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Abstract

We focus on the interaction of several complex invariants of cohomological type

and metric properties of compact complex manifolds, as well as their behaviour

under holomorphic deformations of the complex structure. Recent results on the

complex geometry of nilmanifolds concerning such properties are reviewed. We

show that the complex geometry of the 6-dimensional manifold N × N given by

the product of two copies of the Heisenberg nilmanifold N allows to construct a

holomorphic deformation with interesting properties in its central limit.

1 Introduction

In this paper we consider compact complex manifolds (M, J) with special Hermitian

metrics, mainly balanced and strongly Gauduchon metrics. We focus on the interaction

of the existence properties of such metrics and several complex invariants of cohomological

type which are related to the ∂∂̄-lemma condition. An important problem is the study of

the deformation limits of these properties under holomorphic deformations of the complex

structure. We show that the class of complex nilmanifolds provides a very rich source of

explicit examples of analytic families of compact complex manifolds with interesting and

unusual behaviours in their central fibres.

In Section 2.1 we first recall the definition and the main properties of some complex

invariants of cohomological type on a compact complex manifold (M, J) of complex di-

mension n which are related to the ∂∂̄-lemma condition, namely fk(M, J) for 0 ≤ k ≤ n
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and kr(M, J) for r ≥ 1. Such complex invariants have been introduced in [7, 26, 41]

and they are defined by means of the Bott-Chern cohomology Hp,q
BC(M, J), the Aeppli

cohomology Hp,q
A (M, J) and the terms in the Frölicher spectral sequence {Er(M, J)}r≥1

(see below for details). In Section 2.2 we consider some special Hermitian metrics on

compact complex manifolds. It is well known that the existence of a Kähler metric im-

poses strong topological conditions on the manifold, in particular, (M, J) must satisfy the

∂∂̄-lemma [16], which in addition implies the degeneration of the Frölicher sequence at

E1 and the formality of the manifold. On the other hand, Gauduchon proved in [21] that

in the conformal class of any Hermitian metric on (M, J) there always exists a Hermitian

metric F satisfying ∂∂̄F n−1 = 0. Between the Kähler class and the Gauduchon class,

other interesting classes of special Hermitian metrics have been considered in relation to

several problems in differential and algebraic geometry. A metric F is called balanced if

dF n−1 = 0, and a characterization of the existence of balanced metrics in terms of cur-

rents was given in [28]. More recently, Popovici has introduced a new class of Hermitian

metrics [32], namely the class of strongly Gauduchon (sG for short) metrics, in relation to

the study of central limits of analytic families of projective manifolds [33]. Such metrics

are defined by the condition that ∂F n−1 is ∂̄-exact. Section 2.3 is devoted to the class of

sGG manifolds introduced and investigated in [36], which are defined as those compact

complex manifolds whose sG cone coincides with the Gauduchon cone. There are several

characterizations of the sGG manifolds, for instance, as those compact complex manifolds

(M, J) for which every Gauduchon metric is sG, as well as those (M, J) satisfying the

following special case of the ∂∂̄-lemma: if Ω is a d-closed (n, n − 1)-form that is ∂-exact,

then Ω is also ∂̄-exact. Moreover, in [36] two numerical characterizations of the sGG man-

ifolds are obtained, which involve the Bott-Chern number h0,1
BC(M, J), the Hodge number

h0,1

∂̄
(M, J) and the first Betti number b1(M) of the manifold (see Proposition 2.5).

In Section 3 we address the problems of openness and closedness of the proper-

ties considered in the previous sections under holomorphic deformations of the com-

plex structure. For each k such that 0 ≤ k ≤ n, we say that a compact complex

manifold (M, J) has the property Fk if the Angella-Tomassini invariant fk(M, J) =
∑

p+q=k (hp,q
BC(M, J) + hp,q

A (M, J)) − 2bk(M) vanishes. By [7], a compact complex man-

ifold (M, J) satisfies the ∂∂̄-lemma if and only if it has the property Fk for every k.

Similarly, we say that (M, J) has the property K if the Schweitzer invariant k1(M, J) =

h1,1
BC(M, J)+2h0,2

∂̄
(M, J)− b2(M) vanishes. Compact complex manifolds (M, J) satisfying

the ∂∂̄-lemma necessarily have the property K. The properties Fk and K are open, i.e.

they are stable under holomorphic deformations of the complex structure. Other prop-

erties which are open are the degeneration of the Frölicher spectral sequence at E1 [24],

the sG property [32] and the sGG property [36]. However, the balanced property is not

open [2].
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It is now known that the closedness of all these properties under holomorphic defor-

mations fails. In [17] it was proved that the property of the Frölicher spectral sequence

degenerating at E1 is not closed under holomorphic deformations. The first example of

an analytic family of compact complex manifolds (Xt)t∈∆, ∆ being an open disc around

the origin in C, such that the complex invariants k1(Xt) = f2(Xt) = 0 for any t 6= 0, but

k1(X0) 6= 0 and f2(X0) 6= 0 (i.e. the properties K and Fk for k = 2 are not closed) was con-

structed in [26]. We will denote here this concrete analytic family by X , i.e. X = (Xt)t∈∆.

Its construction was based on an appropriate deformation of an invariant complex struc-

ture on a 6-dimensional nilmanifold. The family X suggested that the ∂∂̄-lemma might

be a non-closed property, as it has later been confirmed by Angella and Kasuya in [6]

(see also [19]) by constructing certain holomorphic deformation of the Nakamura solv-

manifold. Moreover, the Frölicher spectral sequence of any compact complex manifold in

the analytic family X degenerates at E1 except for the central fibre [10]. This analytic

family X also allows to show that the sGG property is not closed under holomorphic

deformations [36]. Furthermore, the fibres Xt have balanced metric for any t ∈ ∆\{0},

but the central fibre X0 does not admit any sG metric, so the balanced property and the

sG property are not closed [10].

Since the compact complex manifolds Xt in the analytic family X are given by com-

plex nilmanifolds (M, Jt) where Jt is invariant, in Section 4 we focus on the class of

6-dimensional nilmanifolds M endowed with invariant complex structures J ; that is,

M = Γ\G is a compact quotient of a 6-dimensional simply-connected nilpotent Lie group

G by a lattice Γ of maximal rank in G, and J stems naturally from a “complex” structure

J on the Lie algebra g of G. Such nilmanifolds are classified through their underlying Lie

algebras [40] (see Theorem 4.2). A crucial result in the theory of nilmanifolds is Nomizu’s

theorem [31] which asserts that the de Rham cohomology of M is canonically isomor-

phic to the cohomology of its underlying Lie algebra g. Many efforts have been made to

achieve a Nomizu’s type result for the Dolbeault cohomology and other complex invariants

of cohomological type on (M, J), and several advances under additional conditions on the

invariant complex structure J can be found in [4, 11, 12, 14, 15, 27, 37, 38, 39]. Such

results, together with the classification of invariant complex structures J in dimension 6

obtained in [10], allow to compute the Bott-Chern cohomology groups Hp,q
BC(M, J) [5, 26].

The Bott-Chern numbers are given in Tables 1–3 below for any invariant complex struc-

ture J (up to isomorphism). On the other hand, we collect in Theorems 4.4, 4.5 and 4.8,

and Propositions 4.6 and 4.7, the general results about the Frölicher spectral sequence,

the existence of balanced and sG metrics, as well as the sGG condition for nilmanifolds in

dimension 6 obtained in [10, 36, 44, 46]. These results allow to conclude that, apart from

the obvious implications, most of the previous properties of compact complex manifolds

are unrelated.
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The real nilmanifold in the analytic family of compact complex manifolds X mentioned

above, is not a product since the Lie algebra underlying the nilmanifold is irreducible. In

Section 5 we consider the complex geometry of the product N × N of two copies of the

(3-dimensional) Heisenberg nilmanifold N . This geometry turns out to be surprisingly

rich as it allows to construct a new holomorphic family of compact complex manifolds

(N × N, Jt) satisfying similar properties to those of the family X (see Theorem 5.2 for

details). To our knowledge this is the first example of a holomorphic deformation having

such properties, constructed on a 6-dimensional product manifold.

2 Complex invariants and Hermitian geometry

In this section we recall the definitions and main properties of some complex invariants

of cohomological type on a compact complex manifold (M, J) which are related to the

∂∂̄-lemma condition. Some important classes of special Hermitian metrics on (M, J) are

also considered, as well as several relations among them.

2.1 Complex invariants related to the ∂∂̄-lemma

Let (M, J) be a compact complex manifold of complex dimension n and consider

Ωp,q(M) the space of forms of bidegree (p, q) with respect to the complex structure J , i.e.

Ωk
C
(M) = ⊕p+q=kΩ

p,q(M) for 0 ≤ k ≤ 2n.

It is well known that the Dolbeault cohomology groups Hp,q

∂̄
(M, J) of (M, J) are

defined by

Hp,q

∂̄
(M, J) =

ker{∂̄ : Ωp,q(M) −→ Ωp,q+1(M)}

im {∂̄ : Ωp,q−1(M) −→ Ωp,q(M)}
.

These groups are complex invariants of the manifold. The Frölicher spectral sequence

{Er(M, J)}r≥1 of a complex manifold (M, J) is the spectral sequence associated to the

double complex (Ωp,q(M), ∂, ∂̄), where ∂ + ∂̄ = d is the decomposition, with respect to

J , of the exterior differential d [20]. The first term E1(M, J) in the sequence is pre-

cisely the Dolbeault cohomology of (M, J), that is, Ep,q
1 (M, J) ∼= Hp,q

∂̄
(M, J), and after

a finite number of steps this sequence converges to the de Rham cohomology of M , i.e.

Hk
dR(M, C) ∼= ⊕p+q=kE

p,q
∞ (M, J), which is a topological invariant of M . More concretely,

for each r ≥ 1 there is a sequence of homomorphisms dr

· · · −→ Ep−r,q+r−1
r (M, J)

dr−→ Ep,q
r (M, J)

dr−→ Ep+r,q−r+1
r (M, J) −→ · · ·

such that dr ◦dr = 0 and Ep,q
r+1(M, J) = ker dr/im dr. The homomorphisms dr are induced

by ∂. When r = 1 the homomorphism d1 : Hp,q

∂̄
(M, J) −→ Hp+1,q

∂̄
(M, J) is given by

d1([αp,q]) = [∂αp,q], for [αp,q] ∈ Hp,q

∂̄
(M, J). For r = 2 we have

Ep,q
2 (M, J) =

{αp,q ∈ Ωp,q(M) | ∂̄αp,q = 0, ∂αp,q = −∂̄αp+1,q−1}

{∂̄βp,q−1 + ∂γp−1,q | ∂̄γp−1,q = 0}
,
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and the homomorphism d2 : Ep,q
2 (M, J) −→ Ep+2,q−1

2 (M, J) is given by d2([αp,q]) =

[∂αp+1,q−1], for [αp,q] ∈ Ep,q
2 (M, J). We will focus on compact complex manifolds (M, J)

of complex dimension 3, so it is sufficient to describe the spectral sequence up to the third

step E3 because in general Er(M, J) ∼= E∞(M, J) for any r ≥ dimC(M, J) (for general

descriptions of dr and Ep,q
r see for example [13]).

In addition to the Dolbeault cohomology groups Hp,q

∂̄
(M, J) and the Frölicher terms

Ep,q
r (M, J), the Bott-Chern and Aeppli cohomologies [1, 8] define additional complex

invariants of (M, J) given, respectively, by

Hp,q
BC(M, J) =

ker{d : Ωp,q(M) −→ Ω
p+q+1
C

(M)}

im {∂∂̄ : Ωp−1,q−1(M) −→ Ωp,q(M)}
,

and

Hp,q
A (M, J) =

ker{∂∂̄ : Ωp,q(M) −→ Ωp+1,q+1(M)}

im {∂ : Ωp−1,q(M) −→ Ωp,q(M)} + im {∂̄ : Ωp,q−1(M) −→ Ωp,q(M)}
.

By the Hodge theory developed by Schweitzer in [41], all these complex invariants are

finite dimensional and one has the isomorphisms Hp,q
A (M, J) ∼= Hn−q,n−p

BC (M, J). Notice

that Hq,p
BC(M, J) ∼= Hp,q

BC(M, J) by complex conjugation.

From now on we shall denote by hp,q
BC(M, J) the dimension of the cohomology group

Hp,q
BC(M, J). The Hodge numbers will be denoted simply by hp,q

∂̄
(M, J) and the Betti

numbers by bk(M).

For any r ≥ 1 and for any p, q, there are well-defined natural maps

Hp,q
BC(M, J) −→ Ep,q

r (M, J) and Ep,q
r (M, J) −→ Hp,q

A (M, J).

In general these maps are neither injective nor surjective. However, all the maps are

isomorphisms if and only if (M, J) satisfies the ∂∂̄-lemma [16], that is, for any d-closed

form α of pure type on (M, J) the following exactness properties are equivalent:

α is d-exact ⇐⇒ α is ∂-exact ⇐⇒ α is ∂̄-exact ⇐⇒ α is ∂∂̄-exact.

Therefore, if the ∂∂̄-lemma is satisfied then the previous invariants coincide and in partic-

ular one has the Hodge decomposition Hk
dR(M, C) ∼= ⊕p+q=kH

p,q

∂̄
(M, J) for any k, where

in addition Hp,q

∂̄
(M, J) ∼= Hq,p

∂̄
(M, J).

Recently, Angella and Tomassini have introduced in [7] new complex invariants that

measure how far the compact complex manifold (M, J) is from satisfying the ∂∂̄-lemma

condition.

Theorem 2.1. [7] On any compact complex manifold (M, J) of complex dimension n the

following inequalities are satisfied:

∑

p+q=k

(

hp,q
BC(M, J) + hn−p,n−q

BC (M, J)
)

≥ 2bk(M), 0 ≤ k ≤ 2n.

Moreover, all these inequalities are equalities if and only if (M, J) satisfies the ∂∂̄-lemma.
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Let us denote by fk(M, J) the non-negative integer given by

fk(M, J) =
∑

p+q=k

(

hp,q
BC(M, J) + hn−p,n−q

BC (M, J)
)

− 2bk(M).

By the dualities in the Bott-Chern and de Rham cohomologies, it is clear that

f2n−k(M, J) = fk(M, J). Now, for each 0 ≤ k ≤ n, we consider the property

Fk = {the compact complex manifold (M, J) satisfies fk(M, J) = 0}.

Hence, by Theorem 2.1 a compact complex manifold (M, J) satisfies the ∂∂̄-lemma if and

only if it has the property Fk for every k ≤ n.

On the other hand, for any compact complex manifold (M, J) Schweitzer proved in [41,

Lemma 3.3] that

h1,1
BC(M, J) + 2 h0,2

∂̄
(M, J) ≥ b2(M),

and moreover, if (M, J) satisfies the ∂∂̄-lemma then the equality holds. More generally,

one has

Proposition 2.2. [26] If (M, J) is a compact complex manifold then for any r ≥ 1

h1,1
BC(M, J) + 2 dim E0,2

r (M, J) ≥ b2(M),

where E0,2
r (M, J) denotes the r-step (0, 2)-term of the Frölicher spectral sequence. Fur-

thermore, if (M, J) satisfies the ∂∂̄-lemma then the above inequalities are all equalities.

From now on, we will denote by kr(M, J), r ≥ 1, the non-negative integer given by

kr(M, J) = h1,1
BC(M, J) + 2 dim E0,2

r (M, J) − b2(M).

Therefore, kr(M, J) are complex invariants which vanish if the manifold (M, J) satisfies

the ∂∂̄-lemma. Notice that k1(M, J) ≥ k2(M, J) ≥ k3(M, J) = kr(M, J) ≥ 0 for any

r ≥ 4.

In general k1(M, J), k2(M, J) and k3(M, J) do not coincide [26], but the vanishing of

k1(M, J) implies the vanishing of any other kr(M, J). This fact justifies to consider the

following property:

K = {the compact complex manifold (M, J) satisfies k1(M, J) = 0}.

Obviously, any compact complex manifold satisfying the ∂∂̄-lemma has the property K.

2.2 Special Hermitian metrics

Let (M, J) be a compact complex manifold of complex dimension n. A Hermitian

metric g on (M, J) can be described by means of a positive definite smooth form F on

12



M of bidegree (1, 1) with respect to J . In what follows, we will refer to F as a Hermitian

structure or as a Hermitian metric without distinction.

A Hermitian structure is Kähler if the form F is closed, that is, F is a symplectic

form compatible with the complex structure. It is well known that the existence of a

Kähler metric imposes strong topological conditions on the manifold. In particular, (M, J)

satisfies the ∂∂̄-lemma [16], which in addition implies the formality of the manifold.

On the other hand, Gauduchon proved [21] that in the conformal class of any Hermitian

metric there exists a Hermitian metric F satisfying ∂∂̄F n−1 = 0. We will refer to a metric

satisfying this condition as a Gauduchon metric.

Between the Kähler class and the Gauduchon class, other interesting classes of special

Hermitian metrics have been considered in relation to several problems in differential

and algebraic geometry. A metric F is balanced if dF n−1 = 0, and the existence of

balanced metrics in terms of currents was investigated in [28]. More recently, Popovici

has introduced a new class of Hermitian metrics in relation to the study of the central

limit of analytic families of projective manifolds: a metric F is called strongly Gauduchon

(sG for short) if ∂F n−1 is ∂̄-exact [32, 33].

By the definitions, any Kähler metric is balanced, any balanced metric is sG, and any

sG metric is a Gauduchon metric, that is:

Kähler =⇒ balanced =⇒ sG =⇒ Gauduchon.

The converses to these implications are not true: for instance, one can find examples in

the class of nilmanifolds (see Section 4 for details). However, as it is pointed out in [26],

if a compact complex manifold (M, J) satisfies that the natural map

(1) ζ : Hn,n−1

∂̄
(M, J) −→ Hn,n−1

A (M, J), ζ([Ω]∂̄) := [Ω]A

is injective (in particular, if the ∂∂̄-lemma is satisfied or if hn,n−1

∂̄
(M, J) = 0) then any

Gauduchon metric is an sG metric: in fact, if ∂∂̄F n−1 = 0 then ∂F n−1 defines a class

in the Dolbeault cohomology group Hn,n−1

∂̄
(M, J) such that the Aeppli cohomology class

[∂F n−1]A = 0 in Hn,n−1
A (M, J), so the injectivity of ζ implies the existence of a com-

plex form α of bidegree (n, n − 2) such that ∂F n−1 = ∂̄α. Therefore, if ζ is injective

then by Gauduchon’s result there exists an sG metric in the conformal class of any Her-

mitian metric. Notice that by Serre duality and by the dualities between Aeppli and

Bott-Chern cohomologies, the injectivity of ζ implies h0,1

∂̄
(M, J) = dim Hn,n−1

∂̄
(M, J) ≤

dim Hn,n−1
A (M, J) = h0,1

BC(M, J).

In the next section we consider in more detail the compact complex manifolds for which

any Gauduchon metric is sG, showing that the latter property is actually equivalent to

the injectivity of the map (1).
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2.3 The strongly Gauduchon cone

Let (M, J) be a compact complex manifold of complex dimension n. The Gauduchon

cone of (M, J) is defined in [35] as the open convex cone

CG(M, J) ⊂ Hn−1, n−1
A (M, J)

consisting of the (real) Aeppli cohomology classes [F n−1]A which are (n − 1)-powers of

Gauduchon metrics F on (M, J).

Let us consider the map T , induced by ∂ in cohomology, given by

(2) T : Hn−1, n−1
A (M, J) −→ Hn, n−1

∂̄
(M, J), T ([Ω]A) := [∂Ω]∂̄

for any [Ω]A ∈ Hn−1, n−1
A (M, J). The strongly Gauduchon cone (sG cone, for short) was

defined in [35] as the intersection of the Gauduchon cone with the kernel of the linear

map T , i.e.

CsG(M, J) = CG(M, J) ∩ ker T ⊂ CG(M, J) ⊂ Hn−1, n−1
A (M, J).

Notice that, either all the Gauduchon metrics F for which F n−1 belongs to a given Aeppli-

Gauduchon class [F n−1]A ∈ CG(M, J) are sG, or none of them is; that is to say, the sG

property is cohomological.

The following class is introduced in [36]: a compact complex manifold (M, J) is said

to be an sGG manifold if the sG cone of (M, J) coincides with the Gauduchon cone

of (M, J), i.e. CsG(M, J) = CG(M, J). Since the kernel of T is a vector subspace of

Hn−1,n−1
A (M, J), its intersection with CG(M, J) leaves the latter unchanged if and only if

T vanishes identically.

It is clear that any sGG manifold (M, J) is an sG manifold because every Gauduchon

metric F on (M, J) is sG. Also any compact complex manifold satisfying the ∂∂̄-lemma

is sGG because the map ζ given by (1) is injective. Therefore:

∂∂̄-manifold =⇒ sGG manifold =⇒ sG manifold.

The converses to these implications do not hold in general, and again one can find examples

in the class of nilmanifolds (see Section 4).

In [36] two numerical characterizations of the sGG manifolds are obtained. The

first one is given in terms of the Bott-Chern number h0,1
BC(M, J) and the Hodge num-

ber h0,1

∂̄
(M, J).

