f, thus yielding

more diversity and flexibility in the process of approximation. As an application of the

developed theory, we introduce a new class of monotone C1-cubic interpolants by taking

full advantage of flexibility offered by the hidden variable A-fractal interpolation functions

(HFIFs). This theory invoked to the C1-cubic spline HFIF, which can be viewed as a fractal

perturbation of the traditional C1-cubic spline, culminates with the desired monotonicity

preserving C1-cubic HFIF. The monotonicity preserving interpolation scheme developed

herein generalizes and enriches its traditional nonrecursive counterpart and its fractal ex-

tension.

Keywords. Fractal Operator, Fractal Cubic Spline, Hidden Variable Fractal Interpolation

Function, Monotonicity, Parameter Identification
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1 Introduction and Motivation

Fractals are known to construct extremely complicated and impressive shapes, which many

times resemble objects of the physical world. Fractal interpolation functions (FIFs), introduced
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by Barnsley [2, 3] not only open a new research field in the approximation theory of functions

but also draw considerable attention of the researchers in various scientific areas applied in

natural sciences [21, 22], engineering applications [7], image compression and processing [17]

and economics [19]. This technique is followed in earnest by a host of researchers (see, for in-

stance [8,9,12,13,23,24,26,31]). FIFs provide a basis for the constructive approximation theory

of nondifferentiable functions. Further, differentiable FIFs constitute an alternative to the tradi-

tional nonrecursive interpolation and approximation methods (see, for instance, [4, 8, 12, 26]).

In this way, the fractal methodology provides more flexibility and versatility on the shape of an

interpolant. Consequently, this function class can be useful for mathematical and engineering

problems where the classical spline interpolation approach does not work satisfactorily. FIFs

are generally self-referential in the sense that the graph of the function is a union of transformed

copies of itself.

To approximate non-self-similar objects found in nature, Barnsley et al. [5] extended the

idea of FIFs to produce more flexible univariate interpolation functions, namely, hidden variable

FIFs (HFIFs). Bouboulis and Dalla [6] have constructed hidden variable vector valued FIFs on

random grids in R2. As the values of HFIF continuously depend on the parameters which

define it because of that it is useful in adjusting the shape of interpolation data. HFIF is more

diverse and appealing than a FIF. In some practical applications, the interpolation data might be

generated simultaneously from self-referential and non-self-referential functions. To study such

data, Chand and Kapoor [9] introduced the notion of coalescence hidden variable FIF (CHFIF).

In practice, it is very desirable for the shape of the approximant/interpolant to be compat-

ible with the given data. For this, scientists and engineers usually demand that approxima-

tion/interpolation methods accurately represent the physical reality. The problem of search-

ing a sufficiently smooth function that preserves the qualitative shape property inherent in the

data is generally referred to as shape preserving interpolation/approximation, which is im-

portant in practical ground, and received considerable attention in the literature (see, for in-

stance, [15, 16, 18, 20] and references quoted therein). The shape properties are mathematically

expressed in terms of conditions such as positivity, monotony and convexity. As a submissive

contribution to this goal, Chand and collaborators have initiated the study on shape preserv-

ing fractal interpolation and approximation using various families of polynomial and rational

iterated function system (see, for instance, [10,11,29,30]). These shape preserving fractal inter-

polation schemes possess the novelty that the interpolants inherit the shape property in question

and at the same time the suitable derivatives of these interpolants own irregularity in finite or

dense subsets of the interpolation interval. This attribute of shape preserving FIFs finds poten-

tial applications in various nonlinear phenomena.

The primary intent of this article is to employ C1-cubic spline hidden variable FIF for mono-

tonicity preserving interpolation, thereby giving an entire class of monotonic interpolants that

include traditional monotonic C1-cubic spline and their fractal extensions studied recently as
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special cases. In this regard, the traditional monotone cubic spline interpolation has been ex-

tensively studied. Necessary and sufficient condition for a cubic spline to be monotone in an

interval is studied by Fritsch and Carlson [16] and they used it to a develop a two-pass al-

gorithm for constructing a monotone cubic interpolant to a given set of monotone data. The

algorithm discussed by Fritsch and Butland [15] provides an improvement to Fritsch-Carlson

(FC) algorithm by providing a flexibility of one pass. Both these methods are simple and easy

to implement. Subsequently, many variants and improvements to FC algorithm were proposed,

see for instance, [14, 32].

By using suitable IFS, Barnsley and Navascués have provided a method to perturb a continu-

ous function f ∈ C(I) so as to yield a class of continuous functions fα ∈ C(I), where α is a free

parameter, called the scale vector. For suitable values of the scale vector α, the fractal functions

fα simultaneously interpolate and approximate f . By this method one can define fractal ana-

logues of any continuous function. Navascués [25] introduced an operator Fα : C(I) → C(I)

defined through f 7→ fα and developed properties of this operator. This enriched the fractal

approximation theory and facilitated the theory of fractal interpolation to interact with the fields

such as functional analysis and operator theory (see, for instance, [26–28]).

We apply hidden variable FIF as a tool to fraternize a family of R2-valued continuous fractal

functions with a prescribed continuous function f : I → R2 defined on a real compact interval

I , where R2 being endowed with the l1-norm. In detail, we obtain a family of continuous

fractal functions f [A] for a given continuous function f : I → R2, parameterized by a block

matrix A = [An]Mn=1, where each An is a suitable matrix in M2×2(R), the space of all 2 × 2

matrices having real entries. This is a natural extension of the “fractal perturbation” process

applied in the case of real-valued functions to obtain α-fractal function fα corresponding to f

studied in detail by Navascués (see, for instance, [26, 28]). The advantage gained is that the

function whose graph is the orthogonal projection of graph f [A] provides non-self-referential

fractal function corresponding to a given real valued continuous function in contrast to the

self-referential fractal generalizations obtained by α-fractal technique. Further, by the proper

selection of parameters of the hidden variable FIF, the projection can be made self-referential

as well, thus providing more flexibility and diversity in the process of approximation. We may

refer f [A] as A-fractal function corresponding to f or fractal perturbation of f . The presence of

the block matrix parameter A in the constructed function undoubtedly provides more flexibility,

which may be exploited in various approximation and engineering problems.

To invite the class of approximants f [A] parameterized by A to the area of shape preserv-

ing approximation, we identify suitable parameters so that f [A] preserves Cr-continuity and

monotonicity inherent in the function f being perturbed. This monotonicity preserving hidden

variable fractal perturbation scheme is applied to construct C1-cubic hidden variable FIFs cor-

responding to a given monotonic Hermite data. These conditions are then used to develop an

algorithm which constructs a monotonic C1-cubic spline HFIF to monotone data. The curve
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produced contains no extraneous “bumps” or “wiggles” which makes it more readily accept-

able to scientists and engineers. Compared to most other shape preserving methods, the method

proposed in this paper is characterized by its efficiency, in terms of time required to determine

the interpolant, storage to required to represent it, and/or time required to evaluate it. Examples

are included which compare this algorithm with other piecewise cubic interpolation methods.

Consequently, the paper also provides an entire class of monotonic interpolants that include the

traditional monotonic C1-cubic spline and their fractal analogue as special cases.

The organization of the paper is as follows: In Section 2, we recall some of the required

basic tools. In Section 3, we construct A-fractal function corresponding to a R2-valued con-

tinuous function f . We consider the operator F [A] : C(I,R2) → C(I,R2) which assigns f [A]

to the function f , establish some properties and some results on Schauder basis in Section 4.

In Section 5, we identify suitable parameters in the IFS so that f [A], which are regarded as

the fractal perturbation of a given function f , preserves the properties (for instance, regularity

and monotonicity) inherent in f . We develop a monotonicity preserving cubic spline interpola-

tion scheme that extends the methods described in the reference [16] of Fritsch and Carlson in

Section 5 which is followed by numerical illustration.

2 Background and Preliminaries

In this section we briefly recall requisite general material for our study like the notions of Cubic

Interpolation, Iterated function system (IFS), FIF, CHFIF, and establish some of their basic

properties. For a detailed study, reader may refer to [2,5,16,24] for any additional information.

2.1 Piecewise cubic interpolation

For r ∈ N, let Nr denote the subset {1, 2, . . . , r} of N. Let a set of data points D = {(xn, yn) ∈
I ×R : n ∈ NN} satisfying x1 < x2 < · · · < xN , where I = [x1, xN ] be given. The local mesh

spacing is hn = xn+1−xn, and the secant slope of the linear interpolant between the data points

is ∆n = yn+1−yn
hn

. A piecewise cubic function s ∈ C1(I) is uniquely determined by yn and dn,

where s(xn) = yn, s
(1)(xn) = dn, n ∈ NN . The traditional C1-cubic interpolant s defined over

the subinterval In = [xn, xn+1] is defined as follows:

sn(x) =
dn + dn+1 − 2∆n

h2
n

(x−xn)3+
−2dn − dn+1 + 3∆n

hn
(x−xn)2+dn(x−xn)+yn. (2.1)

2.2 Monotone piecewise cubic interpolation with Fritsch-Carlson algorithm

For our convenience, we consider the interpolated data to be monotonic increasing throughout

the remainder of the paper. For a monotonic increasing data (i.e., yn ≤ yn+1, for all n ∈ NN−1),

we invoke here the well-known Fritsch-Carlson algorithm which ensures that the correspond-

ing cubic interpolant s is monotone. The basis of this algorithm is to check whether a cubic
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polynomial s defined on [xn, xn+1] is monotone on that interval, and it is given in the following

proposition.

Proposition 2.1 (Fritsch and Carlson [16]). For the data set {(xn, yn, dn) : n ∈ NN}, consider

the traditional C1-cubic spline s defined as (2.1). Let ∆n 6= 0, let ηn =
dn
∆n

, ξn =
dn+1

∆n

. Then

s is monotone on [xn, xn+1] if and only if: (i) dn = dn+1 = 0 if ∆n = 0, or (ii) (ηn, ξn) ∈ M
if ∆n 6= 0, M is the closed region bounded by the axes and the “upper half” of the ellipse

x2 + y2 + xy − 6x− 6y + 9 = 0 shown in the following Figure 1.

Figure 1: Fritsch-Carlson monotone region.

Algorithm (Fritsch-Carlson)
Step 1: Initialize derivatives dn, n ∈ NN such that sgn(dn) = sgn(dn+1) = sgn(∆n). If ∆n =

0, set dn = dn+1 = 0.

Step 2: For each interval In = [xn, xn+1] in which (dn, dn+1) /∈Mn, modify dn and dn+1 to d�n
and d�n+1, such that (d�n, d

�
n+1) ∈Mn, where the closed regionMn =M.∆n = {(x∆n, y∆n) :

(x, y) ∈M}.
Fritsch and Carlson observed that decreasing the magnitude of dn in moving (dn, dn+1) into

Mn may force (dn−1, dn) out ofMn−1 and vice versa. Due to this reason, they suggested to

work with a subregion ρ of M of enjoying the property that if (x, y) ∈ ρ and 0 ≤ x̂ ≤ x,

0 ≤ ŷ ≤ y, then (x̂, ŷ) ∈ ρ. The recommended regions are (see Fig. 2):

(i) Ω1: the largest subset ofM bounded by the four lines η = 0, 3, and ξ = 0, 3,

(ii) Ω2: region bounded by η = 0, ξ = 0, and the circle η2 + ξ2 = 32,

(iii) Ω3: the subset ofM determined by the lines η = 0, ξ = 0, and η + ξ − 3 = 0,

(iv) Ω4: the subset ofM bounded by η = 0, ξ = 0, 2η + ξ − 3 = 0, and η + 2ξ − 3 = 0.

Fritsch and Carlson also observed that the choice of Ω1 produces the least change in the deriva-

tives and the graph more closely resembles the graph obtained using the standard three point

difference formula. The choice of Ω4 produces the greatest change in the derivatives and the
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Figure 2: Fritsch-Carlson subregions. Diagonal hatching (- slope): Ω4; Vertical hatching: Ω3 −
Ω4; Horizontal hatching: Ω2 − Ω3; Diagonal hatching (+ slope): Ω1 − Ω2; Dotted:M− Ω1.

graph more closely resembles a piecewise linear function. The choice of Ω2 and Ω3 lies some-

where in between. So it is highly recommended here to take the choice Ω2 for most pleasing

results. This kind of algorithm is known as fit and modify type algorithm.

2.3 Iterated function system

Let (X, dX) be a complete metric space with metric dX . If wn : X → X , n ∈ NN are

continuous mappings, then I = {X;wn : n ∈ NN} is called an IFS. If, in addition, each

wn, n ∈ NN is a contraction map, then the IFS I is referred to as a hyperbolic IFS or contractive

IFS. The attractor associated with the IFS I is the unique fixed point of the Hutchinson map

W : H(X)→ H(X) defined byW (B) =
⋃N
n=1wn(B), whereH(X) is the set of all nonempty

compact subsets of X endowed with the Hausdorff metric h. The Hausdorff metric h completes

H(X). When I is a hyperbolic IFS with contractivity c, the IFS I has an attractor, an attractor

being a fixed point of the collage map W . It is well known that W is a contraction on the

complete metric space (H(X), h) with the same contractivity c. A self-referential object is a

set or measure that can be defined in terms of a finite collection of geometric transformations

applied to it. Since A =
⋃N
n=1 wn(B), the attractor A of the IFS I is self-referential e.g. the

middle third Cantor set is the union of two shrunken version of the whole set.

2.4 Fractal interpolation function

For the construction of FIF, a suitable IFS whose attractor is the graph of the desired interpolant

be defined as follows. Let a set of data points D = {(xn, yn) ∈ R2 : n ∈ NN} satisfying

x1 < x2 < · · · < xN , N > 2, be given. Set I = [x1, xN ], In = [xn, xn+1] for n ∈ NN−1.

Suppose Ln : I → In ⊂ I , n ∈ NN−1 be contraction homeomorphisms such that Ln(x1) = xn,

Ln(xN) = xn+1, and mappings Fn : I × R → R that are contraction in second argument

fulfilling Fn(x1, y1) = yn, Fn(xN , yN) = yn+1, n ∈ NN−1. Let X := I × R and consider the

IFS I = {X;wn = (Ln, Fn) : n ∈ NN−1}. According to the IFS theory [3], such an IFS has

a unique attractor G = G(f) is the graph of a continuous function f : I → R interpolating
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the given data set and satisfying f(xn) = yn, for n ∈ NN . The aforementioned function

f is referred to as a FIF corresponding to D and is obtained as the fixed point of the Read-

Bajraktarević (RB) operator T on (G, ρ) as (Tg)(x) = Fn
(
L−1
n (x), g ◦ L−1

n (x)
)
, for x ∈ In =

[xn, xn+1], n ∈ NN−1, where G be the set of continuous functions h : I → R such that h(x1) =

y1, h(xN) = yN equipped with the metric ρ(h, h∗) = max{|h(x) − h∗(x)| : x ∈ I} for

h, h∗ ∈ G. Since graph of f , G(f) is a union of transformed copies of itself, specifically

G(f) =
⋃
n∈NN−1

wn
(
G(f)

)
, the map f is a self-referential function.

2.5 Hidden variable fractal interpolation function

To approximate non-self-affine patterns, hidden variable FIFs are constructed by projecting

vector valued FIF corresponding to a generalized interpolation data, which we shall succinctly

review in the following.