Theorem 2.3. [36] On any compact complex manifold (M, J) we have h0,1
BC(M, J) ≤

h0,1

∂̄
(M, J). Moreover, (M, J) is an sGG manifold if and only if h0,1

BC(M, J) = h0,1

∂̄
(M, J).

The second numerical characterization of sGG manifolds involves the first Betti num-

ber b1(M) and the Hodge number h0,1

∂̄
(M, J).

14



Theorem 2.4. [36] On any compact complex manifold (M, J) we have b1(M) ≤

2 h0,1

∂̄
(M, J). Moreover, (M, J) is an sGG manifold if and only if b1(M) = 2 h0,1

∂̄
(M, J).

It is well known that a compact complex surface is Kähler if and only if its first Betti

number is even (a proof of this fact follows from Kodaira’s classification of surfaces, [29]

and [42]; see [9] and [25] for a direct proof). Hence, Theorem 2.4 makes the sGG manifolds

reminiscent of the compact Kähler surfaces. It is clear that in complex dimension 2, the

Kähler and the sGG conditions are equivalent. However, in dimension ≥ 3 the sGG

property is much weaker than the Kähler one.

In the proof of Theorem 2.3 (see [36, Theorem 2.1]) it is shown that the map ζ given

by (1) is always surjective, and that it is injective if and only if the manifold is sGG. In

the following result we sum up the equivalent descriptions of the sGG property discussed

above:

Proposition 2.5. For a compact complex manifold (M, J), the following statements are

equivalent:

(i) (M, J) is an sGG manifold;

(ii) every Gauduchon metric F on (M, J) is strongly Gauduchon;

(iii) the map ζ given by (1) is injective;

(iv) the map T given by (2) vanishes identically;

(v) the following special case of the ∂∂̄-lemma holds: for every d-closed (n, n− 1)-form

Ω on (M, J), if Ω is ∂-exact, then Ω is also ∂̄-exact;

(vi) h0,1
BC(M, J) = h0,1

∂̄
(M, J);

(vii) b1(M) = 2 h0,1

∂̄
(M, J).

3 Holomorphic deformations

In this section we address some problems about the behaviour of the properties considered

in the previous section under holomorphic deformations of the complex structure.

Let ∆ denote an open disc around the origin in C. Following [34, Definition 1.12], a

given property P of a compact complex manifold is said to be open under holomorphic

deformations if for every holomorphic family of compact complex manifolds (M, Jt)t∈∆

and for every t0 ∈ ∆ the following implication holds:

(M, Jt0) has the property P =⇒ (M, Jt) has the property P for all t ∈ ∆ sufficiently

close to t0.
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A given property P of a compact complex manifold is said to be closed under holo-

morphic deformations if for every holomorphic family of compact complex manifolds

(M, Jt)t∈∆ and for every t0 ∈ ∆ the following implication holds:

(M, Jt) has the property P for all t ∈ ∆\{t0} =⇒ (M, Jt0) has the property P.

Let us first consider the case when the property P = K or Fk for some fixed k such that

0 ≤ k ≤ n. Using the upper-semicontinuity of the Hodge numbers hp,q

∂̄
(M, Jt) and that

of the Bott-Chern numbers hp,q
BC(M, Jt) as t varies in ∆ (proved in [24, Theorem 4] and

[41], respectively), it is easy to conclude that such properties are open under holomorphic

deformations. In fact, for instance, for P = K, if (M, Jt)t∈∆ is such that (M, Jt0) has the

property K, then

b2(M) = h1,1
BC(M, Jt0) + 2 h0,2

∂̄
(M, Jt0) ≥ h1,1

BC(M, Jt) + 2 h0,2

∂̄
(M, Jt) ≥ b2(M),

for all t sufficiently close to t0. Therefore, k1(M, Jt) = 0 and (M, Jt) also has the property

K.

However, the property K is not closed because, as proved in [26], there exists a holomor-

phic family of compact complex manifolds X = (M, Jt)t∈∆ such that k1(M, J0) 6= 0 but

k1(M, Jt) = 0 for all t ∈ ∆\{0}. The analytic family X is constructed on a 6-dimensional

nilmanifold and the construction also suggests that one cannot expect a single property

Fk to be closed. More concretely:

Theorem 3.1. [26] The properties K and Fk for k = 2 are not closed.

Concerning the ∂∂̄-lemma, a similar argument as above proves that it is an open

property [7]. However, recently Angella and Kasuya have shown in [6] that it is not closed

(see Remark 5.4 below). The upper-semicontinuity of the Hodge numbers also implies that

the degeneration of the Frölicher spectral sequence at E1 is an open property. Eastwood

and Singer proved in [17] that this property is not closed by constructing a holomorphic

family where all the fibres are twistor spaces. The analytic family X mentioned above

provides another example, based on the complex geometry of nilmanifolds, showing the

non-closedness of the property of degeneration of the Frölicher sequence at E1 (see [10]).

The situation about openness and closedness of metric properties is as follows. Kodaira

and Spencer [24] proved that the Kähler property is open, and Hironaka showed in [23]

that in complex dimension ≥ 3 the Kähler property is not closed. Notice that, since a

compact complex surface is Kähler if and only if its first Betti number is even, the Kähler

property is closed in complex dimension 2.

Alessandrini and Bassanelli proved in [2] that the balanced property is not open. In

contrast to the balanced case, Popovici has shown in [32] that the sG property is always

open under holomorphic deformations, and conjectured in [34, Conjectures 1.21 and 1.23]
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that both the sG and the balanced properties are closed under holomorphic deformation.

However, the family X = (M, Jt)t∈∆ satisfies that (M, Jt) has a balanced metric for all

t ∈ ∆\{0}, but (M, J0) does not admit any sG metric. In particular:

Theorem 3.2. [10] The balanced and the sG properties are not closed.

It follows from Theorem 2.4 and the upper-semicontinuity of the Hodge number h0,1

∂̄

that the sGG property is open. Nevertheless, the analytic family X allows to show that

the sGG property is not closed. Hence:

Theorem 3.3. [36] The sGG property is open, but not closed.

On the other hand, the existence of an sG metric in the central limit of a holomorphic

deformation is guaranteed under the strong condition of the ∂∂̄-lemma. Concretely:

Proposition 3.4. [34] Let (M, Jt)t∈∆ be an analytic family of compact complex manifolds.

If the ∂∂̄-lemma holds on (M, Jt) for every t ∈ ∆\{0}, then the central limit (M, J0) has

an sG metric.

An interesting problem is if the conclusion in the previous proposition holds under

weaker conditions than the ∂∂̄-lemma. The following result, which is a direct consequence

of the properties of the family X mentioned above, shows that it is not true under the

weaker property K or Fk for some particular k. Moreover:

Proposition 3.5. There exists a holomorphic family of compact complex manifolds X =

(M, Jt)t∈∆ of complex dimension 3, such that (M, Jt) satisfies the properties F2 and K,

admits balanced metric, is sGG and has degenerate Frölicher sequence for each t ∈ ∆\{0},

but (M, J0) does not admit sG metrics.

The result by Alessandrini and Bassanelli mentioned above about the non-openness of

the balanced property is based on a holomorphic deformation of the Iwasawa manifold,

which is a particular example of a complex manifold belonging to the class of 6-dimensional

nilmanifolds endowed with an invariant complex structure. The analytic family X proving

Theorems 3.1 and 3.2, the non-closedness of the sGG property in Theorem 3.3, and

Proposition 3.5 is constructed by deforming appropriately an abelian complex structure

J0 on a 6-dimensional nilmanifold. In the next section we review the main results on the

invariant complex geometry of 6-dimensional nilmanifolds.

4 Complex geometry of nilmanifolds

In this section we focus on the complex geometry of nilmanifolds and their interesting

properties in relation to the problems considered in Sections 2 and 3. Notice that the
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problems addressed in those sections are nontrivial only for n ≥ 3; in fact, for compact

complex manifolds of complex dimension 2 the Frölicher spectral sequence always degen-

erate at E1, the balanced condition is the same as the Kähler condition, and the existence

of a Kähler metric is equivalent to the first Betti number be even. Therefore, we will

mainly focus on complex nilmanifolds of (real) dimension 6.

In what follows, M will denote a nilmanifold of (real) dimension 2n and J an invariant

complex structure on M , i.e. M = Γ\G is a compact quotient of a simply-connected

nilpotent Lie group G by a lattice Γ of maximal rank in G, and J stems naturally from

a “complex” structure J on the Lie algebra g of G.

A crucial result in the theory of nilmanifolds is Nomizu’s theorem [31] which asserts

that the de Rham cohomology of M is canonically isomorphic to the cohomology of its

underlying Lie algebra g, i.e. Hk
dR(M) ∼= Hk

dR(g). Using this result, Hasegawa [22] proved

that the Chevalley-Eilenberg complex (
∧

∗(g∗), d) of g provides a minimal model of M and

that it is formal if and only if the Lie algebra is abelian, that is to say, the nilmanifold M

is a torus. Therefore, by [16] a complex nilmanifold never satisfies the ∂∂̄-lemma, unless

it is a complex torus.

Concerning a Nomizu type result for the Dolbeault cohomology of (M, J), several ad-

vances have been obtained under additional conditions on the invariant complex structure

J . First, we recall that Salamon gave in [40] a characterization of the invariant complex

structures as those endomorphisms J : g −→ g such that J2 = −Id for which there exists

a basis {ωj}n
j=1 of the i-eigenspace g1,0 of the extension of J to g∗

C
= g∗ ⊗R C satisfying

dω1 = 0, dωj ∈ I(ω1, . . . , ωj−1), for j = 2, . . . , n,

where I(ω1, . . . , ωj−1) is the ideal in
∧

∗ g∗
C

generated by {ω1, . . . , ωj−1}.

A generic invariant complex structure J satisfies d(g1,0) ⊂
∧2,0

(g∗) ⊕
∧1,1

(g∗) with

respect to the bigraduation induced by J on the exterior algebra
∧

∗ g∗
C
. When J is

abelian [3] the Lie algebra differential d satisfies d(g1,0) ⊂
∧1,1

(g∗), a condition which is

equivalent to the complex subalgebra g1,0 = (g1,0)∗ being abelian. On the other hand,

the complex structures associated to complex Lie algebras satisfy d(g1,0) ⊂
∧2,0

(g∗) and

we will refer to them as complex-parallelizable structures. Both abelian and complex-

parallelizable structures are particular classes of nilpotent complex structures, introduced

and studied in [15], for which there is a basis {ωj}n
j=1 for g1,0 satisfying

dω1 = 0, dωj ∈
∧

2 〈ω1, . . . , ωj−1, ω1, . . . , ωj−1〉, for j = 2, . . . , n,

where ωi stands for ωi.

When J is complex-parallelizable, Sakane proved in [39] that the natural inclusion

(3)
(

∧

p,q(g∗), ∂̄
)

→֒ (Ωp,q(M), ∂̄)
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induces an isomorphism

(4) ι : Hp,q

∂̄
(g, J) −→ Hp,q

∂̄
(M, J)

between the Lie-algebra Dolbeault cohomology of (g, J) and the Dolbeault cohomology of

(M, J). More general conditions under which the inclusion (3) induces an isomorphism (4)

can be found in [11, 15, 38]; in particular, it is always true for abelian complex structures

on nilmanifolds. We will discuss below the 6-dimensional case in detail.

Concerning the calculation of the Bott-Chern cohomology and the Frölicher spectral

sequence of nilmanifolds with invariant complex structure, one has the following Nomizu

type result. The first part is proved by Angella in [4, Theorem 2.8] and the second part

follows from an inductive argument given in [14, Theorem 4.2].

Theorem 4.1. If the natural inclusion (3) induces an isomorphism (4) between the Lie-

algebra Dolbeault cohomology of (g, J) and the Dolbeault cohomology of the complex nil-

manifold (M, J), then:

(i) the natural map

ι : Hp,q
BC(g, J) −→ Hp,q

BC(M, J)

between the Lie-algebra Bott-Chern cohomology of (g, J) and the Bott-Chern coho-

mology of (M, J) is also an isomorphism for any 0 ≤ p, q ≤ n;

(ii) the natural map

ι : Ep,q
r (g, J) −→ Ep,q

r (M, J)

between the term in the Lie-algebra Frölicher sequence of (g, J) and the term in the

Frölicher spectral sequence of (M, J) is also an isomorphism for any 0 ≤ p, q ≤ n.

The only 4-dimensional nilmanifolds having invariant complex structures are the torus

T4 and the Kodaira-Thurston manifold [43]. The latter was the first known example

of a compact symplectic manifold not admitting Kähler metric. In six dimensions, the

nilmanifolds admitting invariant complex structures are classified through their underlying

Lie algebras. The following result provides a classification of such nilmanifolds in terms

of the different types of complex structures that they admit.

Theorem 4.2. [40, 44] A nilmanifold M of (real) dimension 6 has an invariant complex

structure if and only if its underlying Lie algebra is isomorphic to one in the following
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list:

h1 = (0, 0, 0, 0, 0, 0),

h2 = (0, 0, 0, 0, 12, 34),

h3 = (0, 0, 0, 0, 0, 12 + 34),

h4 = (0, 0, 0, 0, 12, 14 + 23),

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23),

h6 = (0, 0, 0, 0, 12, 13),

h7 = (0, 0, 0, 12, 13, 23),

h8 = (0, 0, 0, 0, 0, 12),

h9 = (0, 0, 0, 0, 12, 14 + 25),

h10 = (0, 0, 0, 12, 13, 14),

h11 = (0, 0, 0, 12, 13, 14 + 23),

h12 = (0, 0, 0, 12, 13, 24),

h13 = (0, 0, 0, 12, 13 + 14, 24),

h14 = (0, 0, 0, 12, 14, 13 + 42),

h15 = (0, 0, 0, 12, 13 + 42, 14 + 23),

h16 = (0, 0, 0, 12, 14, 24),

h−
19 = (0, 0, 0, 12, 23, 14− 35),

h+
26 = (0, 0, 12, 13, 23, 14 + 25).

Moreover:

(a) For h−
19 and h+

26, any complex structure is non-nilpotent;

(b) For hk, 1 ≤ k ≤ 16, any complex structure is nilpotent;

(c) For h1, h3, h8 and h9, any complex structure is abelian;

(d) For h2, h4, h5 and h15, there exist both abelian and non-abelian nilpotent complex

structures;

(e) For h6, h7, h10, h11, h12, h13, h14 and h16, any complex structure is not abelian.

Here, for instance, the notation h2 = (0, 0, 0, 0, 12, 34) means that there exists a basis

{ei}6
i=1 of the dual of the Lie algebra (or equivalently, a basis of invariant real 1-forms

on the nilmanifold) such that de1 = de2 = de3 = de4 = 0, de5 = e1 ∧ e2 and de6 =

e3 ∧ e4. Notice that h2 is isomorphic to the product of two copies of the 3-dimensional

real Heisenberg algebra (0, 0, 12) (see Section 5 for more details).

By Theorem 4.2, if a 6-dimensional nilmanifold M admits invariant complex structures

then all of them are either nilpotent or non-nilpotent. This special property does not hold

in higher dimensions [15].

An interesting problem is to obtain a description of the moduli space of invariant

complex structures on each nilmanifold. Andrada, Barberis and Dotti classified in [3]

the abelian complex structures in dimension 6, whereas the classification of the non-

nilpotent complex structures was given in [45] and the general classification was obtained

recently in [10]. Let J and J ′ be two invariant complex structures on a nilmanifold M

with underlying Lie algebra g. Recall that J and J ′ are said to be equivalent if there

is an automorphism F : g −→ g of the Lie algebra such that J ′ = F−1 ◦ J ◦ F . Now,

if g
1,0
J and g

1,0
J ′ denote the (1, 0)-subspaces of g∗

C
associated to J and J ′, respectively,

then the complex structures J and J ′ are equivalent if and only if there exists a C-linear

isomorphism F ∗ : g
1,0
J −→ g

1,0
J ′ such that d ◦ F ∗ = F ∗ ◦ d.
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It is well known that, up to equivalence, there are only two complex-parallelizable

structures, which are defined by the complex equations

dω1 = dω2 = 0, dω3 = ρ ω12,

where ρ = 0 or 1. The corresponding Lie algebras are h1 when ρ = 0, and hence the com-

plex nilmanifold is a complex torus T
3
C
, and h5 when ρ = 1, and the complex nilmanifold

is the Iwasawa manifold given by a quotient of the complex Heisenberg group.

According to [10], the remaining complex structures in dimension 6 can be

parametrized by the following three families of complex equations:

Family I: dω1 = dω2 = 0, dω3 = ρ ω12 + ω11̄ + λ ω12̄ + D ω22̄,

where ρ ∈ {0, 1}, λ ∈ R≥0 and D ∈ C with Im D ≥ 0. The complex structure is abelian

if and only if ρ = 0. The Lie algebras admitting complex structures in this family are

h2, . . . , h6 and h8.

Family II: dω1 = 0, dω2 = ω11̄, dω3 = ρ ω12 + B ω12̄ + c ω21̄,

where ρ ∈ {0, 1}, B ∈ C and c ∈ R
≥0, with (ρ, B, c) 6= (0, 0, 0). The complex structure

is abelian if and only if ρ = 0, and the Lie algebras admitting complex structures in this

family are h7 and h9, . . . , h16.

Family III: dω1 = 0, dω2 = ω13 + ω13̄, dω3 = ε i ω11̄ ± i(ω12̄ − ω21̄),

where ε = 0 or 1. The complex structures are non-nilpotent, and the Lie algebras are h−
19

(for ε = 0) and h+
26 (for ε = 1).

Tables 1, 2 and 3 below contain the general classification of invariant complex struc-

tures on 6-dimensional nilmanifolds in terms of its underlying Lie algebra and the values

of the coefficients (ρ, λ, D = x + iy) for Family I, (ρ, B, c) for Family II, and ε for Family

III. Different values of the parameters in Table 1, resp. Tables 2 and 3, correspond to

non-equivalent complex structures in Family I, resp. Families II and III (see [10] for more

details).

Theorem 4.1 above asserts that if the natural isomorphism (4) holds then, in addition

to the Dolbeault cohomology of (M = Γ\G, J), we also know other complex invariants as

the Bott-Chern cohomology and the terms in the Frölicher spectral sequence. And more-

over, such complex invariants can be obtained directly from the underlying Lie algebra g

together with the structure J .

In dimension 4 the natural isomorphism (4) holds for any invariant complex structure

J . In dimension 6, Rollenske proved in [38, Section 4.2] that if g 6∼= h7 then the natural

inclusion (3) induces an isomorphism (4) between the Lie-algebra Dolbeault cohomology

of (g, J) and the Dolbeault cohomology of M .
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Remark 4.3. Let (M = Γ\G, J) be a 6-dimensional nilmanifold endowed with an invari-

ant complex structure J such that g = h7. In [38, Theorem 4.4] it is proved that there

is a dense subset of the space of all invariant complex structures for which the complex

nilmanifold has the structure of a principal holomorphic bundle of elliptic curves over a

Kodaira surface, but this does not hold for all complex structures. In fact, the invariant

complex structure J may not be compatible with the lattice Γ, as [38, Example 1.14]

shows, and hence, one cannot ensure the existence of the natural isomorphism (4) for any

invariant complex structure on the nilmanifold.

Concerning the Bott-Chern cohomology of nilmanifolds, in [41] Schweitzer computed

it for the Iwasawa manifold and in [4] Angella calculated the Bott-Chern cohomology

groups of its small deformations. Notice that by [37, Theorem 2.6], if such deforma-

tions are sufficiently small then they are again invariant complex structures. Thus, the

Bott-Chern cohomology determined in [5] and [26] for any pair (g, J) covers that of any

invariant complex structure and its sufficiently small deformations on any 6-dimensional

nilmanifold with underlying Lie algebra not isomorphic to h7, accordingly to Remark 4.3

and Theorem 4.1 (i).

In Tables 1, 2 and 3 we include the Bott-Chern numbers hp,q
BC(g, J) for any J in

the Families I, II and III above (see [26] for an explicit description of the generators of

the Bott-Chern cohomology groups in terms of the complex equations in Families I, II

and III). Therefore, the tables cover all the invariant complex geometry of 6-dimensional

nilmanifolds, except for the complex torus and the Iwasawa manifold, which are well

known and already given in [41] as we reminded above.

It is clear that in all cases H3,0
BC = 〈[ω123]〉 and H3,3

BC = 〈[ω1231̄2̄3̄]〉, so h3,0
BC = h3,3

BC = 1.