For constructing an interpolation function g1 : I = [x1, xN ] → R such that g1(xn) = yn for

all n ∈ NN , consider a generalized set of data of D, D̂ = {(xn, yn, zn) ∈ I × R2 : n ∈ NN}.
Here {zn : n ∈ NN} are real parameters, whose selection is highly subjective. The idea is to

construct a fractal interpolation function for D̂, and project its graph into I ×R such a way that

the projection is the graph of a function that interpolates D. For n ∈ NN−1, let the contraction

homeomorphisms Ln : I → In ⊂ I be defined so as to satisfy

Ln(x) = anx+ bn, Ln(x1) = xn and Ln(xN) = xn+1. (2.2)

Let R2 be endowed with the Manhattan metric dM
(
(x1, y1), (x2, y2)

)
= |x1 − x2| + |y1 − y2|.

Here we note that an element in R2 may be regarded as an ordered pair (a1, a2) or as a column

matrix (a1, a2)t which will be clear from the context. Let Fn : I × R2 → R2:

Fn(x,y) = Fn(x, y, z) =
(
F 1
n(x, y, z), F 2

n(x, z)
)t

:= An(y, z)t +
(
pn(x), qn(x)

)t
, (2.3)

where t denotes the transpose, An are upper-triangular matrices

[
αn βn

0 γn

]
, and pn, qn are

suitable real valued continuous functions so that the following conditions are satisfied for all

n ∈ NN−1:

(i) dM(Fn(x, y, z), Fn(x∗, y, z)) ≤ c1|x− x∗| for some constant c1 > 0,

(ii) dM
(
Fn(x, y, z), Fn(x, y∗, z∗)

)
≤ s dM

(
(y, z)(y∗, z∗)

)
for 0 ≤ s < 1,

(iii) join-up conditions: Fn(x1, y1, z1) = (yn, zn) and Fn(xN , yN , zN) = (yn+1, zn+1).

The variables αn, βn, and γn are chosen such that ‖An‖1 < 1 for all n ∈ NN−1. Consider

wn : I × R2 → I × R2 defined by wn(x, y, z) =
(
Ln(x), Fn(x, y, z)

)
. It follows from the con-

ditions on maps Ln and Fn that wn are contraction maps with respect to the metric d∗M defined

on I×R2 by d∗M
(
(x, y, z), (x∗, y∗, z∗)

)
= |x−x∗|+θdM

(
(y, z), (y∗, z∗)

)
for some θ > 0. Con-

sequently, the generalized IFS {I ×R2;wn : n ∈ NN−1} admits an attractor A ∈ H(I ×R2). It

follows from the generalized IFS theory thatA is the graph of a continuous function g : I → R2
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such that g(xn) = (yn, zn) for all n ∈ NN−1. Letting g = (g1, g2) it follows that g1 : I → R
is a continuous function interpolating D. The aforementioned function g1 : I → R is called

(coalescence) hidden variable fractal interpolation function associated with the set of data D

(see, for instance, [9]).

Let G∗ be the set of continuous functions h : I → R2 such that h(x1) = (y1, z1),h(xN) =

(yN , zN) equipped with the metric d(h,h∗) = max{dM
(
h(x),h∗(x)

)
: x ∈ I}. To obtain

a functional equation for g, we recall that g is the fixed point of the operator T∗ : G∗ → G∗

defined by

(T∗h)(x) = Fn
(
L−1
n (x),h

(
L−1
n (x)

))
, for x ∈ In, n ∈ NN−1.

Whence, the vector-valued function g satisfies the functional equation

g
(
Ln(x)

)
= Ang(x) +

(
pn(x), qn(x)

)t
, x ∈ I,

and the component functions g1 and g2 obey the following coupled functional equations.

g1

(
Ln(x)

)
= αng1(x) + βng2(x) + pn(x),

g2

(
Ln(x)

)
= γng2(x) + qn(x), x ∈ I. (2.4)

Throughout the remainder of the paper, we use the block matrix A = [A1 A2 . . . AN−1] =

[An]n∈NN−1
to collectively represent the parameters involved in the definition of HFIFs.

3 Construction of A-fractal Function Corresponding to a R2-valued Continuous Func-
tion f

In this section we deal with the construction of an A-fractal function corresponding to a R2-

valued continuous function f with the help of theory reported in the previous section. We

enunciate that a continuous function f : I → R2 gives rise to an entire family of fractal functions

f [A] parameterized by a certain block matrix A = [An]n∈NN−1
with An =

[
αn βn

0 γn

]
, where

f [0] = f . Let R2 be endowed with the Manhattan metric and f = (f1, f2) ∈ C(I,R2), the space

of all continuous R2-valued functions on I = [x1, xN ]. Choose a partition {x1, x2, . . . , xN}
satisfying x1 < x2 < · · · < xN in I and consider the data set D = {

(
xn, f1(xn), f2(xn)

)
: n ∈

NN}. In the IFS {I × R2;
(
Ln, Fn

)
: n ∈ NN−1} defined through (2.1)-(2.2), we consider the

special case

pn(x) = f1 ◦ Ln(x)− αnb1(x)− βnb2(x), qn(x) = f2 ◦ Ln(x)− γnb2(x),

where b = (b1, b2) ∈ C(I,R2) satisfies b(x1) = f(x1) and b(xN) = f(xN). In this case, the IFS

{I×R2;
(
Ln, Fn

)
: n ∈ NN−1} provides a fixed point that is the graph of a continuous function

denoted here as f [A] = (f1[A], f2[A]). Following (2.3), we stipulate that f [A] satisfies:

f [A](x) = f(x) + An(f [A]− b)
(
L−1
n (x)

)
, x ∈ In, n ∈ NN−1. (3.5)
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The fixed point f [A] also depends on the choice of b ∈ C(I,R2). We call this function f [A]

as A-fractal function of f with respect to the partition x1 < x2 < · · · < xN and the function

b. Let f be a continuous classical interpolant for the data set D = {(xn, yn, zn) : n ∈ NN}.
Since f [A](xn) = f(xn) for all n ∈ NN , for any choice of A = [An]n∈NN−1

and any choice of

b fulfilling the conditions specified earlier, the fractal function f [A] can be regarded as “fractal

generalization” of the function f . For a given continuous function f : I → R, we can select f =

(f, f) and b = (b, b) satisfying b(x1) = f(x1) and b(xN) = f(xN), αn + βn = γn to construct

A-fractal function for f . In this case we obtain f [A] =
(
f [A], f [A]

)
, where f [A] coincides

with the standard γ-fractal function fγ corresponding to f with γ = (γ1, γ2, . . . , γN−1).

Remark 3.1. The projection G(g1) of the attractor G(g) is not always the union of transformed

copies of itself. Hence, g1 is, in general, non-self-referential. It can be observed that G(g2) =

∪
n∈NN−1

w2
n

(
G(g2)

)
, where w2

n(x, z) :=
(
Ln(x), F 2

n(x, z)
)

=
(
anx + bn, γnz + qn(x)

)
for all

n ∈ NN−1. Thus, g2 is a self-referential fractal function interpolating {(xi, zi) : i ∈ NN}. In

particular, f2[A] is self-referential as (α-fractal function according to the definition given in the

reference [26]).

Remark 3.2. With |γ|∞ := max{|γn| : n ∈ NN−1}, it is easy to see that ‖f2[A] − f2‖∞ ≤
|γ|∞

1− |γ|∞
‖f2 − b2‖∞. Thus, for proper choices of γn, n ∈ NN−1, the self-referential function

f2[A] simultaneously interpolates and approximates f2. A similar remark holds for f1[A].

Remark 3.3. If the elements of the hidden variable FIF are chosen such that zn = yn for all

n ∈ NN , and αn + βn = γn, pn = qn for all n ∈ NN−1, then f1[A] coincides with f2[A], and

hence in this case one obtains a self-referential hidden variable FIF.

Remark 3.4. If βn = 0 for all n ∈ NN−1, then G(g1) =
⋃

n∈NN−1

w1
n

(
G(g1)

)
, where

w1
n(x, y, z) : =

(
Ln(x), F 1

n(x, y, z)
)

=
(
anx+ bn, αny + pn(x)

)
for all n ∈ NN−1.

Therefore, we infer that g1, and hence, in particular, f1[A] is self-referential in this case as well

as (α-fractal function according to the definition given in the reference [26]).

4 Approximation results

In this section, we consider certain properties of the corresponding map f 7→ f [A] for a fixed

A such as f [0] = f . There may be many choices to select an appropriate b. Among them to

fulfill our desire, we assume that b depends linearly on f , that is to say, bλf+g = λbf + bg or

b = Lf , where L : C(I,R2) → C(I,R2) is a linear operator which is bounded with respect to

the norm ‖f‖∞ := sup
{
‖f(x)‖l1 : x ∈ I

}
= sup

{
|f1(x)| + |f2(x)| : x ∈ I

}
. Let ‖L‖ denote

the operator norm of L with respect to ‖.‖∞ in C(I,R2). For a fixed partition D, parameter

matrix A, and continuous function b, let us consider the operator F [A] : C(I,R2)→ C(I,R2)
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which assigns f [A] to the function f . The block matrix A can be viewed as an element in

M2×2(N−1)(R) and ‖A‖1 = max
n∈NN−1

{|αn|, |βn|+ |γn|} < 1.

The researches of Navascués (see, for instance, [26, 28]) bring influence for our work in this

section. While the results in this section share a natural kinship with the corresponding results

in the case of real valued fractal function, the reader will also discern a considerable degree of

disparity due to the vector valuedness considered herein.

Theorem 4.1. The following holds:

I. f [0] = f . Consequently, if A = 0, then the fractal operator F [A] is the identity operator

on C(I,R2).

II. If b = f , then f [A] = f .

III. The fractal function f [A] corresponding to f satisfies the inequality∥∥f [A]− f
∥∥
∞ ≤

‖A‖1

1− ‖A‖1

‖f − b‖∞.

IV. For suitable choices of parameters, the fractal function f [A] simultaneously interpolates

and approximates f .

V. If the vector-valued function b depends linearly on f , then

F [A] : C(I,R2)→ C(I,R2), f 7→ f [A] is linear.

VI. If b = Lf , where L : C(I,R2) → C(I,R2) is a bounded linear map with respect to

the uniform norm then the fractal operator F [A] : C(I,R2) → C(I,R2), f 7→ f [A] is

bounded.

VII. If ‖A‖1 < ‖L‖−1, then F [A] is injective and its range (Rg(F [A])) is closed, F [A]−1 is

bounded on (Rg(F [A])) and F [A], F [A]−1 are both closed operators.

Proof. I. Follows directly from the functional equation for f [A] (cf. (3.5)).

II. Let b = f . In this case, the functional equation (3.5) for f [A] reads

f [A](x) = f(x) + An
(
f [A]− f

)(
L−1
n (x)

)
on In, n ∈ NN−1,

which is obviously satisfied by f [A] = f . Since f [A] is obtained as a fixed point of the

map T , from the uniqueness of the fixed point it follows that f [A] = f .

III. By definition∥∥f [A]− f
∥∥
∞ = sup

{∥∥f [A](x)− f(x)
∥∥
l1

: x ∈ I
}
,

= max
n∈NN−1

sup
{∥∥(f [A]− f

)
(x)
∥∥
l1

: x ∈ In
}
,

= max
n∈NN−1

sup
{∥∥An(f [A]− b

)(
L−1
n (x)

)∥∥
l1

: x ∈ In
}
.

16



Letting f [A] =
(
f1[A], f2[A]

)
and performing the matrix multiplication, through a series

of self-explanatory steps we obtain:∥∥f [A]− f
∥∥
∞ = max

n∈NN−1

sup
{∣∣αn(f1[A]− b1

)(
L−1
n (x)

)
+ βn

(
f2[A]

− b2

)(
L−1
n (x)

)∣∣+
∣∣γn(f2[A]− b2

)
◦ L−1

n (x)
∣∣ : x ∈ In

}
,

≤ max
n∈NN−1

sup
{
|αn|

∣∣(f1[A]− b1

)(
L−1
n (x)

)∣∣+ (|βn|+ |γn|).∣∣(f2[A]− b2

)(
L−1
n (x)

)∣∣ : x ∈ In
}
,

≤ max
n∈NN−1

‖An‖1 sup
{∣∣(f1[A]− b1

)(
L−1
n (x)

)∣∣+
∣∣(f2[A]

− b2

)(
L−1
n (x)

)∣∣ : x ∈ In
}
,

= ‖A‖1

∥∥f [A]− b
∥∥
∞,

≤ ‖A‖1

(∥∥f [A]− f
∥∥
∞ +

∥∥f − b
∥∥
∞

)
,

from which the desired estimate can be deduced.

IV. For an arbitrary selection of the partition, free and constrained parameters, and function

b, the interpolation property of f [A], i.e., f [A](xn) = f(xn) is evident and it is in fact a

content of the construction.

Let ε > 0. To show
∥∥f [A] − f

∥∥
∞ < ε, it suffices to show, thanks to Part III, that

‖A‖1

1− ‖A‖1

‖f − b‖∞ < ε. Choose the parameters αn, βn, and γn such that

‖A‖1 <
ε

ε+ ‖f − b‖∞
< 1.

With this selection, it is a matter of direct verification that
‖A‖1

1− ‖A‖1

‖f − b‖∞ < ε,

whence the stated result follows.

V. Let f , g be in C(I,R2) and λ, µ ∈ R. We have (F [A])(f) = f [A] and (F [A])(g) = g[A].

To prove that (F [A])(λf + µg) = λf [A] + µg[A]. Recall that

f [A](x) = f(x) + An
(
f [A]− bf )

(
L−1
n (x)

)
,

g[A](x) = g(x) + An
(
g[A]− bg)

(
L−1
n (x)

)
, ∀ x ∈ In,

and then(
λf [A] + µg[A]

)
(x) =

(
λf + µg

)
(x) + An

(
λf [A] + µg[A]− bλf+µg

)(
L−1
n (x)

)
.

Therefore, λf [A] + µg[A] is the fixed point of the operator

(Th)(x) = Fn
(
L−1
n (x),h

(
L−1
n (x)

))
= (λf + µg)(x) + An

(
h− bλf+µg

)(
L−1
n (x)

)
.
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From the uniqueness of the fixed point we gather that

(λf + µg)[A] = λf [A] + µg[A],

demonstrating the linearity of F [A].

VI. From Part III, we have∥∥(F [A])(f)
∥∥
∞ =

∥∥(F [A])(f)− f + f
∥∥
∞,

≤
∥∥f [A]− f

∥∥
∞ + ‖f‖∞,

≤
( ‖A‖1

1− ‖A‖1

‖f − b‖∞ + ‖f‖∞
)
,

≤
( ‖A‖1

1− ‖A‖1

‖Id − L‖+ 1
)
‖f‖∞,

where Id is the identity operator on C(I,R2). This shows that the linear map F [A] is

bounded, and the operator norm satisfies
∥∥F [A]

∥∥ ≤ ‖A‖1

1− ‖A‖1

‖Id − L‖+ 1.

VII. It is patent from a moment’s reflection on the proof of Part III that∥∥f [A]− f
∥∥
∞ ≤ ‖A‖1

∥∥f [A]− b
∥∥
∞ = ‖A‖1

∥∥f [A]− Lf
∥∥
∞.