Notice that by the duality in the Bott-Chern cohomology it suffices to show the dimensions

hp,q
BC for (p, q) = (1, 0), (2, 0), (1, 1), (2, 1), (2, 2), (3, 1) and (3, 2). In fact, the dimension of

any other Bott-Chern cohomology group is obtained by hq,p
BC = hp,q

BC.
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Family I Bott-Chern numbers

g ρ λ D = x + iy h
1,0
BC

h
2,0
BC

h
1,1
BC

h
2,1
BC

h
3,1
BC

h
2,2
BC

h
3,2
BC

h2

0 0 y = 1
x = 0

2 1 4 6 3
7

3
x 6= 0 6

1 1 y > 0

x = −1 ±
p

1 − y2

2 1

5

6 2
6

3
x 6= −1 ±

p

1 − y2

4x 6= 1

x = 1 7

h3 0 0 ±1 2 1 4 6 3 7 3

h4

0 1 1

4
2 1 4 6 3 6 3

1 1

−2

2 1

5

6 2
6

3D ∈ R − {−2, 0, 1}
4

1 7

h5

0 1
0

2
2 6

6 3 6 3
D ∈

“

0, 1

4

”

1 4

1

0

y = 0

x = 0 2 7

x = 1

2

1

8

x 6= 0, 1

2
, x > − 1

4
7

0 < y2 < 3

4
x = 1

2

y > 0 x 6= 1

2
, x > y2 − 1

4

6

0 < λ2 < 1

2
x = 0

y = 0 2

0 < y < λ2

2
2 1 4 6 2 3

1

2
≤ λ2 < 1 x = 0

y = 0 2

0 < y <
1−λ2

2
1

1 < λ2 ≤ 5 x = 0
y = 0 2

0 < y <
λ2

−1

2
1

λ2 > 5 x = 0

y = 0 2

0 < y <
λ2

−1

2
, y 6=

p

λ2 − 1
1

0 < y <
λ2

−1

2
, y =

p

λ2 − 1 5

h6 1 1 0 2 2 5 6 2 6 3

h8 0 0 0 2 2 6 7 3 8 3

Table 1.— Classification of complex structures in Family I and dimensions of their

Bott-Chern cohomology groups.
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Family II Bott-Chern numbers

g ρ B c h
1,0
BC

h
2,0
BC

h
1,1
BC

h
2,1
BC

h
3,1
BC

h
2,2
BC

h
3,2
BC

h7 1 1 0 1 2 5 6 2 5 3

h9 0 1 1 1 1 4 5 3 6 3

h10 1 0 1 1 1 4 5 2 5 3

h11 1
B ∈ R − {0, 1

2
, 1} |B − 1|

1 1 4 5 2
5

3
1

2

1

2
6

h12 1
ReB 6= 1

2
, ImB 6= 0

|B − 1| 1 1 4 5 2
5

3
ReB = 1

2
, ImB 6= 0 6

h13 1

1
0 < c < 2, c 6= 1

1 1

5

5 2

5

3

1 6

B 6= 1, c 6= |B|, |B − 1|,

4

5(c, |B|) 6= (0, 1),

c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 < 0

B 6= 1, c = |B| > 1

2
,

6
|B| 6= |B − 1|

h14 1

1 2

1 1

5

5 2

5

3

|B| = 1

2

1

2

4

6

c 6= |B − 1|,

5(c, |B|) 6= (0, 1), ( 1

2
, 1

2
), (2, 1),

c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 = 0

h15

0

0 1

1
1

5

5 3 5 3
1

c 6= 0, 1
4

0 2

1

0 0

1

2 4

5 2

7

3

|B| 6= 0, 1 0
5

1 c > 2

1

5

|B| = c 0 < c < 1

2

4

6

c 6= 0, |B − 1|,

5B 6= 1, |B| 6= c,

c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 > 0

h16 1 |B| = 1, B 6= 1 0 1 2 4 5 2 5 3

Table 2.— Classification of complex structures in Family II and dimensions of their

Bott-Chern cohomology groups.

The next result was proved in [10] and shows the general behaviour of the Frölicher

spectral sequence in dimension 6. For that we applied Theorem 4.1 (ii) to ensure that

Ep,q
r (M, J) ∼= Ep,q

r (g, J) for any p, q and any r ≥ 1, whenever g 6∼= h7.

Theorem 4.4. [10] Let M = Γ\G be a 6-dimensional nilmanifold endowed with an invari-

ant complex structure J such that the underlying Lie algebra g 6∼= h7. Then the Frölicher

spectral sequence {Er(M, J)}r≥1 behaves as follows:

(a) If g ∼= h1, h3, h6, h8, h9, h10, h11, h12 or h−
19, then E1(M, J) ∼= E∞(M, J) for any J .

(b) If g ∼= h2 or h4, then E1(M, J) ∼= E∞(M, J) if and only if J is non-abelian; more-

over, any abelian complex structure satisfies E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J).

(c) If g ∼= h5, then:
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Family III Bott-Chern numbers

g ε h
1,0

BC
h

2,0

BC
h

1,1

BC
h

2,1

BC
h

3,1

BC
h

2,2

BC
h

3,2

BC

h−19 0 1 1 2 3 2 4 2

h+
26 1 1 1 2 3 2 3 2

Table 3.— Classification of complex structures in Family III and dimensions of their

Bott-Chern cohomology groups.

(c.1) E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J) for the complex-parallelizable structure J ;

(c.2) E1(M, J) ∼= E∞(M, J) if and only if J is not complex-parallelizable and ρD 6= 0

in Table 1; moreover, E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J) when ρD = 0.

(d) If g ∼= h16 or h+
26, then E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J) for any J .

(e) If g ∼= h13 or h14, then E1(M, J) ∼= E2(M, J) 6∼= E3(M, J) ∼= E∞(M, J) for any J .

(f) If g ∼= h15 and J is a complex structure on h15 given in Table 2, then:

(f.1) E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J), when c = 0 and |B − ρ| 6= 0;

(f.2) E1(M, J) ∼= E2(M, J) 6∼= E3(M, J) ∼= E∞(M, J), when ρ = 1 and |B − 1| 6=

c 6= 0;

(f.3) E1(M, J) 6∼= E2(M, J) 6∼= E3(M, J) ∼= E∞(M, J), when ρ = 0 and |B| 6= c 6= 0.

According to Remark 4.3, we cannot ensure the existence of a canonical isomorphism

between Ep,q
r (g, J) and Ep,q

r (M, J) for any invariant complex structure J on a nilmanifold

M with underlying Lie algebra g ∼= h7. However, it is worth noticing that up to equivalence

there is only one complex structure J on h7 whose sequence degenerates at the first step,

that is, E1(h7, J) ∼= E∞(h7, J).

Concerning the existence of balanced or sG metrics, if (M = Γ\G, J) is a nilmanifold

endowed with an invariant complex structure, then it admits a balanced metric if and

only if it has an invariant one. Thus, the existence of such a metric can be detected

at the level of the underlying Lie algebra. This fact was proved in [18] and uses the so

called symmetrization process. Moreover, in [10] it is proved that this process can also be

applied to the existence of sG metrics on nilmanifolds, that is to say, (M = Γ\G, J) has

an sG metric if and only if it has an invariant one. In dimension 6 we have:

Theorem 4.5. [10, 44] Let M = Γ\G be a 6-dimensional nilmanifold admitting invariant

complex structures J , and let g be the underlying Lie algebra. Then:
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(i) There exists J having balanced or sG metrics if and only if g is isomorphic to

h1, . . . , h6 or h−
19.

(ii) If the complex structure J is abelian, then an invariant Hermitian metric is sG if

and only if it is balanced.

(iii) For g ∼= h2, h4, h5 or h6, if the complex structure J is non-abelian then any invariant

Hermitian metric is sG.

The following result implies that abelian complex structures on nilmanifolds with

underlying Lie algebra isomorphic to h2 or h4 do not admit sG metrics.

Proposition 4.6. [46] Let M = Γ\G be a 6-dimensional nilmanifold with an abelian com-

plex structure J admitting an sG metric. Then the underlying Lie algebra g is isomorphic

to h3 or h5.

There exist compact complex manifolds having sG metrics but not admitting any

balanced metric [34, Theorem 1.8]. The general situation for nilmanifolds in dimension 6

is as follows:

Proposition 4.7. [10] Let M = Γ\G be a 6-dimensional nilmanifold with an invariant

complex structure J such that (M = Γ\G, J) does not admit balanced metrics. If (M =

Γ\G, J) has sG metric, then J is non-abelian nilpotent and g is isomorphic to h2, h4 or

h5. Moreover, according to the classification in Table 1, such a J is given by ρ = 1 and:

λ = 1, x + y2 ≥ 1
4

on h2; λ = 1, x ≥ 1
4

on h4; and λ = 0, y 6= 0 or λ = y = 0, x ≥ 0 on h5.

Although by Theorem 4.5 (i) the underlying Lie algebras are the same both in the

balanced and the sG case, Proposition 4.7 shows that the complex structures admitting

such metrics differ.

We finish this section by considering those complex nilmanifolds (M = Γ\G, J) having

the sGG property, that is, any Gauduchon metric is sG. By Theorem 2.4 the sGG condition

is equivalent to b1(M) = 2 h0, 1

∂̄
(M, J). For instance, let us consider an invariant complex

structure J in the Family I. If J is abelian then ρ = 0 and

H0, 1

∂̄
(M, J) = 〈[ω1̄], [ω2̄], [ω3̄]〉,

whereas for a non-abelian J , i.e. ρ = 1, we have

H0, 1

∂̄
(M, J) = 〈[ω1̄], [ω2̄]〉.

If M is not a torus then its first Betti number satisfies b1(M) ≤ 5, which implies that

(M = Γ\G, J) in Family I cannot be sGG when J is abelian.

From a more detailed analysis of the non-abelian complex structures in Family I,

together with the study of complex nilmanifolds in Families II and III, it follows:
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Theorem 4.8. [36] Let M = Γ\G be a 6-dimensional nilmanifold, not a torus, endowed

with an invariant complex structure J . Then, (M, J) is sGG if and only if the Lie algebra

underlying M is isomorphic to h2, h4, h5 or h6, and the complex structure J is not abelian.

The complex geometry of 6-dimensional nilmanifolds allows to conclude that, apart

from the obvious implications, there are no relations among the different properties of

compact complex manifolds introduced in Section 2 (see [10] and [36] for more details):

- there exist sG manifolds that are not balanced;

- there are sG manifolds that are not sGG;

- the balanced property and the sGG property are unrelated;

- the degeneration of the Frölicher spectral sequence at E1 and the sGG property are

also unrelated.

In particular, the sGG class introduced and studied in [36] is a new class of compact

complex manifolds.

5 On the complex geometry of the product of two Heisenberg manifolds

In this section we consider the product of two (3-dimensional real) Heisenberg

(nil)manifolds, and we show that, despite the simplicity of this 6-dimensional nilmani-

fold, its complex geometry is surprisingly rich in relation to the deformation problems

considered in Section 3.

Let us recall that the Heisenberg group H is the nilpotent Lie group constituted by

all the matrices of the form

(5) H =























1 x z

0 1 y

0 0 1









| x, y, z ∈ R















.

Since {α1 = dx, α2 = dy, α3 = xdy − dz} is a basis of left-invariant 1-forms on H , the

structure equations are given by dα1 = dα2 = 0, dα3 = α12, thus the Lie algebra of H

is h = (0, 0, 12). Let us consider the lattice Γ given by the matrices in (5) with (x, y, z)-

entries lying in Z. Hence, Γ is a lattice of maximal rank in H . From now on, we will

denote by N the 3-dimensional nilmanifold N = Γ\H and we will refer to N as the

Heisenberg nilmanifold.

Let us take another copy of N with basis of 1-forms {β1, β2, β3} satisfying dβ1 =

dβ2 = 0 and dβ3 = β12. Then, the Lie algebra underlying the 6-dimensional nilmanifold

N × N is isomorphic to h ⊕ h, i.e. to the Lie algebra h2 = (0, 0, 0, 0, 12, 34). On the

product manifold N × N we consider the almost-complex structure J0 defined by

(6) J0(α
1) = −α2, J0(β

1) = −β2, J0(α
3) = −β3.
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It is easy to check that J0 is integrable, i.e. its Nijehuis tensor vanishes identically, and

abelian. Therefore, J0 defines an invariant abelian complex structure on N × N . The

aim of this section is to show that the holomorphic deformations of this simple complex

structure have very interesting properties in relation to the existence problem of sG metric,

the invariants f2,k1 related to the ∂∂̄-lemma condition, the Frölicher spectral sequence

and also with respect to the sGG condition.

In order to fit the complex structure (6) in the general frame of Table 1, we will express

J0 in terms of the basis of 1-forms {e1, e2, e3, e4, e5, e6} given by

(7) e1 = α1, e2 = α2, e3 = β1, e4 = β2, e5 = α3, e6 = β3,

which satisfies the equations

(8) de1 = de2 = de3 = de4 = 0, de5 = e12, de6 = e34.

Using (6) and (7) we have that the complex forms

(9)

ω1
0 = e1 − iJ0e

1 = e1 + i e2, ω2
0 = e3 − iJ0e

3 = e3 + i e4, ω3
0 = 2e6−2iJ0e

6 = 2e6 −2i e5,

constitute a basis of forms of bidegree (1, 0) with respect to the abelian complex structure

J0. Now, it follows from (8) that the complex structure equations for (N × N, J0) in the

basis {ω1
0, ω

2
0, ω

3
0} are

(10) dω1
0 = dω2

0 = 0, dω3
0 = ω11̄

0 + i ω22̄
0 .

Notice that these equations correspond to take ρ = λ = 0 and D = i for h2 in Table 1.

The compact complex manifold (N×N, J0) can be described as follows. The Lie group

H × H endowed with the complex structure J0 can be realized by the complex matrices

of the form

(H × H, J0) =





























1 −z1 −iz2 z3

0 1 0 z̄1

0 0 1 z̄2

0 0 0 1











| z1, z2, z3 ∈ C



















.

In terms of the complex coordinates (z1, z2, z3), the left translation by an element

(a1, a2, a3) of (H × H, J0) is given by

L∗
(a1,a2,a3)(z1, z2, z3) = (z1 + a1, z2 + a2, z3 − a1z̄1 − ia2z̄2 + a3).

The basis {ω1
0, ω

2
0, ω

3
0} of left-invariant complex (1,0)-forms on (H × H, J0) is expressed

in these complex coordinates as

ω1
0 = dz1, ω2

0 = dz2, ω3
0 = dz3 + z1dz̄1 + iz2dz̄2.
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Now, the complex nilmanifold (N ×N, J0) can be realized as the quotient of (H ×H, J0)

by the lattice defined by taking (z1, z2, z3) as Gaussian integers.

As we reminded in Section 4, the Dolbeault cohomology of the compact complex

manifold (N × N, J0) can be computed explicitly from the pair (h2, J0), i.e. Hp,q

∂̄
(N ×

N, J0) ∼= Hp,q

∂̄
(h2, J0) for any 0 ≤ p, q ≤ 3. In order to perform an appropriate holomorphic

deformation of J0 we first compute the particular Dolbeault cohomology group

H0,1

∂̄
(N × N, J0) ∼= H0,1

∂̄
(h2, J0) = 〈[ω1̄

0], [ω
2̄
0], [ω

3̄
0]〉.

We consider the small deformation Jt given by

t
∂

∂z2
⊗ ω1̄

0 + it
∂

∂z1
⊗ ω2̄

0 ∈ H0, 1(X0, T 1,0X0),

where X0 denotes the complex manifold (N × N, J0). This deformation is defined for

any t ∈ ∆ = {t ∈ C | |t| < 1} and the analytic family of compact complex manifolds

(N × N, Jt) has a complex basis {ω1
t , ω

2
t , ω

3
t } of type (1,0) with respect to Jt given by

(11) Jt : ω1
t = ω1

0 + it ω2̄
0, ω2

t = ω2
0 + t ω1̄

0, ω3
t = ω3

0.

We can express the complex structures Jt in terms of the real basis of 1-forms

{e1, . . . , e6} given by (7) as follows. Let us denote by t1 the real part of t and by t2

its imaginary part, i.e. t = t1 + i t2. From (9) and (11) we get

ω1
t = e1−t2e

3+t1e
4+i(e2+t1e

3+t2e
4), ω2

t = e3+t1e
1+t2e

2+i(e4+t2e
1−t1e

2), ω3
t = 2e6−2i e5.

Since the complex form ωk
t , 1 ≤ k ≤ 3, is declared to be of bidegree (1,0) with respect to

the complex structure Jt, necessarily

e2+t1e
3+t2e

4 = −Jt(e
1−t2e

3+t1e
4), e4+t2e

1−t1e
2 = −Jt(e

3+t1e
1+t2e

2), e5 = Jt(e
6),

and we have that the complex structure Jt in the basis {e1, . . . , e6} is given by

Jt =
−1

1 + |t|4

























2|t|2 |t|4 − 1 2(t2 − t1|t|
2) −2(t1 + t2|t|

2) 0 0

1 − |t|4 2|t|2 −2(t1 + t2|t|
2) −2(t2 − t1|t|

2) 0 0

2(t1 − t2|t|
2) 2(t2 + t1|t|

2) −2|t|2 |t|4 − 1 0 0

2(t2 + t1|t|
2) −2(t1 − t2|t|

2) 1 − |t|4 −2|t|2 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

























,

for each t ∈ ∆.

In the following result we find complex structure equations for every Jt, except for the

central limit t = 0, that fit in the classification given in Table 1.
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Proposition 5.1. Let (N × N, Jt) be the product of two copies of the 3-dimensional

Heisenberg nilmanifold N endowed with the complex structure Jt given by (11). For each

t ∈ ∆\{0}, there is a (global) basis {η1
t , η

2
t , η

3
t } of complex forms of bidegree (1, 0) with

respect to Jt satisfying

(12) dη1
t = dη2

t = 0, dη3
t = η12

t + η11̄
t + η12̄

t + i
1 + |t|4

4|t|2
η22̄

t .

Proof. By a direct calculation using (10), we get that the (1,0)-basis {ω1
t , ω

2
t , ω

3
t } given in

(11) satisfies dω1
t = dω2

t = 0 and

dω3
t =

2it̄

1 + |t|4
ω12

t +
1 − i|t|2

1 + |t|4
ω11̄

t +
i − |t|2

1 + |t|4
ω22̄

t .

For each t ∈ ∆\{0}, let us consider the new (1,0)-basis {τ 1
t = ω1

t , τ
2
t = 2it̄

1−i|t|2
ω2

t , τ
3
t =

1+|t|4

1−i|t|2
ω3

t }. Hence, the complex structure equations for Jt, t 6= 0, in this basis are expressed

as

dτ 1
t = dτ 2

t = 0, dτ 3
t = τ 12

t + τ 11̄
t + D′ τ 22̄

t , 0 < |t| < 1,

where D′ = −1
2

+ i1−|t|4

4|t|2
.

Now, we consider another basis {η1
t , η

2
t , η

3
t } of bidegree (1, 0) with respect to Jt given

by

τ 1
t = η1

t − D′σ̄ η2
t , τ 2

t = σ η1
t + η2

t , τ 3
t = (1 + D′|σ|2)η3

t ,

where σ = 2(1 + |t|2i)/(1 + |t|4). By a long but direct calculation we arrive at

dη1
t = dη2

t = 0, dη3
t = η12

t + η11̄
t + η12̄

t + D′′ η22̄
t ,

where D′′ = −i 1+|t|4

4|t|2
. Finally, by [10, Proposition 2.4] there exists a (1,0)-basis with

respect to which we can take the complex conjugate of D′′ as the coefficient of η22̄
t , that

is, we arrive at the equations (12), and the proof is complete.

The analytic family X mentioned in Section 3 was the first example of an analytic

family of compact complex manifolds (Xt)t∈∆ such that the complex invariants f2(Xt) =

k1(Xt) = 0 for any t 6= 0, but f2(X0) 6= 0 and k1(X0) 6= 0 (Theorem 3.1), and its

construction was based on an appropriate deformation of the abelian complex structure

on the nilmanifold with underlying Lie algebra h4 [10, 26]. Moreover, the Frölicher spectral

sequence of any Xt degenerates at E1 except for t = 0 [10]. The family X also allows to

show that the sGG property is not closed under holomorphic deformations (Theorem 3.3)

and, furthermore, the fibres Xt have balanced metric for any t ∈ ∆\{0}, but the central

limit X0 does not admit any strongly Gauduchon metric (Theorem 3.2).

The real nilmanifold underlying the compact complex manifolds Xt is not a product

since the Lie algebra h4 is irreducible. The following result is a bit of a surprise because

it provides an example of a product manifold with a holomorphic family of complex

structures satisfying similar properties to those of the analytic family X .
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Theorem 5.2. Let (N×N, Jt)t∈∆ be the analytic family given by the product of two copies

of the 3-dimensional Heisenberg nilmanifold N endowed with the complex structures Jt

given by (11). Then:

(i) The invariants f2(N ×N, Jt) and k1(N ×N, Jt) vanish for each t ∈ ∆\{0}, however

f2(N × N, J0) = 3 and k1(N × N, J0) = 2.

(ii) The Frölicher spectral sequence of (N ×N, Jt) degenerates at the first step for each

t ∈ ∆\{0}, however the central limit satisfies E1(N × N, J0) 6∼= E2(N × N, J0) ∼=

E∞(N × N, J0).

(iii) The complex manifold (N ×N, Jt) is sGG for each t ∈ ∆\{0}, but (N ×N, J0) does

not admit strongly Gauduchon metrics.