Assume (F [A])(f) = f [A] = 0. Then, we have

‖f‖∞ ≤ ‖A‖1‖L‖‖f‖∞.

Since ‖A‖1 < ‖L‖−1, it is manifest that ‖f‖∞ = 0. That is f = 0, yielding injectivity of

the operator F [A]. Again using Part III,

‖f‖∞ ≤
∥∥f [A]− f

∥∥
∞ +

∥∥f [A]
∥∥
∞ ≤ ‖A‖1

∥∥f [A]− Lf
∥∥
∞ +

∥∥f [A]
∥∥
∞.

By some simple manipulations on the above inequality we obtain

‖f‖∞ ≤
1 + ‖A‖1

1− ‖A‖1‖L‖
∥∥f [A]

∥∥
∞,

from which we see that the inverse operator F [A]−1 is bounded on (Rg(F [A])). To

prove the range of F [A] is closed one can follow the arguments provided in Theorem 3.5

of [26]. The operators F [A] and F [A]−1 are continuous in this case and thus closed.

Definition 4.1. A sequence (xm) of a Banach space X is a Schauder basis, if for all x ∈ X

there exists a unique representation of x as

x =
∑

cmxm,

where (cm) is a sequence of scalars.
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Definition 4.2. A sequence (xm) of a Banach space is a Schauder sequence, if it is a Schauder

basis for [xm] = span(xm).

Note: The set span(xm) is the family of finite linear combinations of the elements xm and [xm]

is the topological closure of span(xm).

Theorem 4.2. If (fm) is a Schauder basis of C(I,R2) and ‖A‖1 < ‖L‖−1, then (fm[A]) is a

Schauder sequence.

Proof. Although the norm and the space of functions used are different, the arguments are

similar to those provided in the proof of Theorem 2.12 of the reference [27]. The operator

F [A] is in this case a topological isomorphism onto Rg(F [A]) = [fm[A]], and these types of

transformations preserve the bases.

On lines similar to Theorem 4.1, elementary property of the operator F [A] can be established,

for instance, we have the following.

Theorem 4.3. For the variables αn, βn, and γn, n ∈ NN−1 selected so that ‖A‖1 < (1 +

‖Id − L‖)−1, the corresponding fractal operator F [A] : C(I,R2) → C(I,R2) is a topological

isomorphism.

Proof. According to Part III of Theorem 4.1,
∥∥(F [A])(f) − f

∥∥
∞ ≤

‖A‖1

1− ‖A‖1

‖f − Lf‖∞ and

consequently
∥∥Id − F [A]

∥∥ ≤ ‖A‖1

1− ‖A‖1

‖Id − L‖. The hypothesis ‖A‖1 < (1 + ‖Id − L‖)−1

now yields
∥∥Id − F [A]

∥∥ < 1. That the operator F [A] = Id −
(
Id − F [A]

)
has bounded

inverse follows from the standard theorem which reads: If T is a bounded linear operator from

a Banach space into itself such that ‖T‖ < 1, then I−T has bounded inverse and the Neumann

series
∞∑
k=0

T k converges in operator norm to (I − T )−1 [1]. This completes the proof.

Theorem 4.4. If (fm) is a Schauder basis of C(I,R2) and ‖A‖1 < (1 + ‖Id − L‖)−1, then

(fm[A]) is a Schauder basis as well.

Proof. The operator F [A] is in this case a topological isomorphism according to the previous

Theorem. Consequently (fm[A]) is a Schauder basis of C(I,R2).

5 Fractal Function f [A] Preserving Some Properties of Original Function f

In this section, we identify suitable parameters in the IFS so that A-fractal function f [A] pre-

serves the properties (for instance, regularity and monotonicity) inherent in f .

Theorem 5.1. Let f ∈ Cr(I,R2). Suppose D = {x1, x2, . . . , xN} be an arbitrary partition

on I satisfying x1 < x2 < · · · < xN , block matrix A = [An]n∈NN−1
, An =

[
αn βn

0 γn

]
of
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parameters satisfy |αn| < arn, |βn| + |γn| < arn for all n ∈ NN−1. Further suppose that b =

(b1, b2) ∈ Cr(I,R2) fulfills b(j)(x1) = f (j)(x1), b(j)(xN) = f (j)(xN) for j = 0, 1, . . . , r. Then

the corresponding R2-valued fractal function f [A] is r-smooth, and f [A](j)(xn) = f (j)(xn) for

n ∈ NN and j = 0, 1, . . . , r.

Proof. Let < := {h ∈ Cr(I,R2), h(j)(x1)= f (j)(x1) and h(j)(xN)= f (j)(xN), j = 0, 1, . . . , r}.
Here < is closed subset of the complete metric space (Cr(I,R2), ‖.‖Cr(I,R2)), where

‖f‖Cr(I,R2) := max{‖f (j)‖∞ : j = 0, 1, . . . , r}, ‖f (j)‖∞ := sup
{
‖f (j)(x)‖l1 : x ∈ I

}
and hence the space < is complete. Suppose TA : < → < is defined as follows.

(TAh)(x) = Fn

(
L−1
n (x),h

(
L−1
n (x)

))
,

= f(x) + An(h− b)
(
L−1
n (x)

)
x ∈ In, n ∈ NN−1.

(5.6)

It follows upon the assumptions on f ,b and the parameters involved in block matrix A =

[An]n∈NN−1
, that TAh is r-times differentiable with a continuous r-th derivative on each interval

(xn, xn+1). We prove that TA maps< into<. With the choice of b, we have (TAh)(x1) = f(x1)

and (TAh)(xN) = f(xN). Next we verify

(TAh)(j)(x+
n ) = (TAh)(j)(x−n ) ∀ n ∈ NN−1.

For j = 1, 2, . . . , r, from (5.6) we obtain

(TAh)(j)(Ln(x)) = f (j)(Ln(x)) +
An(h− b)(j)(x)

ajn
. (5.7)

Therefore,

(TAh)(j)(x+
n ) = f (j)(xn) +

An(h− b)(j)(x1)

ajn
,

(TAh)(j)(x−n ) = f (j)(xn) +
An(h− b)(j)(xN)

ajn−1

. (5.8)

Since h ∈ <, it is apparent that h(j)(x1) = f (j)(x1) and h(j)(xN) = f (j)(xN), j = 0, 1, . . . , r.

Using the conditions on b, namely, its contact of order r at the extremes of the interval I

with the function f , we find from the above equations that (TAh)(j)(x+
n ) = (TAh)(j)(x−n ) for

j = 0, 1, . . . , r and n = 2, 3, . . . , N − 1. Furthermore, from above equations it can be deduced

that (TAh)(j)(x1) = f (j)(x1), (TAh)(j)(xN) = f (j)(xN);j ∈ {0, 1, . . . , r}. Thus, TAh ∈ <
and TA is well defined. Adhering to above equations again, we see that∥∥(TAh)(j) − (TAh∗)(j)

∥∥
∞ = sup

{∥∥(TAh)(j)(x)− (TAh∗)(j)(x)
∥∥
l1

: x ∈ I
}
,

= max
n∈NN−1

sup
{∥∥An(h− h∗)(j)(L−1

n (x))

ajn

∥∥
l1

: x ∈ In
}
,

≤ max
n∈NN−1

‖An‖1

ajn
sup

{∥∥(h− h∗)(j)(L−1
n (x))

∥∥
l1

: x ∈ In
}
,

≤ max
n∈NN−1

‖An‖1

arn

∥∥(h− h∗)(j)
∥∥
∞.
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Thus, for j ∈ {0, 1, . . . , r} one obtains∥∥TAh− TAh∗
∥∥
Cr(I,R2)

= max{‖(TAh)(j) − (TAh∗)(j)‖∞ : j = 0, 1, . . . , r}

≤ max{ max
n∈NN−1

‖An‖1

arn

∥∥(h− h∗)(j)
∥∥
∞ : j = 0, 1, . . . , r}

≤ max
n∈NN−1

‖An‖1

arn

∥∥h− h∗
∥∥
Cr(I,R2)

.

Since |αn| < arn, |βn| + |γn| < arn for all n ∈ NN−1, then it follows that ‖An‖1 < arn.

Consequently, max
n∈NN−1

‖An‖1

arn
< 1 and TA is a contraction. The fixed point f [A] of TA is

the r-smooth fractal function corresponding to f . It is clear from the above discussion that the

derivatives of f and f [A] agree at the endpoints of the interpolation interval i.e. f [A](j)(xn) =

f (j)(xn) for n ∈ NN and j = 0, 1, . . . , r, completing the proof.

The fractal function f [A] established in the previous section may not preserve the monotonicity

property hidden in a given data set. As indicated at the start of this section, the next theo-

rem points to the conditions on the elements of the (hidden variable) IFS so that the A-fractal

function f [A] retains the monotonicity of f inherent in the prescribed data set. We need the

following notation to best describe it. Let

Mi = max
x∈I

b
(1)
i (x), mi,n = min

x∈In
f

(1)
i (x) for i = 1, 2; n ∈ NN−1.

Note that the existence of these parameters follows from the continuity of functions involved in

their definition and the compactness of the domain.

Theorem 5.2. Let f ∈ C1(I,R2) be a monotonic increasing function. Consider an arbitrary

partition D = {x1, x2, . . . , xN} on I satisfying x1 < x2 < · · · < xN and a function b =

(b1, b2) ∈ C1(I,R2) satisfying b(x1) = f(x1), b(xN) = f(xN), b(1)(x1) = f (1)(x1), b(1)(xN) =

f (1)(xN). Further, let the block matrix A = [An]n∈NN−1
with An =

[
αn βn

0 γn

]
be selected such

that the entries αn, βn, γn that lie in [0, 1) satisfy

αn < an, γn ≤
anm2,n

M2

, βn + γn < an, αnM1 + βnM2 ≤ anm1,n.

Then the corresponding A-fractal function f [A] preserves the monotonicity of f .

Proof. Note that the A-fractal function f [A] =
(
f1[A], f2[A]

)
is constructed iteratively using

the functional equations

f1[A]
(
Ln(x)

)
= F 1

n

(
x, f1[A](x), f2[A](x)

)
,

= αnf1[A](x) + βnf2[A](x) + f1

(
Ln(x)

)
− αnb1(x)− βnb2(x),

f2[A]
(
Ln(x)

)
= F 2

n

(
x, f2[A](x)

)
,

= γnf2[A](x) + f2

(
Ln(x)

)
− γnb2(x).
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Differentiating the expression for f1[A]
(
Ln(x)

)
and f2[A]

(
Ln(x)

)
, we obtain

anf
(1)
1 [A]

(
Ln(x)

)
= αnf

(1)
1 [A](x) + βnf

(1)
2 [A](x) + anf

(1)
1

(
Ln(x)

)
− αnb(1)

1 (x)− βnb(1)
2 (x),

anf
(1)
2 [A]

(
Ln(x)

)
= γnf

(1)
2 [A](x) + anf

(1)
2

(
Ln(x)

)
− γnb(1)

2 (x).

To prove that the A-fractal function f [A] preserves the monotonicity of the function f , we

will see f (1)
j [A](x) ≥ 0 for all x ∈ I , for j = 1, 2. For j = 1, 2, it is enough (by in-

duction) to prove that f (1)
j [A] ≥ 0 holds good at points on I obtained at (i + 1)-th iteration

whenever f (1)
j [A] ≥ 0 is satisfied for distinct points on I at i-th iteration. First we consider

f
(1)
2 [A]

(
Ln(x)

)
≥ 0 for all n ∈ NN−1. This is equivalent to prove that (F 2

n)(1)(x, z) =

γnz + anf
(1)
2

(
Ln(x)

)
− γnb(1)

2 (x)

an
≥ 0 for all n ∈ NN−1 whenever (x, z) ∈ I × R and

z ≥ 0. Again for γn ≥ 0, the conditions (F 2
n)(1)(x, z) ≥ 0 for all (x, z) ∈ I × R and

z ≥ 0 are met if anf
(1)
2

(
Ln(x)

)
− γnb(1)

2 (x) ≥ 0. By the definition of m2,n and M2, we have

anf
(1)
2

(
Ln(x)

)
− γnb(1)

2 (x) ≥ anm2n − γnM2. With the aforementioned points one can deduce

that (F 2
n)(1)(x, z) ≥ 0 for all x ∈ I is satisfied if γn ∈ [0, 1) is selected so that γn ≤

anm2,n

M2
for all n ∈ NN−1. Note also that if M2 = 0, then no additional constraint on γn needs to be

imposed.

Having selected γn, n ∈ NN−1 according to the aforementioned prescription, by similar argu-

ments it can be seen that (F 1
n)(1)(x, y, z) ≥ 0 for all x ∈ I is fulfilled, if y ≥ 0, z ≥ 0, αn ≥ 0,

βn ≥ 0 and anf
(1)
1

(
Ln(x)

)
− αnb(1)

1 (x)− βnb(1)
2 (x) ≥ 0 for all x ∈ I and n ∈ NN−1. Note that

anf
(1)
1

(
Ln(x)

)
− αnb(1)

1 (x)− βnb(1)
2 (x) ≥ anm1,n − αnM1 − βnM2. Consequently, the desired

condition turns out to be true if αnM1 + βnM2 ≤ anm1,n. This completes the proof.

Remark 5.1. With a slight modification of the arguments as in the foregoing theorem, analogous

result may be obtained for a nonincreasing function f ∈ C1(I,R2).

Remark 5.2. The aforementioned fractal scheme can be modified and extended to produce

piecewise defined A-fractal function which is comonotone with the given f ∈ C1(I,R2) . For

this, the interval I has to be subdivided into subintervals, say Ij, j = 1, 2, . . . , r in such a way

that the function f |Ij = fj is monotonic increasing or decreasing throughout the subinterval

Ij . In each of these subintervals Ij , we take base function bj , and the variables αjn, βjn and γjn
in the block matrix Aj = [Ajn]n∈NN−1

so as to meet the specification in Theorem 5.2 and in

Remark 5.1. Consequently we can get the fractal functions f [Aj] that retain the monotonicity

of the functions fj = f |Ij, j = 1, 2, . . . , r.

6 Monotonicity of C1-Cubic Spline Hidden Variable FIF

In this section we illustrate the fractal perturbation process, its monotonicity aspect enunciated

in the previous section by taking cubic spline as an example and to develop a monotonicity

preserving cubic spline hidden variable interpolation scheme that extends the methods described
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in the reference [16]. Note that Fritch and Carlson [16] have established the condition on the

derivative parameters so that the C1-cubic spline reflects the monotonicity property inherent

in a prescribed data set. The desired C1-cubic spline hidden variable FIF can be employed to

represent self-referential as well as non-self-referential monotonic function Ψ with derivative

Ψ(1) having irregularity in a finite or dense subset of the interpolation interval.

Consider a set of Hermite data D =
{

(xn, yn, dn) : n ∈ NN

}
, where yn denote the func-

tion value and dn denote the derivative value of an unknown function Ψ1 at the knot point xn.