Proof. We will apply the general result on nilmanifolds given in Section 4 to the complex

structures Jt on N ×N given by (11). For the proof of (i) we first notice that the second

Betti number of N ×N is equal to 8. From Table 1 we have that h1,1
BC(N ×N, Jt) = 4 for

any t ∈ ∆, but the Hodge number dim E0,2
1 (N ×N, Jt) = h0,2

∂̄
(N ×N, Jt) depends on the

complex structure Jt. In fact, for t 6= 0 it follows from (12) that the Dolbeault class [η1̄2̄
t ]

vanishes because η1̄2̄
t = ∂̄η3̄

t , hence H0,2

∂̄
(N ×N, Jt) = 〈[η1̄3̄

t ], [η2̄3̄
t ]〉 and h0,2

∂̄
(N ×N, Jt) = 2,

for any t 6= 0. For the central limit, by (10) we get H0,2

∂̄
(N × N, J0) = 〈[ω1̄2̄

0 ], [ω1̄3̄
0 ], [ω2̄3̄

0 ]〉,

so h0,2

∂̄
(N × N, J0) = 3. In conclusion, the complex invariant

k1(N × N, Jt) = h1,1
BC(N × N, Jt) + 2 dim E0,2

1 (N × N, Jt) − b2(N × N)

vanishes on ∆\{0}, but it equals 2 for the central limit.

For the invariant f2 we recall that

f2(N×N, Jt) = 2 h2,0
BC(N×N, Jt)+h1,1

BC(N×N, Jt)+2 h3,1
BC(N×N, Jt)+h2,2

BC(N×N, Jt)−2b2(N×N).

By Table 1 we have that h2,0
BC(N × N, Jt) is constant and equal to 1, whereas h3,1

BC(N ×

N, Jt) = 2 and h2,2
BC(N × N, Jt) = 6 for any t 6= 0, but h3,1

BC(N × N, J0) = 3 and h2,2
BC(N ×

N, J0) = 7. Hence, f2(N × N, Jt) = 0 for any t 6= 0, but f2(N × N, J0) = 3.

Property (ii) follows directly from the general study given in Theorem 4.4 (b). In

fact, the nilpotent complex structure Jt is abelian if and only if t = 0, hence the Frölicher

spectral sequence of (N×N, Jt) degenerates at the first step if and only if t 6= 0. Moreover,

the Frölicher sequence of the central limit collapses at the second step.

For the proof of (iii), since Jt is non-abelian for t 6= 0, by applying Theorem 4.8 to the

h2 case we have that (N × N, Jt) is sGG for any t 6= 0. Nevertheless the central limit is

not sG because J0 is abelian and we can apply Proposition 4.6.
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Remark 5.3. Notice that complex manifold (N × N, Jt)t∈∆ does not admit balanced

metric for any value of t. In fact, for any invariant non-abelian complex structure J on

N × N , there exists a (1,0)-basis {ω1, ω2, ω3} satisfying

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + D ω22̄,

where D = x + iy with y > 0, and by Proposition 4.7 we know that (N × N, J) admits

a balanced metric if and only if x + y2 < 1
4
. In our case, for Jt (t 6= 0) it follows from

Proposition 5.1 that x = 0 and y =
1+|t|4

4|t|2
, thus

x + y2 −
1

4
=

(

1 − |t|4

4|t|2

)2

> 0

and there is no balanced metric on (N × N, Jt).

Remark 5.4. Angella and Kasuya found in [6] a holomorphic deformation that shows

that the ∂∂̄-lemma property is not closed. More recently, in [19] it is proved the existence

of an analytic family of compact complex manifolds (Xt)t∈∆ such that Xt satisfies the ∂∂̄-

lemma and admits balanced metric for any t ∈ ∆\{0}, but the central limit X0 neither

satisfies the ∂∂̄-lemma nor admits balanced metrics. Both constructions are based on the

complex geometry of the real solvmanifold underlying the Nakamura manifold [30], which

is not diffeomorphic to a product manifold.

We finish with the following related question:

Question 5.5. Does there exist a holomorphic deformation of (N × N, J0) admitting

balanced metrics?

To answer this question, a more detailed study of the Kuranishi space of deformations

of J0 would be required.
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in the Frölicher spectral sequence, Differential Geom. Appl. 7 (1997), 75–84.

[14] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte, Frölicher spectral sequence of com-
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Abstract

Probably the most important challenge of Particle Physics for the coming cen-

tury is to understand the fundamental nature of the Dark Universe. More than 95%

of the Universe is composed by two components, Dark Matter and Dark Energy, for

which Cosmology provides growing evidence, but of which we lack a proper funda-

mental (Particle Physics) interpretation. The recent discovery of the Higgs boson

at CERN seems to complete a very successful chapter of Particle Physics, which

embodies the current understanding of the known particles and their interactions

in the so-called Standard Model. However, a number of theoretical considerations

point to the necessity of Physics beyond the Standard Model. With no experimental

indication of such Physics in accelerators (whose data is on the contrary outstand-

ingly well explained with just the Standard Model), is the existence of Dark Matter

(and to some extent Dark Energy) viewed as the most powerful observational moti-

vation for the study of extensions of the Standard Model. Some of these extensions

predict extremely light and neutral particles that interact very weakly with stan-

dard model particles. The axion is the most popular and the prototype of this class

of particles. Motivated by theory, but maybe also by some intriguing astrophysi-

cal observations, they at the same time constitute perfect Dark Matter candidates.

Highly complementary to the exploration of the high energy frontier at the Large

Hadron Collider (LHC) at CERN, the searches for axions at the low energy fron-

tier are recently attracting an increasing attention. In this article I will review

the motivation of the axion hypothesis, and the reason for the current interest, the
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status of the experimental techniques of these searches and their prospects to even-

tually detect the axion in the near future. I will finally focus on a recent initiative,

the International Axion Observatory (IAXO), the most ambitious project to test

the existence of axions. IAXO will be built on the experience acquired so far in

the field and will highly surpass current experimental sensitivity to venture deep

into uncharted axion parameter space. If the axion exists, IAXO will have good

chances of discovering it. It could be the next breakthrough discovery in our race

to understand the Universe, and how it works at its most fundamental level.
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1 Introduction

The currently accepted picture of the Universe shows that the conventional baryonic

matter (planets, stars, galaxies, interstellar dust and gas, etc.) comprises only less than

5% of the total matter-energy of the Universe. The remaining majority –the dark side

of the Universe– is made of Dark Energy (DE) 68.3% and Dark Matter (DM) 26.8%[1].

DE is commonly seen as a sort of vacuum energy that would be responsible for the

accelerated expansion of the Universe, however whether and how we can understand it

at the fundamental level (e.g. as a quantum field) is still totally unclear. On the other

hand, DM seems to be composed by a kind of matter that is invisible, collision-less, and

whose existence is now clearly evidenced through its gravitational effects. The particle

nature of DM however is currently a mystery, and its determination is one of the hottest

issues in modern fundamental physics.

From the particle physics perspective, DM particles must have mass, be electrically

neutral and interact very weakly with the rest of matter. They have to provide a viable

mechanism for being produced in sufficient quantities in the early Universe. Within the

Standard Model (SM) of particle physics, the neutrinos have been long ago considered as

possible DM candidates, however, they fail to reproduce the large scale structure of the

Universe, and their contribution must be restricted to a very small fraction of relativistic

(hot) DM. One has, therefore, to resort to extensions of the SM in order to find a candidate

that can solve the puzzle. The problem of DM is thus linked to the very interesting topic

of physics beyond the SM. Although there are numerous ways to postulate DM candidates

in beyond-SM theories, the attention is focused on SM extensions that are well motivated

per se (i.e. they are proposed to solve one of the theoretical shortcomings of the SM) and

in addition provide a good DM candidate. A very popular example, attracting most of

the experimental attention, are the Weakly Interacting Massive Particles (WIMPs) that

appear in supersymmetric extensions of the SM.

Other extensions of the SM predict particles that could lie hidden at the low energy

frontier, and could also be good candidates for the DM. The axion appearing as part

of the Peccei-Quinn mechanism solving the strong CP problem is the prototype of this

kind of particles. The fact that Supersymmetry has not yet been observed at the Large

Hadron Collider (LHC) at CERN and that no clear signal of WIMPs has appeared in Dark

Matter experiments (despite an enormous advance in sensitivity of these experiments in

the last decade) has increased the community’s interest for searching for axions. However

axions are independently and powerfully motivated, and a Dark Matter composed by

both WIMPs and axions is perfectly viable implying that they should not be considered

as alternative and exclusive solutions to the same problem.

The search for axions has been a relatively minor, but continuously growing, field of
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experimental particle physics since the axion hypothesis was first proposed in the late 70’s.

Recently the field is going through a transition. In this article I will briefly review the

theoretical motivation for axions, the latest advances in our understanding of their role in

Cosmology and some astrophysical scenarios. I will review the status of the experimental

searches for axions and finally I will focus on the International Axion Observatory (IAXO),

a recent initiative of larger scale that any previous axion experiment, that aims to explore

a large fraction of the still allowed parameter space for the axion.

2 The strong CP problem and axions

The recent discovery of the Higgs boson would complete the experimental confirmation

of the particle content of the very successful Standard Model (SM) of particle physics.

However, it is known that the SM is incomplete, as it does not explain some basic features

of our Universe, like e.g. the nature of DM and DE, or the matter-antimatter unbalance,

and does not provide satisfactory explanations for a number of features of the SM itself.

One of the latter is the so-called strong-CP problem, or why the strong interactions seem

not to violate the charge-parity (CP) symmetry [2]. Indeed, the lagrangian of Quantum

Chromodynamics (QCD) includes a CP-violating term:

Lθ̄ = θ̄
αs

8π
GµνaG̃µνa (1)

where G is the gluon field and G̃ its dual, and αs the strong coupling constant.

One of the experimental consequences of the term Lθ̄ would be the existence of electric

dipole moments (EDMs) for protons and neutrons. The non-observation of the neutron

EDM [3] puts a very strong limit on the magnitude of the θ̄ parameter in (1) of about

|θ̄| . 10−10. But the problem is more than the unexplained smallness of an arbitrary SM

parameter. The θ̄-angle is actually the sum of two contributions, which are in principle

unrelated. The first is the angle characterizing the QCD vacuum and the second is the

common phase of the matrix of SM quarks –coming from the Higgs Yukawa couplings

which are known to violate CP sizeably. Thus, the smallness of θ̄ requires that two

completely unrelated terms of the SM (from two different sectors) cancel each other with

a precision of at least 10−10. The strong CP problem constitutes a very serious fine-tuning

issue that remains unexplained in the SM.

The most convincing solution of the strong CP problem is the Peccei-Quinn (PQ)

mechanism, proposed in 1977 [4, 5]. It introduces a new U(1) global symmetry (the PQ

symmetry) that is spontaneously broken at a high scale fa. This implies the existence of

a new field a which appears as the pseudo-Nambu-Goldstone boson of the new symmetry.

The term Lθ̄ ends up absorbed in a new term of the type GµνG̃µνa/fa where a is now a

dynamical variable, which can relax to a CP-conserving minimum. This solves the fine-
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tuning problem dynamically, for any value of fa. The main observational consequence of

the PQ mechanism, as was first pointed out by Weinberg and Wilczek [6, 7], is that the

quantum excitations of this field –albeit very weakly coupled– are potentially observable

as new particles: axions.

The PQ mechanism fixes some of the properties of the axion [8, 9] like, e.g., its mass

ma, acquired via mixing with the pseudoscalar mesons,

ma ≃
mπfπ

f + a

√
mumd

mu +md

≃ 6 meV
109 GeV

fa

(2)

where mπ = 135 MeV is the pion mass, fπ ≈ 92 MeV the pion decay constant and mu,d

the light quark masses. This same mixing makes the axions interact with hadrons and

photons. All the axion couplings are suppressed by the PQ symmetry scale fa, which is

not determined by theory.

More concrete axion properties depend on the specific implementation of the PQ

symmetry in the SM. Originally fa was identified with the weak scale, but accelerator

data quickly ruled out this possibility constraining it to be higher than about 105 GeV.

If the fermions of the SM do not have PQ charge, axions do not couple with them at tree

level. These are called “hadronic axions”, of which the KSVZ [10, 11] model is an often

quoted example. Other models, like the DSFZ [12, 13], feature tree-level coupling with

SM fermions, e.g., the axion electron coupling gae.

The property of axions most relevant for experiment is the axion-two-photon coupling

gaγ

Laγ ≡ −
gaγ

4
aF µνF̃µν = gaγ E · B a , (3)

where F is the electromagnetic field-strength tensor and F̃ its dual, while E and B are

the electric and magnetic fields. The coupling gaγ can be expressed as

gaγ =
α

2πfa

Cγ ; Cγ ≡
E

N
−

2

3

4md +mu

md +mu

≃
E

N
− 1.92 (4)

where the loop factor α/2πfa reflects the fact that this is a coupling generated from

the electromagnetic anomaly. Cγ is a coefficient of order 1 with two contributions: a

model-independent one due to the axion mixing with pseudoscalar mesons and a model

dependent one E/N which arises if the PQ symmetry is not only colour-anomalous but

also has a non-zero electromagnetic anomaly (E and N are the electromagnetic and colour

anomalies of the PQ symmetry). In general, a broad range of values for E/N is possible,

depending on the axion model (e.g. for DFSZ E/N = 8/3 and Cγ ≃ 0.75, whereas for

KSVZ E/N = 0 and Cγ ≃ −1.92, if the new heavy quarks are taken without electric

charge).
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Because the axion-photon interaction is generic and because photons offer many ex-

perimental options, most axion search strategies are based on this interaction. Axions

mix with photons in the presence of external magnetic fields, leading to axion-photon

oscillations [14, 15], similar to the well known neutrino oscillations, and to changes in the

polarization state of photons propagating in a magnetic field [15, 16]. The aγγ coupling

also leads to the Primakoff conversion of plasma photons into axions within stellar cores,

the main axion emission channel of the Sun. The Primakoff conversion is also behind the

detection principle of axion helioscopes, haloscopes [14] as well as LSW experiments, as

discussed later on. The results of these searches are therefore represented in the param-

eter space (gaγ ,ma) that is shown in Fig. 1. Because gaγ and ma are linked for a specific

axion model (both are inversely proportional to fa), an axion model is represented by

a straight diagonal line in such plot (the green line in Fig. 1 correspond to the KSVZ

model). The overall spread of axion models resulting from the possible values of E/N in

(4) is represented by the width of the yellow band of Fig. 1.

In some particular implementations of the PQ mechanism, the axion may couple to

leptons at tree level. This is most importantly the case of models in which the SM

is embedded in a Grand Unified Theory, where colour and electroweak interactions are

unified in a larger non-abelian symmetry. The coupling to electrons can be written in two

forms, equivalent for our purposes,

Lae = Cae

∂µa

fa

ψ̄eγ
µγ5ψe ↔ gaeaψ̄eγ

5ψe (5)

where Cae is a coefficient of order 1 given by specifics of the model. The equivalent

Yukawa coupling is gae = Caeme/fa where me is the electron mass. For instance in

the DSFZ model [12, 13] Cae = 1
3
cos2 β where tan β is the ratio of the v.e.vs of the

two Higgses present in the theory. When Cae is zero at tree-level, a non-zero value

is generated by radiative corrections, but being loop-suppressed is typically irrelevant.

When the axion couples to electrons with Cae ∼ O(1), this coupling drives the most

efficient axion-production reactions in stars like the Sun, low-mass red giants and white

dwarf stars.

2.1 Main constraints on the axion properties

Since it was first proposed, the axion has been thoroughly studied for its implications

in astrophysics, cosmology and particle physics. The most relevant limits on its properties

have been drawn from astrophysical considerations [29]. The emission of axions from the

Sun is nowadays best constrained from the increase they imply in the solar neutrino flux

with respect to the standard one without axions [30]. The axion flux originated from

the Primakoff effect constrains the coupling gaγ <∼ 0.7 × 10−9 GeV−1 while the axio-

Bremsstrahlung in electron collisions (and other reactions involving electrons) constrains
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Figure 1.— Comprehensive axion/ALP parameter space, highlighting the three main

front lines of direct detection experiments: LSW experiments (ALPS [17]), helioscopes

and haloscopes. The blue line corresponds to the current helioscope limits, dominated

by CAST [18, 19, 20, 21] for practically all axion masses. Also shown are the constraints

from horizontal branch (HB) stars, and hot dark matter (HDM) and the ones from

searches of decay lines in telescopes [22, 23, 24]. The yellow “axion band” is defined

roughly by mafa ∼ mπfπ with a somewhat arbitrary width representing the range of

realistic axion models. The green line refers to the KSVZ model. The orange parts

of the band correspond to cosmologically interesting axion models: models in the

“classical axion window” possibly composing the totality of DM (labelled “CDM2”)

or a fraction of it (“CDM3”). The anthropic window (“CDM1”) corresponds to a

range unbound on the left and up to ∼1 meV. For more generic ALPs, practically all

the allowed space up to the red dash line may contain valid ALP CDM models [25].

The region of axion masses invoked in the WD cooling anomaly is shown by the blue

dash line. The region at low ma above the dashed grey line is the one invoked in

the context of the transparency of the universe [26] (note that it extends to masses

lower than the ones in the plot), while the solid brown region is excluded by HESS

data [27]. The labeled hatched region represents the expected sensitivity of IAXO in

the baseline helioscope configuration as explained in the text. Also future prospects

of ADMX (hatched brown region) and ALPS-II [28] (light blue line) are shown.
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gae < 2.5×10−11. The population of low-mass horizontal-branch (HB) stars and red-giants

(RG) in globular clusters gets decreased and increased respectively when axions are freely

emitted from their interiors. Fitting the observed population to numerical simulations

one derives the limits gaγ <∼ 10−10 GeV−1 (mostly from the impact on HBs) [29, 31] and

gae < 4.7 × 10−13 at 95% C.L. (from the tip of the RG branch in the cluster M5) [32].

A more recent and detailed revision of this result lowers the bound to gaγ <∼ 0.66 ×

10−10 GeV−1 [33]. However, at the same time, the data seem to slightly prefer some level

of axion emission. Recently, it has been argued that the Primakoff flux of axions from

gaγ > 0.8 × 10−10 GeV−1 will shorten so much the helium-burning phase (so called blue

loop) of massive stars that Cepheids could not be observed [34], and thus it is excluded.

Observations and theory of white dwarf cooling fit to the extent that they can exclude

values of the electron coupling gae > 3× 10−13 [35, 36, 37, 38]. However, some observable

such as the luminosity function and the period decrease of the variable ZZ Ceti star

G117-B15A seem to prefer some slight extra cooling.

Due to their coupling of protons and nucleons, axions can be efficiently emitted from

the core of a Type-II supernova shortening the neutrino pulse. From the observation

of the ∼10 s duration neutrino burst of SN1987A, which fits the expectations without

extra axion cooling, one can derive the limit to the axion-proton Yukawa-like coupling

gap . 10−9 [39]. In general one has gap = Capmp/fa. For hadronic axions Cap ∼ 0.4 and

thus fa > 4.8 × 108 GeV or, equivalently, ma < 16 meV. For DFSZ axions Cap tends

to be smaller and the constraints weaker, but not much because then the axion-neutron

coupling becomes relevant. Similar bounds for fa & 109 GeV arise from neutron star

cooling [40, 41]. These limits remain fairly rough estimates, due to the uncertainty in the

axion emission rate, supernova modeling and the observations.

Other astrophysical, cosmological and experimental bounds, some of them commented

on later, further constrain the allowed axion parameter space. However, not only have

these bounds not rejected the axion, but the motivation for the existence of axions, beyond

the strong CP problem, has grown on several fronts. The axion is a candidate for the dark

matter of the Universe, and several tantalizing hints in astrophysics could be the result of

axion-like particles at play. More recent theoretical advances are defining a more generic

category of light fundamental particles, the weakly interacting slim particles (WISPs),

of which the axion is the most outstanding prototype, appearing in other well-motivated

extensions of the SM, like string theory. After 35 years, the axion not only remains

associated with the the most compelling solution to the strong CP problem, but it is

recognized as one of the best motivated experimental portals to physics beyond the SM.
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3 The axion as a dark matter candidate

As mentioned in the introduction, the particle DM requires new fields beyond the SM.

A popular example is the “weakly interacting massive particle” (WIMP) typically appear-

ing in supersymmetric extensions of the SM, and actively searched for in underground

experiments. However, for the time being there is no hint of supersymmetry at the LHC

and also no clear signature for WIMPs in direct-detection experiments whose sensitivity

to the WIMP-nucleon cross-section has advanced by an amazing four orders of magnitude

over the last decade.

It has been known since the early 80s that the PQ mechanism provides a very com-

pelling scenario for relic axion production. As shown below, axions are just as attractive a

solution to the DM problem as WIMPs. Like the latter, they appear in extensions of the

SM that are independently motivated and also provide a valid DM candidate (i.e. they

are not conceived ad hoc for that purpose). Moreover, the possibility of a mixed WIMP-

axion DM is not only not excluded, but theoretically appealing [42, 43]. Conventionally,

both axion and WIMP cold DM are thought to behave identically at cosmological and as-

trophysical scales, so there is no hint from cosmology to prefer one or the other (or both).

However, although still speculative, some potentially discriminating signatures have been

proposed. It has been recently suggested [44] that cold axions form a Bose-Einstein con-

densate, and this would produce a peculiar structure in DM galactic halos (caustic rings)

for which some observational evidence seems to exist [45]. This fact would be applicable

to any WISP cold DM population, but not to WIMPs.

Relic axions can be produced thermally by collisions of particles in the primordial

plasma, just like WIMPs. However, being quite light particles, this axion population

contributes –like neutrinos– to the hot DM component. This production mechanism is

more important for larger ma. Cosmological observations constraining the amount of hot

DM, can be translated into an upper bound on the axion mass of ma <∼ 0.9 eV [46, 47].