To obtain a C1-cubic spline hidden variable interpolant corresponding to D, we extend it to a

generalized data set D̂ =
{

(xn, yn, dn, y
∗
n, d

∗
n) : n ∈ NN

}
, where y∗n and d∗n are real parameters

that are assumed to be the function values and the derivative values of a function Ψ2 at the knot

point xn. By making use of the general theory given in Section 2 coupled with conditions of

differentiability and by taking pn and qn as cubic polynomials, we construct the C1-cubic spline

hidden variable FIF corresponding to D. With hn = xn+1 − xn and t := x−x1
xN−x1

, the tradi-

tional nonrecursive C1-cubic splines f1 and f2 corresponding to D and D̂, respectively can be

represented as

f1

(
Ln(x)

)
=

{
hn(dn + dn+1)− 2(yn+1 − yn)

}
t3 +

{
− hn(2dn + dn+1)

+3(yn+1 − yn)
}
t2 + hndnt+ yn,

f2

(
Ln(x)

)
=

{
hn(d∗n + d∗n+1)− 2(y∗n+1 − y∗n)

}
t3 +

{
− hn(2d∗n + d∗n+1)

+3(y∗n+1 − y∗n)
}
t2 + hnd

∗
nt+ y∗n. (6.9)

According to the descriptions in Theorem 5.2, we have to select the parameter matrix A and

function b = (b1, b2) in such a way to obtain a continuously differentiable fractal perturbation

for f = (f1, f2) ∈ C1(I,R2). A natural choice of b = (b1, b2) is the one in which b1 and b2

are the two-point Hermite interpolants (with knots at x1 and xN ) corresponding to f1 and f2

respectively. That is,

b1(x) =
[
(xN − x1)(d1 + dN)− 2(yN − y1)

]
t3 +

[
− (xN − x1)(2d1 + dN)

+3(yN − y1)
]
t2 + d1(x− x1) + y1,

b2(x) =
[
(xN − x1)(d∗1 + d∗N)− 2(y∗N − y∗1)

]
t3 +

[
− (xN − x1)(2d∗1 + d∗N)

+3(y∗N − y∗1)
]
t2 + d∗1(x− x1) + y∗1, (6.10)

With these choices of component functions and with A = [An]n∈NN−1
, where An =

[
αn βn

0 γn

]
,

n ∈ NN−1, satisfy |αn| < an, |βn| + |γn| < an, we obtain A-fractal function f [A] =(
f1[A], f2[A]

)
∈ C1(I,R2) corresponding to f = (f1, f2) ∈ C1(I,R2) defined as:

f1[A]
(
Ln(x)

)
= f1

(
Ln(x)

)
+ αn

(
f1[A]− b1

)
(x) + βn

(
f2[A]− b2

)
(x),

f2[A]
(
Ln(x)

)
= f2

(
Ln(x)

)
+ γn

(
f2[A]− b2

)
(x), x ∈ I, n ∈ NN−1. (6.11)
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The function f1[A] : I → R enjoying the Hermite interpolation conditions f1[A](xn) = yn and

f1[A](1)(xn) = dn is the desired C1-cubic spline hidden variable FIF corresponding to D.

Remark 6.1. If we choose the “hidden variables” y∗n and d∗n such that y∗n = yn and d∗n = dn

for all n ∈ NN , and the parameters according to the relation αn + βn = γn for all n ∈ NN−1,

then the cubic hidden variable FIF f1[A] coincides with f2[A], representing a self-referential

C1-cubic FIF approached constructively by Chand and Viswanathan [12]. For other choices of

the hidden variables and parameters, f1[A] is, in general, non-self-referential. Thus, the method

is suitable for representing both self-referential and non-self-referential function, hence referred

to as cubic spline coalescence hidden variable FIF.

Suppose a monotonic interpolation data set D = {(xn, yn) : n ∈ NN} wherein y1 ≤ y2 ≤
· · · ≤ yN . Extend it to D̂ = {(xn, yn, y∗n) : n ∈ NN} by augmenting real parameters (hidden

variables) y∗n such that y∗1 ≤ y∗2 ≤ · · · ≤ y∗N .

An Algorithm for monotonic C1-cubic spline hidden variable FIF

Step 1: Compute the approximate derivative values dn, d∗n for n ∈ NN . Ensure that each

dn ≥ 0, d∗n ≥ 0. If ∆n = 0, ∆∗n = 0, let dn = dn+1 = 0, d∗n = d∗n+1 = 0 respectively.

Step 2: For each interval In for which (ηn, ξn) = ( dn
∆n
, dn+1

∆n
) /∈ ρ, modify dn, dn+1 to d�n, d

�
n+1

such that (η�n, ξ
�
n) = ( d

�
n

∆n
,
d�n+1

∆n
) ∈ ρ. Similarly, do for d∗n, d

∗
n+1.

Further, construct the corresponding monotonic cubic splines fi, i = 1, 2, (cf. (6.9)) and the

functions bi, i = 1, 2, (cf. (6.10)).

Step 3: Denoting the derivative values obtained at the end of Step 2 by dn, d∗n for n ∈ NN .

For fi and bi, i = 1, 2, as obtained at the end of the previous step, compute the constants

Mi = max
x∈I

b
(1)
i (x), mi,n = min

x∈In
f

(1)
i (x) for i = 1, 2. Choose variables satisfying the following

constraints:

0 ≤ αn < an, βn ≥ 0, γn ∈
[
0,
anm2n

M2

]
, βn + γn < an, and αnM1 + βnM2 ≤ anm1n.

Step 4: Input the derivative values chosen in Step 2 and parameters as prescribed by Step 3

in the functional equations represented by (6.11) whereupon the points of the graph of f1[A]

and f2[A] are computed. The parameters of this cubic FIF f [A] satisfy sufficient conditions in

Theorem 5.2, and hence f [A] is monotone.

Note: We can apply any classical method available in literature, for instance, [14, 15, 32] up

to Step 2 first, then we can obtain fractal analogue of that particular method or algorithm with

combination of Step 3 and Step 4.

We prove the following theorem which provides convergence order of monotonic C1-cubic

spline hidden variable FIF.

24



Theorem 6.1. Suppose that Φ ∈ C3(I,R2) is monotonic increasing. Let the approximate

derivative values dn, d∗n satisfy |Φ(1)
1 (xn)−dn| ≤ k1h

2, |Φ(1)
2 (xn)−d∗n| ≤ k2h

2 for all n ∈ NN−1

and for some constants k1, k2, where h = max{hn : n ∈ NN−1}. Further, let the closed triangle

with vertices (0, 0), (2, 0), (0, 2) is contained in the subregion ρ, and the projection of (ηn, ξn)

onto ρ satisfies η�n + ξ�n ≥ 2, and the variables in the block matrix A = [An]n∈NN−1
are such

that |αn| < a3
n, |βn| + |γn| < a3

n for all n ∈ NN−1. Then the associated monotone cubic spline

hidden variable FIF f [A] is a third order approximation to Φ.

Proof. Let Φ be the original function and f be a traditional cubic non-recursive approximant

for Φ. We begin with the triangle inequality

‖Φ− f [A]‖∞ ≤ ‖Φ− f‖∞ + ‖f − f [A]‖∞ (6.12)

We know [14] that Fritsch and Carlson algorithm is third order accurate under the given hypoth-

esis. The first term in the above inequality:

‖Φ− f‖∞ = O(h3). (6.13)

Similarly, the second term in the right hand side in (6.12) can be bounded by using Theorem

4.1, Part III as follows:∥∥f [A]− f
∥∥
∞ ≤

‖A‖1

1− ‖A‖1

‖f − b‖∞. (6.14)

Now

‖Φ− f [A]‖∞ ≤ ‖Φ− f‖∞ +
‖A‖1

1− ‖A‖1

‖f − b‖∞,

≤ ‖Φ− f‖∞ +
‖A‖1

1− ‖A‖1

(‖f‖∞ + ‖b‖∞),

≤ ‖Φ− f‖∞ +
2‖A‖1

1− ‖A‖1

‖f‖∞.

Under the hypothesis, the associated monotone cubic spline hidden variable FIF f [A] is third

order approximation to Φ. This completes the proof.

7 Numerical Illustration

In this section, we illustrate the monotonicity preserving C1-cubic spline hidden variable FIF

scheme with some computationally generating examples. For this purpose, let us take the fol-

lowing subset of the Akima data: D = {(8, 10), (9, 10.5), (11, 15), (12, 50), (14, 60), (15, 85)}.
We have written a simple computer program in MatLab for plotting the graphs of C1-cubic

spline hidden variable FIFs. One inputs the data points, derivative values, hidden variables, and

scaling parameters, whereupon points on the graph are recursively generated. Theoretically, to
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obtain the actual fractal interpolant, one needs to continue the iterations indefinitely. However,

in practice, computation is very fast (note that for a data set withN points exactly (N−1)r+1+1

points with distinct x-coordinate are obtained at the r-th iteration) and a good view of the whole

function is quickly obtained and may be printed with a graphics printer.

Extend the given monotonic data set to

D̂={(xn, yn, y∗n)=(8, 10, 20),(9, 10.5, 23),(11, 15, 25),(12, 50, 30),(14, 60, 36),(15, 85, 40)}.

Note that for the implementation of the C1-cubic spline hidden variable FIF scheme one requires

in input the values of the derivatives at the knot points. Therefore, in the absence of other

conditions/information, estimates of derivatives are necessary. The derivative values at data

points are estimated using the arithmetic mean method: At the end points x1 and xN , set

d1 =

{
0 if ∆1 = 0 or sgn(d1∗) 6= sgn(∆1),

d1∗ = ∆1 + (∆1−∆2)h1
h1+h2

, otherwise

dN =

{
0 if ∆N−1 = 0 or sgn(dN∗) 6= sgn(∆N−1),

dN∗ = ∆N−1 + (∆N−1−∆N−2)hN−1

hN−1+hN−2
, otherwise

and at the interior points xn; n = 2, . . . , N − 1, set

dn =

{
0 if ∆n = 0 or ∆n−1 = 0,
hn∆n−1+hn−1∆n

hn+hn−1
, otherwise

For the present data set, we have d1 = 0, d2 = 1.0833, d3 = 24.0833, d4 = 25, d5 =

18.3333, d6 = 31.6667 and d∗1 = 3.6667, d∗2 = 2.3333, d∗3 = 3.6667, d∗4 = 4.3333, d∗5 =

3.6667, d∗6 = 4.3333 calculated by above arithmetic mean method. Taking αn = βn = γn = 0

for all n = 1, 2, . . . , 5, Fig. 3(a) shows the traditional piecewise cubic interpolant correspond-

ing to this initial choice of derivative values. Note that this cubic interpolant is not mono-

tone and the non-monotonic C1-cubic spline hidden variable FIF f1[A] displayed in Fig. 3(a)

is obtained by iterating the functional equations given in (6.11) via (6.9)-(6.10). To obtain a

monotone cubic interpolant f1[A], we apply the FC-algorithm (Section 2) with monotonicity

region ρ2 (the disc η2 + ξ2 = 32). One procedure for modifying the derivative values in Step

2 (FC algorithm) is to construct the line joining the origin to the point (η, ξ). Let (η�, ξ�)

be the intersection of this line with the boundary of ρ2. For ρ2, η� = τη, ξ� = τξ, where

τ = 3(η2 + ξ2)−1/2. This procedure modifies the initial derivative values to d1 = 0, d2 =

0.3033, d3 = 6.7432, d4 = 10.6065, d5 = 7.7800, d6 = 31.6667 and d∗1 = 3.6667, d∗2 =

1.6106, d∗3 = 2.5310, d∗4 = 4.3333, d∗5 = 3.6667, d∗6 = 4.3333. Taking αn, βn, γn for all

n = 1, 2, . . . , 5 as in Fig. 3(a) and the derivative parameters as recommended by Fritsch and

Carlson (see Step 2 of our algorithm). We obtain a monotonic self-referential C1-cubic spline in

Fig. 3(b). Selecting α = (−0.2, 0.001, 0.01, 0.01, 0.01), β = (0, 0.002, 0.01, 0.03, 0.01, 0.01),
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and γ = (−0.4, 0.008, 0.011, 0.04, 0.017) arbitrarily and b as the two-point cubic Hermite in-

terpolant corresponding to s and the derivative parameters as in Fig. 3(b), we obtain a non-

monotonic non-self-referential cubic spline HFIF in Fig. 3(c). This illustrates the importance

of the monotonicity preserving C1-cubic spline hidden variable FIF algorithm developed in the

previous section. Next to obtain a monotone cubic HFIF we apply Steps 3 and 4 of our mono-

tone cubic HFIF algorithm. Observe that the end derivatives d1 = 0, d6 = 31.6667, d∗1 =

3.6667, d∗6 = 4.3333 obtain through the FC-algorithm satisfy condition prescribed in Step

3, and hence there is no need of any modification, where we take ρ2 to be the disc speci-

fied earlier. Taking α = (0, 0.001, 0.01, 0.01, 0.01), β = (0, 0.002, 0.01, 0.03, 0.01, 0.01) and

γ = (0.007, 0.008, 0.011, 0.04, 0.017) arbitrarily from the range of permissible values given in

Step 3 and the derivative parameters as in Fig. 3(b), the corresponding non-self-referential C1-

cubic spline HFIF retains the monotonicity is plotted in Fig. 3(d).

The derivatives of the traditional monotone cubic interpolant s, and monotone C1-cubic spline

HFIF f1[A] are given in Fig. 3(e)-(f). Here the Fig. 3(b) and Fig. 3(d) look alike, but the

derivative of both figures are different in nature. The function s(1) is smooth except possibly

at the knots whereas f (1)
1 [A] shows irregularity in finite number of points or on dense subsets

of the interpolation interval. Further, the irregularity can be quantified using the notion of frac-

tal dimension. In CAGD and geometric modeling, in addition to have methods for monotone

interpolation, it is desirable to have one or more parameters that can influence the shape of

the interpolant and/or its derivative. So, the proposed scheme can be exploited to construct an

interpolant satisfying chosen properties such as monotonicity and fractality in the derivative.

8 Concluding Remarks

In the present work, we have applied hidden variable fractal interpolation as a tool to associate

an entire class of R2-valued continuous fractal functions f [A] with a prescribed continuous

function f . Suitable values of the parameters in the block matrix A are identified so that the

fractal functions retain regularity and monotonicity of the germ function f . We have derived

estimate for the approximation of function f by their fractal analogue f [A]. As an application

of the developed theory, we obtain monotonic C1-cubic spline hidden variable fractal inter-

polation functions corresponding to a prescribed set of monotonic data, thus initiating a new

approach to shape preserving approximation via hidden variable fractal function. The mono-

tonicity preserving interpolation scheme developed herein generalizes and enriches its tradi-

tional nonrecursive counterpart and its fractal extension. In practice, there are many instances

where we desire a monotonic interpolant with its derivative receiving varying irregularity, and

introduction of monotonicity of cubic HFIFs f [A] accomplishes this. Thus, in conclusion, the

hidden variable fractal methodology can be exploited in the field of shape preserving interpola-

tion/approximation for providing more diverse and flexible shape preserving curves.
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(a): Traditional cubic spline
(b): Monotone self-referential

cubic spline

(c): Non monotone

non-self-referential cubic

spline HFIF

(d): Monotone

non-self-referential cubic

spline HFIF

(e): Derivative of monotone

cubic spline in Fig. (b)

(f): Derivative of monotone

cubic HFIF in Fig. (d)

Figure 3: Cubic spline hidden variable fractal interpolation functions (HFIFs) (the interpolating

data points are given by the circles and the relevant hidden variable fractal interpolants by the

solid lines).
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