Most interesting from the cosmological point of view is the non-thermal production of

axions: the vacuum-realignment mechanism and the decay of topological defects (axion

strings and domain-walls), both producing non-relativistic axions and therefore contribut-

ing to the cold DM [48, 49].

In the very early universe, when the temperature drops below ∼ fa, i.e. at the PQ

phase transition, the axion field appears in the theory and sets its initial value differently

in different causally-connected regions. Later, at the QCD phase transition, the axion po-

tential rises and only then does the axion acquire its mass ma. Then the axion field relaxes

to its CP conserving minimum, around which it oscillates with decreasing amplitude (thus

solving the strong CP problem dynamically). These oscillations represent a population of

non-relativistic axions, with a density that depends on the unknown initial value of the
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field before the start of the oscillations (initial misalignment angle θ0 ≡ a0/fa ∈ (−π, π)).

Moreover, because a/fa is an angle variable, discrete domains, differing in 2π naturally

form after QCD transition and at their borders topological defects, i.e., strings and walls,

form too. These defects soon decay radiating a large amount of non-relativistic axions

which add up to the realignment population. While the realignment population density is

relatively easily calculable (although dependent on the value of θ0), the population from

the decay of topological defects suffers from significant uncertainties.

In general, two main cosmological scenarios can be considered, depending on whether

inflation happens after (pre-inflation scenario) or before (post-inflation scenario) the PQ

phase transition (or if the PQ symmetry is restored by reheating after inflation). In

the pre-inflation case, the axion field is homogenized by inflation, the value of θ0 is thus

unique in all the observable Universe, and the topological defects are diluted away. In that

case the axion cold DM density is easily determined, as only the realignment mechanism

contributes to it. Expressed as the ratio of axion DM to the observed value ΩDM,obsh
2 =

0.111(6) is [50, 51]

Ωa

ΩDM,obs
∼ θ2

0F

(

fa

5 × 1011 GeV

)1.184

≃ θ2
0F

(

12µeV

ma

)1.184

. (6)

where F = F (θ0, fa) is a correction factor accounting for anharmonicities, the delay of

the oscillations when θ0 is large and any effects of non-standard cosmologies (the above

expression is computed assuming radiation domination during the QCD phase transition).

Contrary to thermal production, this mechanism leads to larger relic axion density for

lower ma. For typical values of θ0 ∼ O(1), ma should exceed ∼10 µeV to have a relic

axion density not exceeding the known CDM density. Much smaller masses could still

give the correct amount of DM if by some means θ0 is accidentally small, something that

could be justified for instance by anthropic reasons [52]. Axion masses up to ma ∼ meV

can still give the adequate relic density for large θ0.

In the post-inflation scenario, the value of θ0 is randomly distributed in different

causally-connected parts of the universe at the time of the PQ phase transition. One then

has to average the above result for θ0 ∈ (−π, π) and obtain a robust estimate of the DM

contribution due to vacuum-realignment:

Ωa,VR

ΩDM,obs
∼

(

40µeV

ma

)1.184

. (7)

However, in this case the contribution of axion strings and domain-wall decays to axion

DM must be taken into account, but its computation is rather uncertain and a matter of

a longstanding debate. Some authors argue that the contribution is of the same order as

Ωa,VR [53], while others [49, 54] find it considerably larger:
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Ωa,string+wall

ΩDM,obs
∼

(

400µeV

ma

)1.184

(8)

In any case, axions could easily account for the totality of cold DM needed by current

cosmological models. A prediction of the axion mass leading to this situation is not

possible with precision due to the above uncertainties, but it is clear that this can happen

for a wide range of feasible axion models well beyond current limits. The “classic axion

window” [49], ma ∼ 10−5 − 10−3 eV, associated with the post-inflation scenario above, is

often quoted as the preferred ma range for axion cold DM, although much lower masses

are still possible in the fine-tuned models of the pre-inflation scenario, sometimes also

called “anthropic axion window” [55, 56].

Recently, the BICEP2 experiment announced the detection of primordial gravitational

waves in the CMB [57]. If true, this would point to a very high energy scale for inflation.

If PQ transition had happened before that scale, the axion field would have imprinted

isocurvature perturbations in the CMB which are not observed. The BICEP2 observation

and interpretation have been questioned and independent experimental confirmation is

needed. If confirmed, the pre-inflation scenario for the axion DM would be ruled out,

and the mass of the axion would be constrained to values above ∼ 10−5 eV. QCD axions

with masses above the classic window can still solve the DM problem if non-standard

cosmological scenarios are invoked [58], or they can be a subdominant DM component.

Mixed axion-WIMP DM is a possibility that may even be theoretically appealing [42, 43].

Moreover, axions are not the only WISPs allowing for a solution to the dark matter

question. The nonthermal production mechanisms attributed to axions are indeed generic

to bosonic WISPs such as axion-like particles or hidden photons (see next section). As

recently shown [25], a wide range of gaγ −ma space can generically contain models with

adequate DM density.

To summarize, axions are as attractive a solution to the DM problem as WIMPs. In

the current situation, with no hint from supersymmetry at the LHC and without a clear

signature in WIMP direct-detection experiments, the hypothesis of axion DM stands out

as increasingly interesting and deserves serious attention. The cosmological implications

of the axion are well founded and represent a powerful motivation to push experimental

searches well beyond current limits.

4 Other axion-like particles (ALPs)

Although the axion is the best motivated and most studied prototype, a whole cate-

gory of particles called axion-like particles (ALPs) or, more generically, weakly interacting

sub-eV particles, WISPs, are often invoked in several scenarios, both theoretically and

observationally motivated, at the low energy frontier of particle physics [59]. Not neces-
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sarily related to the axion, ALPs share part of its phenomenology, and therefore would be

searchable by similar experiments. ALPs are light (pseudo)scalar particles that weakly

couple to two photons, but not to two gluons like the axion [60, 61]. As such, the ALPs

parameters gaγ and ma are now to be viewed as completely independent, and the full

parameter space of Fig. 1 is potentially populated by ALPs (not constrained to the yellow

band as the axion models are).

ALPs can appear in extensions of the SM as pseudo Nambu-Goldstone bosons of new

symmetries broken at high energy. Moreover, it is now known that string theory also

predicts a rich spectrum of ALPs (including the axion itself) [62, 63, 64]. Remarkably,

the region of the ALP parameter space at reach for future experiments is theoretically

favoured as they correspond to string scales contributing to the natural explanation of

several hierarchy problems in the SM. It is intriguing that the possible detection of ALPs

could become key to the much sought experimental test of string theory.

Beyond ALPs, other important examples of WISPs are hidden photons and minicharged

particles [65, 66, 67]. They appear in extensions of the SM including hidden sectors,

i.e., sectors that interact with SM particles through the interchange of very heavy parti-

cles (e.g., a hidden sector is commonly employed for supersymmetry breaking). Hidden

photons have kinetic mixing with normal photons, and therefore show a phenomenol-

ogy similar to axion-photon oscillations (but this time without the external magnetic

field), leading to the dissapearance and regeneration of photons as they propagate in

vacuum [66]. Minicharged particles are particles with fractional electric charge, arising

naturally in theories with hidden sectors.

As previously mentioned, under some circumstances, WISPs can also provide the right

DM density. The nonthermal production mechanisms described in the previous sections

are indeed generic to other bosonic WISPs such as ALPs or hidden photons. This WISPy

DM has recently been studied [25], and in both cases a wide range of parameter space

(in the case of ALPs gaγ–ma space) can generically contain models with adequate DM

density, part of it at reach of current or future experiments.

It is remarkable that light scalars are also invoked in attempts to find a particle

physics interpretation of Dark Energy, the so-called “quintessence” fields. This possibil-

ity is very much constrained from the non observation of new long-range forces, unless

more sophisticated mechanisms are implemented, mechanisms that lead sometimes to

ALP phenomenology [68]. More recently, fields with an environment-dependent mass or

couplings, chameleons [69] or galileons, are being studied in this same context. Despite

the early stage of development of these concepts, the possibility that detection techniques

originally conceived to search for axions or ALPs could evolve into the first particle physics

experiments directly testing Dark Energy is truly exciting.

All these families of models compose together a growing field of theoretical research.
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It is now acknowledged that, complementary to the conventional research performed at

colliders of increasing energy (the high energy frontier), new physics can be hidden at

very low energies too (the intensity frontier) for which different experimental tools, based

rather on high precision and high source intensity, are required.

5 Astrophysical hints for axions and ALPs

The existence of axions or ALPs may have important consequences for some astro-

physical phenomena. Since the early days of axions, well understood stellar physics has

been used to constrain axion couplings [29] and derive limits, the most relevant of which

have been presented previously. More intriguing are the cases where unexplained as-

trophysical observations may indicate the effects of an ALP. These situations must be

treated with caution because usually an alternative explanation using standard physics or

an uncontrolled systematic effect cannot be ruled out. At the same time, such models can

further strengthen the physics case for exploring favored regions of parameter space, when

other motivations already exist. Two such cases can be considered specially relevant: the

excessive transparency of the intergalactic medium to very high energy (VHE) photons,

and the anomalous cooling rate of white dwarfs.

VHE photons (i.e., with energies & 100 GeV) have a non-negligible probability to

interact via e+e− pair production with the background photons permeating the Universe –

the extragalactic background light (EBL) – when long intergalactic distances are involved.

That is, the Universe should be opaque to distant VHE emitters like active galactic nuclei

(AGN). EBL density is measured by its imprint in blazar spectra by both HESS[70]

and Fermi [71], and found in agreement with models. However, several independent

observations seem to indicate that the degree of transparency of the Universe at VHE is

too high, even for the lowest density EBL models developed [72, 73]. Current imaging

atmospheric Cherenkov telescopes (both HESS [74] and MAGIC [75, 76]) have reported

the observation of VHE photons with arrival directions clearly correlated with AGNs, some

of them as distant as a ∼Gpc, with spectra that require either a too low density EBL,

or anomalously hard spectra at origin. Alternatively, these photons could be secondaries

produced in electromagnetic cascades [77], but this is in conflict with the sometimes fast

time-variability of these sources [26]. Independent additional evidence might come from

the observation of ultra high energy cosmic rays (UHECR) of energies E > 1018 GeV

correlated with very distant blazars [78, 79].

These observations could be easily explained by scenarios invoking photon-ALP oscilla-

tions triggered by intervening cosmic magnetic fields. These fields can be the intergalactic

magnetic field, or the local magnetic fields at origin (at the AGN itself, or in the case of

objects belonging to galactic clusters, the cluster magnetic field) and in the Milky Way.
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Thus, the ALP component can travel unimpeded through the intergalactic medium, and

as a result the effective mean free path of the photon increases. Several authors have in-

voked one of these scenarios [80, 81, 82, 83, 84, 85, 73, 26] to account for the unexplained

observations. For some of these cases, approximate required ALP parameters gaγ and ma

are drawn. Interestingly, most of them coincide roughly in requiring very small ALP mass

ma . 10−(10−7) eV (to maintain coherence over sufficiently large magnetic lengths) and a

gaγ coupling in the ballpark of gaγ ∼ 10−12–10−10 GeV−1. A more definite region -shown

in Fig. 1- is extracted in [26] from a large sample of VHE gamma-ray spectra. Note that it

extends to lower ma values than the ones shown on the plot. Although these parameters

are far from the standard QCD axions, as more generic ALP models they lie just beyond

the best current experimental limits on gaγ from CAST (see next section). As commented

later on (and shown in Fig. 1) most of this region could be explored by IAXO.

The random character of astrophysical magnetic fields produces a particular scattering

of the photon arrival probability that complicates the test of the ALP hypothesis [86]. In

turn, this randomness can be used to constraints the ALP parameters, as it should imprint

irregularities in high-energy source spectra [87]. This effect is used by the HESS collabo-

ration with blazar observations to exclude couplings of the order of a few 10−11 GeV−1 for

masses of 10−8 − 10−7 eV (1), as shown in Fig. 1. The same method is used with X-ray

data from the Hydra galaxy cluster [88] constraining gaγ < 8 × 10−12 GeV−1 for ALP

masses < 10−11 eV. Still in the X-ray band, some luminosity relations of active galactic

nuclei were recently shown to have precisely this particular scatter [89] although this claim

is still controversial [90]. Finally, photon-ALP mixing is polarization dependent, a fact

that could explain long-distance correlations of quasar polarization [91] and offers further

testing opportunities [92]. This possibility is nonetheless challenged by the absence of

significant circular polarisation [93].

A different astrophysical scenario for which axion-related hypothesis have been invoked

are the interior of white dwarf (WD) stars. The evolution of these objects follows just

a gravothermal process of cooling, therefore their luminosity function (number of stars

per luminosity interval) is predicted with accuracy by stellar models. The presence of

extra cooling via axion emission speeds up the cooling thus suppressing the luminosity

function at certain values of the WD luminosity. This is most relevant for non-hadronic

axions with coupling to electrons gae, because axio-bremstrahlung would be very efficient

in WDs. These arguments constrain gae < 3×10−13 [35] and they have been cross-checked

and improved over the years [36, 37, 38, 94]. However, recent works are based on such a

well populated luminosity function and well-studied WD cooling models that are able to

claim that a small amount of axion energy loss is actually favored by data [36, 37]. This

claim corresponds to gae ∼ 1−2×10−13. Further evidence for extra cooling in WDs comes

from independent observations. The period decrease of certain pulsating WDs provides
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a direct measurement of their cooling and thus can be used to assess the necessity of

non-standard cooling mechanisms. Two pulsating WDs have been studied and shown a

preference for axion cooling: the ZZ Ceti star G117-B15A [95] and R548 [96]. Both fit

better the expectations for gae ≃ 5+1.2
−1.6 × 10−13 and gae ≃ 5+1.7

−4.9 × 10−13, respectively (2σ

intervals quoted). Given the scatter of the preferred values of gae, the tension with other

limits and the possibility of unaccounted systematics or forgotten standard effects it is

certainly premature to conclude the existence of axion energy loss in WDs. However, it

is intriguing that all theses observables seem to improve with some extra cooling, which

could be attributed to axions (or any pseudoscalar with coupling to electrons) with gae ∼

1 − 5 × 10−13.

These gae values imply axion decay constants in the range fa ∈ (2−5) × Cae109 GeV,

corresponding to an axion mass ma ∈ (1−4) meV/Cae. For DSFZ axions Cae < 1/3

and this value corresponds to axion masses ma > 3 meV (see “WD cooling hint” in

Fig. 1). As shown later, IAXO may reach sensitivity to these models through the direct

observation of solar axions from gae-reactions. Finally, generic ALPs appearing in field

and string theory extensions of the SM can just, as DFSZ axions, feature a coupling of

electrons and photons. In this context, the WD favored region is sometimes expressed

as a gaγ range [97] of typically gALP
aγ ∼ (CALP

γ /CALP
e )2 × 10−13 GeV−1, where the model

dependence CALP
γ /CALP

e can be significant.

Once more, although alternative explanations for these observations cannot be ruled

out, it is intriguing that they together point to relatively well defined axion parameters,

that are compatible with feasible QCD axion parameters, and that are not excluded by

previous bounds. Moreover, axions at the meV scale are very close to the DM favoured

window (see previous section), have interesting phenomenological implications [98] and

constitute a region especially difficult to explore experimentally. As shown later, IAXO

constitutes probably the only realistic experimental technique able to explore (part of)

these models.

6 Searches for axions

In spite of their weak interactions, axions could be directly detected in a number of

realistic experimental scenarios. Three main categories of experimental approaches can

be distinguished depending on the source of axions employed: haloscopes look for the

relic axions potentially composing our dark matter galactic halo, helioscopes look for

axions potentially emitted at the core of the sun, and light-shining-through-wall (LSW)

experiments look for axion-related phenomena generated entirely in the laboratory. All

three strategies invoke the generic axion-photon interaction, and thus rely on the use of

powerful magnetic fields to trigger the conversion of the axions into photons that can be
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subsequently detected.

Haloscopes [14] use high-Q microwave cavities inside a magnetic field to detect photons

from the conversion of relic axions. Being non relativistic, these axions convert into

monochromatic photons of energy equal to ma. For a cavity resonant frequency matching

ma, the conversion is substantially enhanced. The cavity must therefore be tunable and

the data taking is performed by scanning very thin ma-slices of parameter space. The

experimental implementation of this idea was pioneered in Brookhaven [99, 100], and

later on continued by the CARRACK [101] and ADMX collaborations. As shown in

Fig. 1, only ADMX [102, 103], have reached sensitivities in gaγ enough to probe QCD

axion models for ma in the 2 − 3 µeV range, under the assumption that axions are the

main cold DM component. ADMX is carrying out an active program [104] to improve

the background noise of the present experiment, as well as to extend the sensitivity to

higher masses (the ADMX-HF setup). In the light of the considerations exposed above,

it turns out that current haloscope efforts are focused in the low mass part of the region

motivated by cosmology. To apply the haloscope technique to higher axion masses is

problematic for a number of reasons. First of all, given that the cavity must resonate at the

axion mass, higher masses imply the use of smaller cavities, and therefore lower expected

signals. Moreover, smaller cavities usually have poorer quality factors, and the noise

figure of the microwave sensors usually increase with frequency. New ideas are recently

being put forward to overcome these problems and access the very motivated region of

ma ∼ 10−5−10−3 eV. Not exhaustively, they invoke the use of long thin cavities [105, 106]

(waveguides or tubes), resonators with a specific dielectric or wire structure to make them

resonate to higher frequencies, active resonators, among others1. A significant departure

from the original haloscope idea is the dish antenna concept [107, 108], proposing to use

a spherical dish in a magnetic field to convert the DM axions into photons and and focus

them into a single spot. This concept trades off the resonant enhancement of cavities for

the potentially large area of a dish antenna.

A different type of relic axion search strategy has been recently proposed (the so-

called CASPEr experiment [109]), aiming at detecting the precession of nuclear spin in a

material sample that, in the presence of an electric field, should appear by virtue of the

time varying nuclear moment induced by the interaction with the background axion DM.

Using precision magnetometry this effect should be detectable if the axion has very low

masses ma . 10−9 eV (potentially improvable to ma . 10−6 eV).

Helioscopes [14] look for axions emitted by the Sun, and therefore do not rely on

the assumption of axions being the DM. Axion emission by the solar core is a robust

prediction involving well known solar physics and the Primakoff conversion of plasma

1For a display of recent ideas see talks at the last Patras Workshop on Axions, WIMPs and WISPs.

http://axion-wimp2014.desy.de/

52



photons into axions. Solar axions have ∼keV energies and in strong laboratory magnetic

fields can convert back into detectable x-ray photons. Contrary to haloscopes, the signal

in helioscopes is independent on the axion mass up to relatively large values (e.g. 0.02

eV for CAST). Using the technique of the buffer gas [110] the sensitivity can be further

extended to masses up to ∼eV [19, 20, 21]. The technique of the axion helioscope was

first experimentally applied in Brookhaven [111] and later on by the SUMICO helioscope

at Tokyo University [112, 113]. Currently, the same basic concept is being used by the

CERN Axion Solar Telescope (CAST experiment) [114, 115, 19, 20, 21] with some original

additions that provide a considerable step forward in sensitivity. Its latest results, shown

in Fig. 1, have surpassed the astrophysical limit gaγ ∼ 10−10 GeV−1 in a wide ma range.

This means that for the highest mass values, close to the ∼1 eV, the sensitivity allows

tests of some QCD axion models. Together with haloscopes, helioscopes are the only

experimental technique with sensitivity to explore realistic QCD axion models. These two

techniques are complementary, exploring the lower- (with haloscopes) and the higher-mass

(with helioscopes) regions of the axion phase space not yet searched nor excluded. An

advantage of helioscopes is that there is a clear scaling strategy to substantially push the

present sensitivity frontline to lower values of gaγ and ma, a strategy that is implemented

in the IAXO proposal, in which I focus below.

It is worth mentioning that a similar helioscope-like scheme can be invoked in solid

crystalline detectors, and used to detect solar axions. In this case, the local conversion into

photons is triggered by the periodic electromagnetic field of the crystal [116, 117, 118],

giving rise to very characteristic Bragg patterns that have been searched for as by-products

of a number of underground WIMP experiments [119, 120, 121, 122, 123]. However,

the prospects of this technique have proven limited [124, 125] and do not compete with

dedicated helioscope experiments.

LSW [126] experiments use high intensity light sources (e.g., lasers) and strong mag-

netic fields to produce ALPs in the laboratory. These ALPs can reconvert back into

detectable photons after an opaque wall. This technique therefore does not rely on any

astrophysical or cosmological assumption for the ALPs. A number of experiments have

already used this technique to search for ALPs, with a sensitivity, however, still a few

orders of magnitude behind helioscopes (see the ALPS limit in Fig. 1 from [17]). The

prospects for future scaled-up setups [127], in particular ALPS-II [128], could surpass

current helioscope limits for low ma values and reach some unexplored ALP parameter

space, although in any case, still without enough sensitivity to reach the QCD axion band.

All the searches mentioned up to now rely solely on the axion-photon phenomenology

and therefore can be represented in the ALP parameter space of Fig. 1. Other small

scale searches have been performed with a less generic scope, sometimes as by-products of

other experiments. They are relevant for specific subsets of axion or WISP models. For

53



example, axions have been searched for via more specific phenomenology (e.g. through

the axioelectric effect [129, 130, 131, 132], or axion-emitting nuclear transitions [133, 134,

135, 136, 137, 138], among others). Specific non-axion WISPs have been (or are being)

searched for in dedicated setups (e.g. hidden photons [139, 140]) or as by-products of

axion and ALPs searches (e.g. chameleons [141]) or WIMP searches (e.g. [142]). For an

updated review of all initiatives going on, I refer to the community documents prepared

in recent roadmapping events, both in US [97, 143] and Europe [144, 145].

Below I will focus on the helioscope frontier. I will argue that the decade-long operation

of CAST has not only led to one of the most competitive set of bounds on the axion and

ALPs, but also to the establishment of a relevant community and the specific operational

experience required to design a scaled-up version (forth generation) of the axion helioscope

concept. IAXO is based on these ideas and aims to substantially push the helioscope

envelope well into unexplored regions of the axion and ALP parameter space motivated

by the arguments detailed in the previous section.

6.1 Solar axions and the axion helioscope frontier

Axions can be produced in the solar interior by a number of reactions. The most rel-

evant channel is the Primakoff conversion of plasma photons into axions in the Coulomb

field of charged particles via the generic aγγ vertex. The Primakoff solar axion flux, shown

on the left of Fig. 2 peaks at 4.2 keV and exponentially decreases for higher energies. This

spectral shape is a robust prediction depending only on well known solar physics, while

the only unknown axion parameter is gaγ and enters the flux as an overall multiplicative

factor ∝ g2
aγ . For the particular case of non-hadronic axions having tree-level interac-

tions with electrons, other productions channels (e.g., brehmstrahlung, compton or axion

recombination) should be taken into account, as their contribution can be greater than

that of the Primakoff mechanism. The calculation of these channels have been recently

updated [146] and the corresponding solar spectrum is shown on the right of Fig. 2. How-

ever, the usual procedure in helioscopes considers only the Primakoff component because:

1) it maintains the broadest generality and covers a larger fraction of ALPs and 2) astro-

physical limits on gae are quite restrictive and largely disfavour the values that could be

reached by helioscopes looking at the non-hadronic solar axion flux. With IAXO, it will

be possible for the first time to supersede even astrophysical limits on gae, opening the

possibility to probe an interesting set of models of non-hadronic axions.

By means again of the aγγ vertex, solar axions can be efficiently converted back

into photons in the presence of an electromagnetic field. The energy of the reconverted

photon is equal to the incoming axion, so a flux of detectable x-rays of few keV energies

is expected. The probability that an axion going through the transverse magnetic field B
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Figure 2.— Solar axion flux spectra at Earth by different production mechanisms. On

the left, the most generic situation in which only the Primakoff conversion of plasma

photons into axions is assumed. On the right the spectrum originating from processes

involving electrons, bremsstrahlung, Compton and axio-recombination [146, 147]. The

illustrative values of the coupling constants chosen are gaγ = 10−12 GeV−1 and gae =

10−13. Plots from [148].

over a length L will convert to a photon is given by [14, 115, 18]:

Paγ = 2.6 × 10−17

(

B

10 T

)2 (

L

10 m

)2
(

gaγ × 1010 GeV
)2

F

where the form factor F accounts for the coherence of the process:

F =
2(1 − cos qL)

(qL)2
(9)

and q is the momentum transfer. The fact that the axion is not massless, puts the axion

and photon waves out of phase after a certain length. The coherence is preserved (F ≃ 1)

as long as qL≪ 1, which for solar axion energies and a magnet length of ∼10 m happens

at axion masses up to ∼ 10−2 eV, while for higher masses F begins to decrease, and so

does the sensitivity of the experiment. To mitigate the loss of coherence, a buffer gas

can be introduced into the magnet beam pipes [110, 19] to impart an effective mass to

the photons mγ = ωp (where ωp is the plasma frequency of the gas, ω2
p = 4παne/me).

For axion masses that match the photon mass, q = 0 and the coherence is restored. By

changing the pressure of the gas inside the pipe in a controlled manner, the photon mass

can be systematically increased and the sensitivity of the experiment can be extended to

higher axion masses.

The basic layout of an axion helioscope thus requires a powerful magnet coupled to

one or more x-ray detectors. When the magnet is aligned with the Sun, an excess of x-rays
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at the exit of the magnet is expected, over the background measured at non-alignment

periods. This detection concept was first experimentally realized at Brookhaven National

Laboratory (BNL) in 1992. A stationary dipole magnet with a field of B = 2.2 T and a

length of L = 1.8 m was oriented towards the setting Sun [111]. The experiment derived

an upper limit on gaγ (99% CL) < 3.6× 10−9 GeV−1 for ma < 0.03 eV. At the University

of Tokyo, a second-generation experiment was built: the SUMICO axion heliscope. Not

only did this experiment implement a dynamic tracking of the Sun but it also used a more

powerful magnet (B = 4 T, L = 2.3 m) than the BNL predecessor. The bore, located

between the two coils of the magnet, was evacuated and higher-performance detectors

were installed [149, 112, 113]. This new setup resulted in an improved upper limit in

the mass range up to 0.03 eV of gaγ(95% CL) < 6.0 × 10−10 GeV−1. Later experimental

improvements included the additional use of a buffer gas to enhance sensitivity to higher-

mass axions.

A third-generation experiment, the CERN Axion Solar Telescope (CAST), began data

collection in 2003. The experiment uses a Large Hadron Collider (LHC) dipole prototype

magnet with a magnetic field of up to 9 T over a length of 9.3 m [114]. CAST is able

to follow the Sun for several hours per day using a sophisticated elevation and azimuth

drive. This CERN experiment is the first helioscope to employ x-ray focusing optics for

one of its four detector lines [150], as well as low background techniques from detectors

in underground laboratories [151]. During its observational program from 2003 to 2011,

CAST operated first with the magnet bores in vacuum (2003–2004) to probe masses ma <

0.02 eV. No significant signal above background was observed. Thus, an upper limit on the

axion-to-photon coupling of gaγ (95% CL) < 8.8 × 10−11 GeV−1 was obtained [115, 18].

The experiment was then upgraded to be operated with 4He (2005–2006) and 3He gas

(2008–2011) to obtain continuous, high sensitivity up to an axion mass of ma = 1.17

eV. Data released up to now provide an average limit of gaγ (95% CL) . 2.3 × 10−10

GeV−1, for the higher mass range of 0.02 eV < ma < 0.64 eV [19, 20] and of about

gaγ (95% CL) . 3.3×10−10 GeV−1 for 0.64 eV < ma < 1.17 eV [21], with the exact value

depending on the pressure setting.

So far each subsequent generation of axion helioscopes has resulted in an improvement

in sensitivity to the axion-photon coupling constant of about a factor 6 over its prede-

cessors. CAST has been the first axion helioscope to surpass the stringent limits from

astrophysics gaγ . 10−10 GeV−1 over a large mass range and to probe previously unex-

plored ALP parameter space. As shown in Fig. 1, in the region of higher axion masses

(ma & 0.1 eV), the experiment has entered the band of QCD axion models for the first

time and excluded KSVZ axions of specific mass values. CAST is the largest collaboration

in axion physics with ∼ 70 physicists from about 16 different institutions in Europe and

the USA, and one of the first astroparticle experiments at CERN. CAST has demonstrated
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Figure 3.— Conceptual arrangement of an enhanced axion helioscope with x-ray focal-

ization. Solar axions are converted into photons by the transverse magnetic field inside

the bore of a powerful magnet. The resulting quasi-parallel beam of photons of cross

sectional area A is concentrated by an appropriate x-ray optics onto a small spot area

a in a low background detector. The envisaged design for IAXO, shown in Figure 4,

includes eight such magnet bores, with their respective optics and detectors.

that the helioscope is the most technologically mature technique for axion detection and

that is ready to be scaled-up in size. A further, substantial step beyond the current

state-of-the-art represented by CAST is possible [152] with a new fourth-generation axion

helioscope as the proposed International Axion Observatory (IAXO).

7 The International Axion Observatory (IAXO)

All axion helioscopes to date have made use of “recycled” magnets that were originally

built for other experimental purposes. The CAST success has relied, to a large extent,

on the availability of the first-class LHC test magnet. Going substantially beyond CAST

sensitivity is possible only by going to a new magnet, designed and built maximizing the

helioscope magnet’s figure of merit fM = B2 L2 A, where B, L and A are the magnet’s

field strength, length and cross sectional area, respectively. fM is defined proportional to

the photon signal from converted axions. Improving CAST fM can only be achieved [152]

by a completely different magnet configuration with a much larger magnet aperture A,

which in the case of the CAST magnet is only 3 × 10−3 m2. However, for this figure of

merit to directly translate into signal-to-noise ratio of the overall experiment, the entire

cross sectional area of the magnet must be equipped with x-ray focusing optics. The

layout of this enhanced axion helioscope, sketched in Figure 3, was proposed in [152] as

the basis for IAXO.

Thus the central component of IAXO is a new superconducting magnet. Contrary
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Figure 4.— Schematic view of IAXO. Shown are the cryostat, eight telescopes, the

flexible lines guiding services into the magnet, cryogenics and powering services units,

inclination system and the rotating platform for horizontal movement. The dimensions

of the system can be appreciated by a comparison to the human figure positioned by

the rotating table [156].

to previous helioscopes, IAXO’s magnet will follow a toroidal configuration [153], to ef-

ficiently produce an intense magnetic field over a large volume. Dimensions are fixed by

maximizing the figure of merit within realistic limits of the different technologies in play.

This consideration leads to a 25 m long and 5.2 m diameter toroid assembled from 8 coils,

and generating effectively 2.5 tesla in 8 bores of 600 mm diameter. This represents a 300

times better fM than CAST magnet. The toroid’s stored energy is 500 MJ. The design is

inspired by the ATLAS barrel and end-cap toroids[154, 155], the largest superconducting

toroids built and presently in operation at CERN. The superconductor used is a NbTi/Cu

based Rutherford cable co-extruded with Aluminum, a successful technology common to

most modern detector magnets. Figure 1 shows the conceptual design of the overall in-

frastructure [156]. IAXO needs to track the Sun for the longest possible period. For the

rotation around the two axes to happen, the 250 tons magnet is supported at the centre

of mass by a system also used for very large telescopes. The necessary magnet services

for vacuum, helium supply, current and controls are rotating along with the magnet.

Another area for improvement will be the x-ray optics. Although CAST has proven

the concept, only one of the four CAST magnet bores is equipped with optics. Each of
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the eight IAXO magnet bores will be equipped with x-ray focusing optics that rely on

x-ray reflection on surfaces at grazing angles. By working at shallow incident angles, it is

possible to make mirrors with high reflectivity. Here the challenge is not so much achiev-

ing exquisite focusing or near-unity reflectivity, but the availability of cost-effective x-ray

optics of the required size. For nearly 50 years, the x-ray astronomy and astrophysics

community has been building telescopes following the design principle of Hans Wolter,

employing two conic-shaped mirrors to provide true-imaging optics. This class of optics

allows “nesting”, that is, placing concentric co-focal x-ray mirrors inside one another to

achieve high throughput. The IAXO collaboration envisions using optics similar to those

used on NASA’s NuSTAR [157], an x-ray astrophysics satellite with two focusing tele-

scopes that operate in the 3 - 79 keV band. The NuSTAR’s optics, shown in Figure 5,

consists of thousands of thermally-formed glass substrates deposited with multilayer coat-

ings to enhance the reflectivity above 10 keV (figure 2). For IAXO, the multilayer coatings

will be designed to match the solar axion spectrum [158].

At the focal plane in each of the optics, IAXO will have small gaseous chambers

read by pixelised planes of Micromegas. CAST has enjoyed the sustained develop-

ment of its detectors towards lower backgrounds during its lifetime. The latest gener-

ation of Micromegas detectors in CAST are achieving backgrounds below ∼10−6 counts

keV−1 cm−2 s−1 [159, 160]. This value is already a factor of more than 100 better than

the background levels obtained during the first data-taking periods of CAST. Prospects

for reducing this level to 10−7 counts keV−1 cm−2 s−1 or even lower appear feasible af-

ter the active R&D going on, in particular that being carried out at the University of

Zaragoza, under the T-REX ERC-funded project [161, 162, 163, 164]. As part of this

work, a replica of the CAST Micromegas detectors is taking data in an underground test

bench at the Laboratorio Subterráneo de Canfranc, already reaching a background level

of ∼10−7 counts keV−1 cm−2 s−1 [159]. These background levels are achieved by the

use of radiopure detector components, appropriate shielding, and offline discrimination-

algorithms on the 3D event topology in the gas registered by the pixelised readout.

The components described so far compose the baseline configuration of IAXO as an

enhanced axion helioscope. Beyond this baseline, additional enhancements are being con-

sidered to explore extensions of the physics case for IAXO. For some of the additional

physics cases of IAXO, lowering the theshold well below 1 keV is interesting. For this rea-

son other types of x-ray detection technologies are also under consideration, like GridPix

detectors, Transition Edge Sensors (TES) or low noise CCDs to be placed at the optics

focal points. Beyond that, because a high magnetic field in a large volume is an essen-

tial component in any axion experiment, IAXO could evolve to a generic “axion facility”

and host different detection techniques. The most relevant of these possibilities, at the

moment actively explored, is to use microwave cavities and antennas to search for dark-
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matter axions. Some of the developments being carried out in the community (briefly

mentioned above in section 6) could profit from the availability of the large magnetic

field of IAXO, and reach sensitivity to axions in mass ranges complementary to those in

previous searches.

The IAXO collaboration has recently finished the conceptual design of the experi-

ment [156], and last year a Letter of Intent [148] was submitted to the SPS and PS ex-

periments Committee (SPSC) of CERN. The committee acknowledged the physics goals

of IAXO and recommended proceeding with the next stage, the creation of the technical

design report (TDR), a necessary step before facing construction. As part of the TDR,

prototyping activities are foreseen, including magnet (the construction and test of a sin-

gle shorter superconducting coil), optics and detector aspects. At the same moment of

preparation of this review, a “IAXO optics+detector pathfinder system” has just been as-

sembled in CAST at CERN. It consist of a small x-ray optics (of CAST bore dimensions)

coupled to a low-background Micromegas detector. This is the first time that the two

techniques pioneered by CAST –x-ray focusing and low background detectors–, previously

used in different lines of the experiment, are now coupled together in the same line. It

is also the first time that an x-ray optics is manufactured specifically for axion physics.

This system will tests the two technologies proposed for IAXO coupled together. The

first data is already being taken: the experience with this system will be precious for the

preparation of IAXO.

8 Physics potential of IAXO

The sensitivity regions in the (gaγ , ma)−plane have been computed from the standard

channel of Primakoff solar axions [148]. Figure 1 shows the attainable region in the wider

context of axion searches and motivated regions. Figure 6 focuses on the high mass region.

Figure 5.— Left: two lead- and copper-shielded, ultra-low background Micromegas

x-ray detectors currently in use at CAST. Right: the NuSTAR x-ray telescope, with

optics very similar to that proposed for IAXO.
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The sensitivity is calculated assuming realistic experimental parameters (see [148] for

details), and two 3-year data taking periods, the first with vacuum in the magnet bores

and the second one with variable-pressure gas. The first period determines the sensitivity

of IAXO for axion masses below ma . 0.01 eV, while the second one above that value.

The range of densities used (number of gas density steps) will determine how far in ma

to go. The current sensitivity curves are calculated assuming that the gas density is

continuously changed from 0 to 1 bar of 4He at room temperature. This program would

allow IAXO to reach an axion mass of 0.25 eV. The shape of the sensitivity region in

the range ma ∼0.01−0.25 eV depends on the actual distribution of the exposure time in

density, which is for now assumed flat, i.e. equal time is spent at each gas density. This

distribution may be redefined in the future according to the evolution of bounds on the

axion mass or other eventual results/interest favouring a particular ma value or range.

As seen, IAXO will be a factor of ∼ 15−20 more sensitive than CAST in terms of the

axion-photon coupling constant gaγ , which translates in about 5 orders of magnitude

more sensitive in terms of signal intensity. That is, IAXO could be sensitive to gaγ

values as low as, or even surpassing,

gaγ ∼ 5 × 10−12 GeV−1 (10)

for a wide range of axion masses up to about 0.01 eV and around gaγ ∼10−11 GeV−1 up

to about 0.25 eV.

While CAST was the first experimental search reaching, and slightly surpassing, the

limit gaγ . 10−10 GeV −1 in this mass range, and therefore started probing ALP parameter

space allowed by astrophysics, IAXO will deeply enter into completely unexplored ALP

and axion parameter space, as indicated by Fig. 1. At a minimum, IAXO will exclude a

large region of the QCD axion phase space that has yet to be explored. If IAXO does

discover a new pseudoscalar fundamental, it would be a groundbreaking result for particle

physics.

Fig. 6 focuses on the sensitivity for the high mass region ma > 1 meV. At these masses

this experiment would explore a broad range of realistic axion models that accompany

the Peccei-Quinn solution of the strong CP problem. Its sensitivity would cover axion

models with masses down to the few meV range, superseding the SN 1987A energy loss

limits on the axion mass. Axion models in this region are of high cosmological interest.

As explained in previous sections, they are favoured dark matter candidates and could

compose all or part of the cold dark matter of the Universe. In non-standard cosmological

scenarios, or in more generic ALP frameworks [25], the range of ALP parameters of interest

as DM is enlarged and most of the region at reach by IAXO contains possible dark matter

candidates. At the higher part of the range (0.1 - 1 eV) axions are good candidates
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Figure 6.— Close-up of the high mass part of parameter space of Fig. 1 (1 meV

< ma < 1 eV). The two lines correspond to two different set of assumptions (more or

less conservative) to compute IAXO sensitivity. Plot from [148].

to the hot DM or additional dark radiation that is recently invoked to solve tension in

cosmological parameters. At much lower masses, below ∼ 10−7 eV, the region attainable

by IAXO includes ALP parameters invoked repeatedly to explain the anomalies in light

propagation over astronomical distances commented in section 5. IAXO could provide a

definitive test of this hypothesis.

8.1 Additional IAXO physics cases

In addition to the standard helioscope result exposed above, a number of additional

physics cases are being studied to extend the reach of IAXO. Particularly interesting in

the sensitivity of IAXO to axions with an axion-electron coupling gae as have been invoked

to solve the anomalous cooling observed in white dwarfs (see above section 5). Figure 7

summarizes the expected sensitivity to axions produced by BCA reactions (see right of

Figure 7) in the Sun, with couplings gae ∼ O(10−13) (see [148] for details). In summary,

IAXO could directly measure the solar flux of axions produced by the BCA processes, for

the first time with sensitivity to values of gae not previously excluded and relevant to test

the hypothesis that the cooling of WD is enhanced by axion emission (via BCA procesees,

the same mechanisms that IAXO would be testing in the Sun), and for values of ma for

which QCD axion models can give the needed gae values.

IAXO can be sensitive to models of other proposed particles at the low energy frontier
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of particle physics. Some examples are hidden photons or chameleons. They could also

be produced in the Sun, and give specific signatures in axion helioscope data. Hidden

photons emitted from the Sun have been studied in the context of specific searches [139]

or as by-products of axion helioscopes like SUMICO [140] or CAST [165]. Chameleons

are scalars with an environment-dependent mass that are proposed in the context of

dark energy models. Recent calculations [166, 28] show that resonant production in

the magnetic regions of the solar atmosphere might allow for the propagation of these

chameleons into a solar helioscope where they can be regenerated into soft x-rays through

the inverse Primakoff-effect. For these searches, sensitivity to energies lower than the

baseline Primakoff axion spectrum (sub-keV and lower) is needed, something that IAXO

could obtain by one or more of the additional equipment described in section [148].
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Figure 7.— Left: IAXO sensitivity line for gaegaγ as a function of ma, assuming the

solar emission is dominated by the BCA reactions which involve only the electron

coupling gae. The orange band corresponds to values of gae ∼ 1 − 5 × 10−13 and gaγ

related to ma by the DSFZ model with Cγ = 0.75. The part of the band highlighted

in yellow corresponds to those models for which the relation of gae with ma is also

considered (taking a reasonable range cos2 β =0.01−1). The recent limit of CAST on

gae is also shown. Right: IAXO sensitivity on gae and gaγ for ma . 10 meV. The gray

region is excluded by solar neutrino measurements. The orange band corresponds to

values of gae ∼ 1 − 5 × 10−13. The part of the band highlighted in yellow corresponds

to models that satisfy the model-dependent relation between gaγ and gae (taking again

Cγ = 0.75 and cos2 β =0.01−1). The recent limit of CAST on gae is also shown. In

the orange bands, axion emission affects white dwarf cooling and the evolution of low-

mass red giants; couplings stronger than in these bands are firmly excluded. Likewise,

helium-burning stars would be perceptibly affected in the blue band of the right plot

and parameters above it are excluded. Plots from [148]
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More intriguing would be the possibility to detect relativistic axions or ALPs from

other sources in the sky, using IAXO as a true axion telescope. Although most potential

astrophysical axion sources will probably be too faint to be detected by IAXO, some relic

populations of ALPs could provide detectable signals. If the dark radiation that is recently

invoked to relieve the tension in cosmological parameters [1] is composed by relativistic

axions or ALPs (from, e.g., primordial decays of heavy fields [167]) they would still linger

today as a Cosmic Axion Background with energies of ∼ O(100) eV. With appropriate

low energy detectors, the predicted fluxes could be within reach of IAXO for some ALP

parameters.

Another experimental configuration of IAXO could be to equip two of the bores with

microwave cavities, one of them with a strong emitter, and the second one with a low-noise

receiver. This would be an analogous LSW experiment with microwaves, conceptually

similar to the one performed in [168]. Given the size of the IAXO magnet bores, the

operating frequency of such a configuration would be around 200 Mhz. The potential of

this configuration is currently under study.

Yet the most promising option for a IAXO extension seems to be the search for the

non-relativistic axions potentially composing the galactic dark matter halo. This could

be accomplished by using microwave cavities (and turning IAXO into a haloscope kind

of detector), or dish antennas [107, 108] inside the large IAXO magnetic volume. The

size and strength of the IAXO magnet make this possibility very appealing and deserves

serious consideration. Although many technical questions need to be addressed before

considering this as a realistic possibilities, preliminary studies [169] point to very promising

prospects. IAXO could easily convert its magnet bores into resonant cavities, and easily

gain competitive sensitivity to ma around and below 1 µeV. A more challenging –but

more interesting– option is to fill part of IAXO magnetic volume with a set of power-

combined parallelepipedic long thin cavities, that could provide sensitivity right in the

mass range around ∼ 10−4 eV, most favoured by cosmology. Finally, a setup based on

the dish antenna might provide access to a wider and higher mass range. In general,

there seems to be potential to extend the sensitivity of IAXO well beyond the level of the

baseline configuration of Figure 1 in mass ranges complementary to previous searches.

9 Conclusions

After more than three decades, the axion hypothesis remains the most compelling

solution to the strong CP problem, one of the most serious blemish of the Standard Model

of particle physics. In addition, the issue of the nature of the dark matter of the Universe,

one of the biggest mystery that modern fundamental science is facing, could also be solved

by the axion. The fact that Supersymmetry does not appear at the LHC, nor do WIMPs
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in underground experiments, is increasing the interest in axions. In addition, recent

work in theory and phenomenology is sharpening their physics case. Some intriguing

astrophysical observations could already be hinting at the axion (or an axion-like particle).

The experimental efforts to search for axions, still a relatively minor field, are steadily

increasing. Dark matter axions at the few µeV could be detected by current haloscopes

like ADMX. Pushing haloscope sensitivity to higher masses is technically very challenging

and it is the object of a number of recent new ingenuous ideas. At the helioscope frontier,

the situation is technically more mature, and the CAST experiment has been running

for the last decade with sensitivity to axions at the sub-eV scale. CAST is the largest

axion experiment, and has been the seed for the newly proposed International Axion

Obvservatory (IAXO), aiming at a 5 orders of magnitude of improvement in signal-to-

noise ratio over CAST. IAXO will use CERN’s expertise efficiently to venture deep into

unexplored axion parameter space. If the axion exists, there is a reasonable chance for

it to be seen by IAXO. We may be living through the emergence of a new field in the

interface of particle physics and cosmology, with potential groundbreaking consequences

for both of them.
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paevangelou, A. Rodŕıguez, J. Ruz, L. Segui, A. Tomás, T. Vafeiadis, and S. Yildiz,

Status of R&D on micromegas for rare event searches : The T-REX project, EAS

Publications Series 53 (0, 2012) 147–154, [arXiv:1301.7307].

[162] T. Dafni, S. Aune, S. Cebrian, G. Fanourakis, E. Ferrer-Ribas, et. al., Rare event

searches based on micromegas detectors: The T-REX project, J.Phys.Conf.Ser. 375

(2012) 022003.

[163] T. Dafni, S. Aune, J. Castel, S. Cebrián, G. Fanourakis, et. al., The T-REX project:

Micromegas for rare event searches, J.Phys.Conf.Ser. 347 (2012) 012030.

[164] T-REX project web page: http://gifna.unizar.es/trex/.

[165] S. N. Gninenko and J. Redondo, On search for eV hidden sector photons in

Super-Kamiokande and CAST experiments, Phys.Lett. B664 (2008) 180–184,

[arXiv:0804.3736].

[166] P. Brax, A. Lindner, and K. Zioutas, Detection prospects for solar and terrestrial

chameleons, Phys.Rev. D85 (2012) 043014, [arXiv:1110.2583].

[167] J. P. Conlon and M. C. D. Marsh, The Cosmophenomenology of Axionic Dark

Radiation, arXiv:1304.1804.

[168] M. Betz and F. Caspers, A microwave paraphoton and axion detection experiment

with 300 dB electromagnetic shielding at 3 GHz, Conf.Proc. IPAC 2012 (2012) 3320–

3322, [arXiv:1207.3275].

[169] J. Redondo, talk at Patras Workshop on Axions, WIMPs and WISPs, CERN, June

2014. http://axion-wimp2014.desy.de/.

78



Construcción de los Poliedros Regulares

Luis J. Boya y Cristian Rivera

Departamento de F́ısica Teórica
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Abstract

Se construyen directamente los cinco poliedros regulares, también llamados sólidos

platónicos y se recuerdan y prueban algunas de sus propiedades.

1 Construcción

Los cinco sólidos platónicos son el Tetraedro T , el Octaedro O, el Hexaedro H , el

Icosaedro I y el Dodecaedro D. Son conocidos en Matemáticas desde los tiempos de los

griegos. Aqúı damos unas recetas para poder construirlos expĺıcitamente de un modo

sencillo, y recordamos y probamos algunas de sus propiedades, ver [1, 2, 3].

Los poliedros regulares viven en tres dimensiones, y tienen, por definición, caras que

son poĺıgonos planos regulares de q lados, con el mismo número de caras por vértice (de

hecho, veremos que ese número, p, es p ≥ 3); veremos también que las caras, todas iguales

por supuesto, sólo pueden ser triángulos, cuadrados o pentágonos, (q = 3, 4, 5) habiendo

TRES poliedros regulares con caras triangulares (T , O e I), y DOS con caras cuadrada y

pentagonal (H y D). Procedamos directamente a su construcción.

1.1 Tetraedro

Para el tetraedro T , partimos de un triángulo regular en el plano, con su centro P .

Trazamos desde P la recta perpendicular al plano del triángulo. Un punto arbitrario de

esa recta equidista de los tres vértices del triángulo. Por eso, uniendo esos tres vértices

con un punto de esa recta, con una arista de longitud igual a la longitud de los lados del

triángulo regular de la base, tenemos la construcción del Tetraedro, con sus seis (3+3)

aristas iguales.

Resumimos el Tetraedro aśı: (Vértices V = 4, Aristas A = 6, Caras C = 4). Nótese

que V + C −A = 2, igualdad que luego comentaremos. Nótese también la agudeza de los
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vértices, en el sentido que las tres caras triangulares de un vértice suman 60◦×3 = 180◦, la

mitad para que las caras “llenen” un plano (360◦ = 180◦×2). La agudeza es, por definición,

la diferencia de la suma de los ángulos adyacentes con 360◦ (−180◦ +360◦ = −180◦); para

el tetraedro es, pues, −180◦ y será la mı́nima entre los cinco poliedros regulares. Tal como

la hemos definido, la agudeza será siempre negativa para los posibles poliedros.

1.2 Octaedro

A continuación construimos el Octaedro O. Partimos ahora de un cuadrado regular, en

el plano (e.g. del papel) y procederemos como antes, construyendo la recta perpendicular

desde el centro P del cuadrado, pero ahora en los dos sentidos (por arriba y por debajo de

su plano), y tomando a continuación aristas (4+4=8) de longitud igual a las del cuadrado,

desde los cuatro vértices del cuadrado a esas dos rectas perpendiculares, por arriba y por

abajo, aparecen aśı los dos nuevos vértices y se completa el octaedro O, que tiene por

tanto caras triangulares y aparecen claramente dos nuevos vértices sobre esa recta, uno

por arriba y otro por abajo del plano del cuadrado de partida. Figs. 2A, 2B y 2C.

En vértices V , aristas A y caras C tenemos ahora, claramente (V : 4 + 2 = 6, A :

4 + 4 + 4 = 12 y C : 4 + 4 = 8, de nuevo V + C − A = 2). Nótese que del cuadrado

original, quedan los cuatro vértices y las cuatro aristas, pero la cara ha desaparecido. . .:

No se trata, pues, de dos pirámides opuestas de base cuadrangular. Nótese también la
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agudeza de los vértices, que es ahora mayor que antes (−240◦ + 360◦ = −120◦: cuatro

caras triangulares por vértice, aśı que 60 × 4 = 240◦ < 360◦).

1.3 Hexaedro

El Hexaedro o cubo H es, en nuestra opinión, el poliedro más fácil de construir.

Partimos de un cuadrado regular en el plano e.g. del papel, y en otro plano paralelo al

original, digamos por detrás (ver Fig 3B), tomamos otro cuadrado idéntico al anterior.

El cubo se completa trazando las cuatro aristas que unen los vértices correspondientes

de los dos cuadrados, de longitud igual a la de los lados de los cuadrados. Esas cuatro

aristas nuevas son perpendiculares a los planos de los dos cuadrados, y de longitud igual

a un lado de cada cuadrado. Y aśı queda el cubo convencional, o hexaedro, que tiene

obviamente V = 8, A = 12 y C = 6, de modo que, como antes V +C−A = 2. La agudeza

del cubo es ahora, también algo mayor que antes (90 × 3 = 270◦; 270◦ − 360◦ = −90◦).

1.4 Icosaedro

Para la construcción del Icosaedro I, partimos de un pentágono regular que llamare-

mos N (Norte), puesto que tomaremos otro pentágono idéntico que llamaremos S (Sur).

Tomamos ahora el centro P de un pentágono (digamos el N), y lo dividimos en cinco

triágulos isósceles, uniendo ese centro con los cinco vértices del pentágono. Ahora imag-

inemos que el centro “se levanta” un poco (que es calculable), puesto que los cinco

triángulos equivalen a 60◦×5 = 300◦ < 360◦. La agudeza es ahora −360◦+300◦ = −60◦, la

mayor hasta ahora. Procedemos igualmente a dividir en triángulos isósceles el pentágono

S, que ahora mirará un poco “hacia abajo”, con la misma agudeza; puestos los dos

pentágonos en situación antisimétrica, unimos finalmente con dos aristas (del pentágono

N) por vértice (del pentágono S) los dos pentágonos, con longitud igual a los lados del

pentágono, resultando las figuras 4A, 4B y 4C. Los pentágonos S y N están en situación
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antisimétrica, pues aśı se garantiza que la “unión” entre los dos se hace con dos aristas

(e.g. del pentágono N) con un vértices del pentágono S.

Queda aśı la construcción (V, A, C) = (6+6 = 12, 10+10+10 = 30, 5+5+10 = 20),

con caras triangulares, con cinco por vértice, que definen el Icosaedro regular I.

1.5 Dodecaedro

El poliedro regular más dif́ıcil de construir es, de nuevo en nuestra opinión, el Do-

decaedro D. También partimos de dos pentágonos regulares, N y S. Para cada uno,

se prolongan sus cinco vértices con nuevas aristas, hacia afuera de longitud la del lado

del pentágono. Se completan cinco pentágonos más rodeando el original (Fig 5A y 5B;

pentágono N , luego el S en situación antisimétrica, como en el Icosaedro. Se agregan

dos lados por pentágono a construir. Nótese que, de momento, hay dos o tres aristas

por vértice, por lo que se completa la construcción lanzando una tercera arista desde el

pentágono inferior a los pentágonos que rodean el N . Queda aśı la figura 5C. La “esfe-

ricidad” está asegurada, pues (el ángulo entre dos lados de un pentágono regular es de

108◦) 108◦ × 3 = 324◦, todav́ıa < 360◦, por eso el Dodecaedro D recuerda el que más a

una esfera (o un balón de fútbol). Para este Dodecaedro D tenemos ahora V , A, C =

(20, 30, 12). La agudeza es la máxima 324◦ − 360◦ = −36◦).
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Como resumen, la construcción expĺıcita de los cinco sólidos platónicos es fácil y

directa. El más sencillo parece ser el cubo H , el más dif́ıcil el dodecaedro D. En las

referencias pueden verse muchas otras construcciones, aśı como en “Google”.

2 Propiedades

En esta sección justificaremos algunos de los resultados anteriores, y expondremos

algunos más; como referencias generales citemos [2] y [4].

En primer lugar, tiene que haber tres o más caras por vértice, para formar una figura

tridimensional: con solo dos caras con una arista común NO se puede.

La agudeza de un poliedro podemos definirla como la suma de los ángulos en un vértice

menos 360◦, como hemos indicado en el texto. Si φ es el ángulo entre dos aristas contiguas

de un poĺıgono regular, para que eventualmente varios poĺıgonos del mismo tipo cierren

en una figura de casquete esférico, es decir, NO en un plano, la agudeza debe ser negativa;

si hay m aristas por vértice, la condición es, obviamente

m φ < 360◦

Para triángulos, cuadrados, pentágonos y hexágonos regulares tenemos φ=(60◦, 90◦,

108◦ y 120◦): se sigue por tanto que sólo triángulos (con tres, cuatro o cinco por vértice),

cuadrados o pentágonos (con tres sólo por vértice) son posibles. En particular, los

hexágonos están excluidos, aunque ellos pueden “teselar” (cubrir de modo regular) el

plano, que también puede ser cubierto por cuadrados (de cuatro en cuatro) y por triángulos

(de seis en seis), como es bien conocido. Como resultado, resultan precisamente los cinco

poliedros regulares, con sus miles de años de antigüedad. . . No deja de ser notable que

la condición de existencia sea necesaria y suficiente. . . los griegos asociaban los cuatro

primeros poliedros a los “elementos” aire, agua, fuego y tierra; al quinto o Dodecaedro D

corresponde a la quinta-esencia de los alquimistas medievales ([1, p. 149]).

Una idea que no hemos tocado aun es la de dualidad, un concepto importante. Imag-

inemos que tomamos, en un cubo, los centros de las seis caras, como vértices y los unimos

con dos aristas por (nuevo) vértice: sigue quedando un poliedro regular Π, pero con caras

y vértices intercambiado respecto del cubo original: es el llamado “poliedro” dual Π⋆ .

Tenemos que el tetraedro T ( V, A, C = 4, 6, 4) es autodual (T = T ⋆), pero los otro cuatro

poliedros no, en particular (H⋆ = O) y (I⋆ = D).

¿Por qué, en todos los casos, V + C − A = 2? Es el número de Euler-Poincaré de la

esfera, concepto que nos llevaŕıa tiempo desarrollar en detalle; véase, por ejemplo [5].

“Teselar” es cubrir un espacio con politopos: si el espacio es R, sólo cabe un “politopo”

unidimensional, con vértices equidistantes. Si es R2 , o sea el plano, éste se puede cubrir

con triángulos, cuadrados o hexágonos, como hemos señalado y es bien conocido.
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Existe una notación standard para politopos, debida al suizo L. Schläfli; para poĺıgonos

regulares, basta {m}, el número de lados; para poliedros, {p, q} donde p es el número

de lados del poĺıgono y q el número de poĺıgonos por vértice: para los cinco sólidos

platónicos, la notación de Schläfli es T{3, 3}; O{3, 4} H{4, 3}; I{3, 5} y D{5, 3}. Se ve

inmediatamente que el dual de {p, q} es {q, p}; eventualmente, la notación de Schläfli no

se limita a politopos regulares. . .
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ACTIVIDADES DE LA REAL ACADEMIA DE CIENCIAS

EXACTAS, FÍSICAS, QUÍMICAS Y NATURALES DE ZARAGOZA

EN EL AÑO 2014

Sesiones:

En el año 2014 la Real Academia de Ciencias de Zaragoza celebró seis sesiones. En las

dos primeras, celebradas los d́ıas 12 de marzo y 24 de abril de 2014, para proceder a la

lectura de uno de los trabajos que recibieron los Premios de Investigación de la Academia

2013, actos que, por razones de agenda, hab́ıan quedado aplazados para el año 2014.

Las restantes sesiones tuvieron lugar los d́ıas 7 mayo, 11 de junio, 20 de octubre y

26 de noviembre. En la de 20 de octubre, el Académico Electo D. Manuel Silva Suárez,

presentó su discurso de ingreso, respondiéndole en nombre de la Academia el Ilmo. Sr.

D. Alberto Elduque Palomo.

También se colaboró con la Facultad de Ciencias y el Departamento de F́ısica Apli-

cada en la organización una sesión obituario por el fallecido Profesor Manuel Quintanilla

Montón, quien fue durante muchos años Tesorero de la Academia.

La Real Academia de Ciencias de Zaragoza participó el miércoles 5 de noviembre en la

Sesión Solemne de Apertura Conjunta de curso de las Academias de Aragón en el Paranin-

fo de la Universidad, que fue organizada por la Academia Aragonesa de Jurisprudencia

y Legislación. La lección inaugural fue impartida por el Excmo. Sr. Dr. D. Agust́ın

Luna Serrano y tuvo por t́ıtulo “Acerca de las verdades oficiales del Derecho: el caso de

las verdades fiduciarias”. La contestación corrió a cargo del Presidente de la Academia

Aragonesa de Jurisprudencia y Legislación, Excmo. Sr. Dr. D. Eduardo Montull Lavilla.

Altas y bajas de Académicos Numerarios:

• En la sesión de 20 de octubre, el Académico Electo D. Manuel Silva Suárez, presentó

su discurso de ingreso con el t́ıtulo: “De discretos y fluidos, entre fidelidad y com-

plejidad”, recibiendo la medalla No 19.

• El Ilmo. Sr. D. Javier Sesma Bienzobas, medalla No 3, causa baja a petición propia

como Académico (Sección de F́ısicas), siendo aceptada su solicitud en la sesión

celebrada el 7 de mayo.
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• En la sesión de 11 de junio fueron elegidos miembros de la Academia los Profesores

D. Ricardo Ibarra Garćıa por la Sección de F́ısicas, quien recibirá la medalla No 20

y D. Fernando J. Lahoz Dı́az, por la Sección de Qúımicas, quién recibirá la medalla

No 2.

Altas y bajas de Académicos Correspondientes:

• D. Javier Sesma Bienzobas, que ha causado baja como Académico Numerario de

la sección de F́ısicas, ha pasado a ser Académico Correspondiente por la misma

sección.

Publicaciones de la Academia:

La Academia ha publicado el volumen 69 de la Revista de la Academia de Ciencias

de Zaragoza.

Organización de Congresos y Conferencias:

La Academia ha organizado en 2014, entre otros, los siguientes eventos:

• El d́ıa 21 de mayo la Academia convocó y desarrolló la Jornada de Homenaje al

ilustrado aragonés Ignacio Jordán de Asso en el bicentenario de su muerte. Se

sumó aśı a otros actos de homenaje promovidos por la Universidad de Zaragoza, la

Sociedad Económica Aragonesa de Amigos del Páıs y el Ateneo de Zaragoza. La

asistencia fue muy reducida, pero altamente valiosa, y las ponencias serán publicadas

en una Monograf́ıa de la Academia de Ciencias.

El Vicepresidente D. Juan P. Mart́ınez-Rica fue el responsable de la organización

de la mencionada Jornada.

• Colaboración en la organización conjunta con la Facultad de Ciencias de los Ciclos

de Conferencias Cita con la Ciencia y Espacio Facultad 2013-2014, aśı como en la

del IX Premio de divulgación cient́ıfica José Maŕıa Savirón.

Por último, dentro de la habitual participación de Académicos en numerosos congresos

nacionales e internacionales, y en conferencias en el ámbito de la difusión de la ciencia,

cabe destacar las siguientes actuaciones:

• El Académico Alberto Elduque ha sido conferenciante invitado en los congresos

internacionales Enveloping Algebras and Representation Theory (EART2014), en

St. Johns (Canadá), Geometric Methods in Representation Theory, en Lancaster

(Inglaterra) y en XII Jornadas de Álgebra No Conmutativa, en Málaga, siendo

miembro del Comité Cient́ıfico de dicho Congreso.
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• El Académico Enrique Artal presentó ponencias invitadas en los Congresos Interna-

cionales Workshop on Singularities in geometry, topology, foliations and dynamics,

en Mérida (Méjico) y en el Symposium on Singularities and their Topology en Han-

nover, aśı como en International Meeting of the American Mathematical Society

and the Romanian Mathematical Society en Alba Iulia (Rumańıa) y en Algebra and

Geometry and Topology of Singularities. On the occasion of the 60th birthday of I.

Luengo en Miraflores de la Sierra.

• El Académico Luis Oro ha participado en actividades de las Academias Nacionales

de Ciencias de Alemania y Francia, de las que es miembro. Ha sido conferenciante

invitado en la 40th International Conference on Coordimnation Chemistry (Singa-

pur, Julio de 2014) y en el Europe-Japan Joint Forum in Chemistry (Estrasburgo,

Octubre 2014) aśı como en el 23th Annual Saudi-Japan Symposium (Dhahran, Ara-

bia Saudita, Diciembre de 2014). Impartió la Conferencia de clausura del ciclo 75

Aniversario CSIC, en Zaragoza (diciembre 2014).

• La Académica Maŕıa Teresa Lozano Imı́zcoz impartió la conferencia inaugural del

Tercer Encuentro Conjunto RSME-SMM que se celebró en Zacatacas, (México).

• El Académico Antonio Elipe ha sido presidente del Comité Cient́ıfico de las XIV

Jornadas de Mecánica Celeste que tuvieron lugar en Ribadeo en el mes de julio, y

presidente del Comité Organizador del II Congreso Nacional de i+d en Defensa y

Seguridad celebrado en Zaragoza en noviembre.

• El Académico Manuel Silva presentó una conferencia invitada en el Colloquium

UPMC-Sorbonne, en Paŕıs.

• El Secretario José F. Cariñena formó parte del Comité Organizador de los XVI

Encuentros de Invierno Mecánica, Geometŕıa y Teoŕıa de control, 31 de enero, y

1 de febrero y en el Thematic Day: Discrete Mechanics and Geometric Integra-

tors, el 30 de enero, en Zaragoza. Presentó conferencias invitadas en los Congresos

internacionales 10th AIMS Conf. on Dynamical Systems, Differential Equations

and Applications en Madrid, II Meeting on Lie systems, generalisations, and ap-

plications, en el Institute of Mathematics, Polish Academy of Sciences en Varsovia

(Polonia) y en el Congreso Symmetries, special functions and superintegrability, en

Valladolid, en el que fue también miembro del Comité Cient́ıfico del Congreso.

Varios Académicos han colaborado en cursos propios en la Universidad de la Experi-

encia que organiza la Universidad de Zaragoza.
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Premios de investigación 2014

Se concedieron los Premios de Investigación 2014 de la Academia correspondientes a

las Secciones de Exactas y F́ısicas. En la sección de Exactas el Premio fue para el Dr.

Luis Ugarte Vilumbrales por su trabajo Special Hermitian metrics, complex nilmanifolds

and holomorphic deformations, y en la de F́ısicas el Premio fue para el Dr. Igor Garćıa

Irastorza por el trabajo titulado Hunting the axion. Dichos trabajos se publicarán en el

volumen 70 de la Revista de la Academia.

Se ha iniciado el proceso para los Premios 2015 en las Secciones de Qúımicas y Natu-

rales.

Distinciones y Nombramientos a Académicos.

El Académico Luis Oro ha sido distinguido con el EuCheMS Award y la Medalla Félix

Serratosa.

Otros datos.

La Real Academia de Ciencias de Zaragoza, como el pasado año y en contra de lo

sucedido hasta ese momento, no ha recibido subvencióna para su funcionamiento este

año del Ministerio de Educación y Ciencia, a través del programa de apoyo a las Reales

Academias asociadas al Instituto de España.

Se ha continuado con la actualización de la página web de la Academia, cuya nueva

dirección es http://acz.unizar.es

Zaragoza, diciembre de 2014
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REVISTA DE LA REAL ACADEMIA DE CIENCIAS

EXACTAS, FÍSICAS, QUÍMICAS Y NATURALES DE ZARAGOZA

Abstract

La Revista de la Real Academia de Ciencias publishes original research contri-

butions in the fields of Mathematics, Physics, Chemistry and Natural Sciences. All

the manuscripts are peer reviewed in order to assess the quality of the work. On

the basis of the referee’s report, the Editors will take the decision either to publish

the work (directly or with modifications), or to reject the manuscript.

1 Normas generales de publicación

1.1 Env́ıo de los manuscritos.

Para su publicación en esta Revista, los trabajos deberán remitirse a

Académico-Director de Publicaciones

Revista de la Academia de Ciencias

Universidad de Zaragoza

50009 Zaragoza

o bien electrónicamente a la cuenta elipe@unizar.es.

La Revista utiliza el sistema de offset de edición, empleando el texto electrónico faci-

litado por los autores, que deberán cuidar al máximo su confección, siguiendo las normas

que aqúı aparecen.

Los autores emplearán un procesador de texto. Se recomienda el uso de LaTeX, para

el que se han diseñado los estilos academia.sty y academia.cls que pueden obtenerse

directamente por internet en http://acz.unizar.es o por petición a la cuenta de correo

electrónico: elipe@unizar.es.

1.2 Dimensiones

El texto de los trabajos, redactados en español, inglés o francés, no deberá exceder de

16 páginas, aunque se recomienda una extensión de 6 a 10 páginas como promedio. El

texto de cada página ocupará una caja de 16 × 25 cm., con espacio y medio entre ĺıneas.
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2 Presentación del trabajo.

Los trabajos se presentarán con arreglo al siguiente orden: En la primera página se

incluirán los siguientes datos:

a) T́ıtulo del trabajo: Conciso, pero ilustrativo, con mayúsculas.

b) Autor: Nombre y apellidos del autor o autores, con minúscula.

c) Centro: Centro donde se ha realizado, con su dirección postal.

d) Abstract: En inglés y con una extensión máxima de 200 palabras.

e) Texto

A) Los encabezamientos de cada sección, numerados correlativamente, serán escritos

con letras minúsculas en negrita. Los encabezamientos de subsecciones, numerados en

la forma 1.1, 1.2, . . . , 2.1, 2.2, . . . , se escribirán en cursiva.

B) Las fórmulas estarán centradas y numeradas correlativamente.

C) Las referencias bibliogáficas intercaladas en el texto, deben ser fácilmente identifi-

cables en la lista de refencias que aparecerá al final del art́ıculo, bien mediante un número,

bien mediante el nombre del autor y año de publicación.

D) Las figuras y tablas, numeradas correlativamente, se intercalarán en el texto. Las

figuras se enviarán en formato EPS, o que se pueda convertir a éste con facilidad. Los

apéndices, si los hay, se incluirán al final del texto, antes de la bibliograf́ıa.

G) Las referencias bibliográficas de art́ıculos deberán contener: Autor: año de publi-

cación, “T́ıtulo del art́ıculo”, revista número, páginas inicial–final. En el caso de libros,

deberá incluirse: Autor: año de publicación, T́ıtulo del libro. Editorial, lugar de publi-

cación.

3 Notas finales

Por cada trabajo publicado, se entregarán al autor o autores un total de 25 separatas.

La Revista permite la inclusión de fotograf́ıas o figuras en color, con un coste adicional

que correrá a cargo de los autores.

Antonio Elipe

Académico Editor
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RELACIÓN DE REVISTAS NACIONALES QUE RECIBE EN INTERCAMBIO

LA BIBLIOTECA DE LA ACADEMIA DE CIENCIAS

ACTA BOTANICA BARCINONENSIS

ACTA QUIMICA COMPOSTELANA - Departamento de Qúımica Anaĺıtica
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ANALES SECCION DE CIENCIAS - Colegio Universitario de Girona

ANUARIO DEL OBSERVATORIO ASTRONOMICO - Madrid.

BELARRA. SOCIEDAD MICOLOGICA. Baracaldo.

BLANCOANA - Col. Univ. “Santo Reino” Jaén

BOLETIN DA ACADEMIA GALEGA DE CIENCIAS - (Santiago de Compostela)

BOLETIN DE LA ASOCIACION HERPETOLOGICA ESPAÑOLA

BOLETIN GEOLOGICO Y MINERO

BOTANICA COMPLUTENSIS - Madrid

BUTLLETI DEL CENTRO D’HISTORIA NATURAL DE LA CONCA DE BARBARA

COLLECTANEA BOTANICA - (Barcelona)

COLLECTANEA MATEMATICA - (Barcelona)

ESTUDIO GENERAL - Revista Colegio Universitario (Girona)

EXTRACTA MATHEMATICAE - Universidad de Extremadura

FACULTAD DE CIENCIAS EXPERIMENTALES DE JAEN. Monograf́ıas.

FOLIA BOTANICA MISCELANEA - Departamento de Botánica (Barcelona)

GACETA DE LA REAL SOCIEDAD MATEMÁTICA ESPAÑOLA

INDICE ESPAÑOL DE CIENCIA Y TECNOLOGIA -

INSTITUTO GEOLOGICO Y MINERO DE ESPAÑA

INVESTIGACION E INFORMACION TEXTIL Y DE TENSIOACTIVIVOS (C.S.I.C.)

- Barcelona

LACTARIUS.- BOL. DE LA ASOCIACION MICOLOGICA - Jaén

LUCAS MALLADA - Inst. Est. Altoaragoneses.
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MEMORIAS DE LA REAL ACADEMIA DE CIENCIAS Y ARTES DE BARCELONA

MISCELANEA ZOOLOGICA - Museo Zoológico - Ayuntamiento de Barcelona

NATURALIA BAETICA - Jaén

PIRINEOS

PUBLICACIONES PERIODICAS DE LA BIBLIOTECA DEL MUSEU DE ZOOLOGIA

- (Barcelona)

REBOLL.- Bull. Centro d’Historia Natural de la Conca de Barbera.

REVISTA DE LA ACADEMIA CANARIA DE CIENCIAS

REVISTA REAL ACADEMIA GALEGA DE CIENCIAS

REVISTA DE BIOLOGIA DE LA UNIVERSIDAD DE OVIEDO

REVISTA ESPAÑOLA DE FÍSICA

REVISTA ESPAÑOLA DE FISIOLOGIA - Pamplona

REVISTA ESPAÑOLA DE HERPETOLOGIA

REVISTA IBERICA DE PARASITOLOGIA

REVISTA MATEMATICA COMPLUTENSE - (Madrid)

REVISTA DE OBRAS PUBLICAS

REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FISICAS Y NATU-

RALES DE MADRID – Matemáticas

REVISTA DE LA REAL ACADEMIA DE CIENCIAS - QUIMICA - Madrid

RUIZIA - Monograf́ıas del Jard́ın Botánico (Madrid)

SCIENCIA GERUNDENSIS

STUDIA GEOLOGICA SALMANTICENSIA - Universidad de Salamanca

TRABAJOS DE GEOLOGIA - Universidad de Oviedo

TREBALLS DEL CENTRE D’HISTORIA NATURAL DE LA CONCA DE BARBERA.

TREBALLS DE L’INSTITUT BOTANIC DE BARCELONA

TREBALLS DEL MUSEU DE ZOOLOGIA DE BARCELONA

ZOOLOGIA BAETICA. UNIVERSIDAD DE GRANADA.
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RELACIÓN DE REVISTAS INTERNACIONALES QUE RECIBE EN

INTERCAMBIO LA BIBLIOTECA DE LA ACADEMIA DE CIENCIAS

ACADEMIA NACIONAL DE CIENCIAS - Córdoba. Argentina

ACADEMY OF NATURAL SCIENCES OF PHILADELFIA

ACCADEMIA NAZIONALE DEI LINCIEI - Notiziario

ACCADEMIA UDINESE DI SCIENZI LETTERS ED ARTI.

ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE

ACTA FAUNISTICA ENTOMOLOGICA MUSEI NATIONALIS - Pragae

ACTA GEOLOGICA POLONICA - Warszawa

ACTA MATHEMATICA HUNGARICA

ACTA MATEMATICA SINICA - New Series China

ACTA MUSEI NATIONALI PRAGAE

ACTA ORNITHOLOGICA - Polska Akademia Nauk Warszawa

ACTA PHYSICA - Academia Scientarum Hungaricae

ACTA SOCIETATIS ENTOMOLOGICA BOHEMOSLOVACA

ACTA UNIVERSITATIS - Series: Mathematics and Informatic – University of Nis –

Yugoeslavia

ACTA ZOOLOGICA FENNICA

AGRONOMIA LUSITANICA - Est. Agr. Nac. Sacavem - Portugal

AKADEMIE DER WISSENSCHAFTEN

ANALES DE LA ACADEMIA NACIONAL DE CIENCIAS EXACTAS, FISICAS Y

NATURALES DE BUENOS AIRES

ANALES DE LA ESCUELA NACIONAL DE CIENCIAS BIOLOGICAS. México

ANALES DE LA SOCIEDAD CIENTIFICA ARGENTINA

ANALES DE LA ESCUELA NACIONAL DE CIENCIAS BIOLOGICAS - México

ANIMAL BIODIVERSITY CONSERVATION

ANNALEN DES NATURHISTORICHEN MUSEUMS IN WIEN

ANNALES ACADEMIA SCIENTARUM FENNICAE - Serie A - I Matematica - Helsinke

ANNALES ACADEMIA SCIENTARUM FENNICAE - Serie A - II Chemica - Helsinke

ANNALES ACADEMIA SCIENTARUM FENNICAE - III Geologica Geografica - Helsinke

ANNALES ACADEMIA SCIENTARUM FENNICAE - Serie A - IV Physica - Helsinke

ANNALES HISTORICO NATURALES - Musei Nationalis Hungarici
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ANNALES DE L’INSTITUT FOURIER - Université de Grenoble

ANNALES DE L’INSTITUT FOURIER - Gap

ANNALES DE LA SOCIETE SCIENTIFIQUE - Serie I - Science Mathematiques Physiques

Bruxelles

ANNALES UNIVERSITATIS MARIA CURIE - Sectio A Mathemat. - Sklodowska

ANNALES UNIVERSITATIS MARIA CURIE - Sklodowska - Sectio AA Chemica. Lublin.

ANNALES UNIVERSITATIS MARIA CURIE - Sklodowska - Sectio AAA Physica. Lublin.

ANNALES ZOOLOGICI FENNICI - Helsinki

ANNALI DELLA FACOLTA DE AGRARIA - Universita de Pisa

ANNALI DEL MUSEO CIVICO DI STORIA NATURALE “Giacomo Doria”

ARBOLES Y SEMILLAS DEL NEOTROPICO - Museo Nac. de Costa Rica

ARCHIVIO GEOBOTANICO - Univ de Pav́ıa.

ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI - Matem-

atica e Applicacioni - Roma

ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI - Scien-

ze Fisiche e Naturali - Roma

ATTI DELLA ACCADEMIA DI SCIENZE, LETTERE E ARTI DI UDINE

ATTI DELL’INSTITUTO BOTANICO E DEL LABORATORIO CRITTOGRAMICO

DELL’UNIVERSITA DI PAVIA

BAYERISCHE AKADEMIE DR WISSENSCHAFTEN - Munchen

BEITRAGE ZUR FORSCHUNSTECHOLOGIE - Akademie Verlag Berlin

BOLETIM DA SOCIEDADE PARANAENSE DE MATEMATICAS - Paraná

BOLETIM DA SOCIEDADES PORTUGUESA DE CIENCIAS NATURALES - Lisboa

BOLETIN DE LA REAL ACADEMIA DE CIENCIAS FISICAS, MATEMATICAS Y

NATURALES - Caracas

BOLETIN DE LA ACADEMIA DE CIENCIAS - Córdoba. Argentina.

BOLETIN BIBLIOGRAFICO DE LA ESCUELA NACIONAL DE CIENCIAS BIOLÓ-

GICAS - México

BOLETIN DEL MUSEO NAC. DE COSTA RICA.

BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA

BOTANY UNIV. OF CALIFORNIA PUBLICATIONS.

BRENESIA - Museo Nacional de Costa Rica

BULGARIAN ACADEMY OF SCIENCES - Scientific Information - CENTRE MATH-

EMATICAL AND PHYSICAL SCIENCES

BULGARIAN JOURNAL OF PHYSICS

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY - Providence

BULLETIN DE LA CLASSE DE SCIENCES - Academie Royale de Belgique - Bruxelles

BULLETIN OF THE GEOLOGICAL INSTITUTION OF THE UNIVERSITY UPSALA
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BULLETIN OF THE JSME (Japan Society of Mechanical Engineers)

BULLETIN DE LA SOCIETE SCIENTIFIQUE DE BRETAGNE - Rennes

CALIFORNIA AGRICULTURE - University of California

CIENCIAS TECNICAS FISICAS Y MATEMATICAS. Academia de Ciencias. Cuba.

COLLOQUIUM MATHEMATICUM - Warszawa

COMMENTATIONES MATHEMATICAE - Ann. So, Mathematicae Polonese

COMPTES RENDUS DE L’ACADEMIE BULGARE DE SCIENCES - Sofia

DARWINIANA REV. INST. BOTANICA DARWINION - República Argentina

DORIANA - Supplementa agli Annali del Museo Civico di Storia Naturale “G. Doria” -

Cenova

ESTUDOS, NOTAS E TRABALHOS DO SERVIC DE FOMENTO MINERO - Portugal

ESTUDOS, NOTAS E TRABALHOS, DIECCIÓ GERAL DE GEOLOGIA E MINAS -

Porto

FILOMAT - FACTA UNIVERSITATIS - Univ. af Nis.

FÍSICA DE ONDAS ACÚSTICAS Y ELECTROMAGNÉTICAS LINEALES - Acad.

Búlgara de las Ciencias

FOLIA ANATOMICA UNIVERSITATIS CONIMBRIGENSIS - Coimbra

FOLIA ZOOLOGICA - Czechoslovak Academy of Sciences

FUNCTIONS ET APPROXIMATIC COMMENTARI MATHEMATICI - Poznań

GLASNIK MATEMATICKI - Zagreb

IBC - INFORMAZIONI - Rivista Bimestrale Inst. Beni. Artistic. - Regione Emilis-

Romagna

INSTITUTO DE MATEMATICA - Univ. Nac. del Sur - Bahia Blanca - Argentina

INSTITUTO NACIONAL DE INVESTIGAÇAO AGRARIA - Estaçao AGRONOMICA

NACIONAL OEIRAS INSTITUTO SUPERIOR TÉCNICO DE CIENFUEGOS

INTERNATIONAL TIN RESEARCH INSTITUTE

JAHRBUCH DER AKADEMIE DER WISSENSCHAFTEN IN GÖTTINGEN.

JOURNAL OF THE AMERICAN ACADEMY OF ARTS AND SCIENCES - Daedalus

JOURNAL OF THE BULGARIAN ACADEMY OF SCIENCES

JOURNAL OF THE LONDON MATHEMATICAL SOCIETY

JOURNAL OF NON-CRYSTALLINE SOLIDS - Amsterdam

LESTURAS MATEMATICAS - Colombia

MATHEMATICA BALKANICA

MATHEMATICA MONTISNIGRA

MEMORABILIS ZOOLOGICA

MEMORANDA SOCIETATIS PROFAUNA ET FLORA FENNICA - Helsingfors

MEMORIAS DA ACADEMIA DAS CIENCIAS DE LISBOA (Classe de Ciencias)

MITTEILUNGEN AUS DEN ZOOLOGISCHEN MUSEUM IN BERLIN
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MONOGRAFIAS DE LA ACADEMIA NACIONAL DE CIENCIAS EXACTAS, FISI-

CAS Y NATURALES DE BUENOS AIRES

NACHRICHTEN DER AKADEMIE DER WISSENSCHAFTEN IN GUTTINGEN - II

Matemáticas y F́ısica

NATURAL HISTORY MUSEUM UNIV. OF KANSAS.

NEOTROPICO - Museo Nacional de Costa Rica

NETHERLANDS JOURNAL OF ZOOLOGY

NONLINEARITY - Inst. Physics and London Math. Soc

NOTAS DE ALGEBRA Y ANALISIS - Ins. de Matematica - Univ. Atac. del Sur. Bahia

Blanca

NOTULAE NATURAE

NUCLEAR ENERGY -Bulgarian Academy of Sciences

OCCASIONAL PAPERS OF THE CALIFORNIA ACADEMY OF SCIENCES - San

Francisco

PHILIPPINE JOURNAL OF SCIENCES - Manila

POLISH ACADEMY OF SCIENCES. INSTITUTE OF MATHEMATICA

POLSKA AKADEMIE NAUK-PRACE GEOLOGICZNE

POLSKA AKADEMIE NAUK-PRACE MINERALOGICZNE

PORTUGALIA PHYSICA - Sociedade Portuguesa de F́ısica

PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADEL-

PHIA

PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES

PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY

PROCEEDINGS OF THE ROCHESTER ACADEMY OF SCIENCES

PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON - A: Mathematical and

Physical Sciences

PROCEEDINGS OF THE ROYAL SCOIETY OF EDINBURGH - Section A (Mathe-

matical and Physical Sciences)

PROCEEDINGS OF THE ROYAL SOCIETY OF QUEENSLAND

PUBLICACIONES FUNDAMENTALES DE LA ACADEMIA DE CIENCIAS DE SOFIA

PUBLICATION DE L’INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE -

Strasbourg

PUNIME MATEMATIKE - Prishtine

QUADERNI DELL’ ACADEMIA UDINESA.

QUATERLY OF APPLIED MATHEMATICS

REVISTA CUBANA DE FISICA

REVISTA COLOMBIANA DE MATEMÁTICAS
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REVISTA DE LA FACULTAD DE INGENIERIA QUIMICA- Univ. Nal. del Litoral -

Argentina

REVISTA TRIMESTRAL DEL INTERNATIONAL TIN RESEARCH INSTITUTE

REVISTA UNIVERSIDAD NACIONAL DE LA PLATA - Argentina

REVISTA DE LA UNION MATEMATICA ARGENTINA

REZIMEA ABSTRACS - POGDORICA

SCIENCE BULLETIN - University of Kansas

SCIENTIFIC PAPERS NAT. HISTORY MUSEUM. The University Kansas.

SEARCH AGRICULTURAL ITHACA NEW YORK

SENCKENBERGIANA BIOLOGICA - Frankfurt

SENCKENBERGIANA LETHAEA - Frankfurt

SMITHSONIAN CONTRIBUTIONS TO PALEONTOLOGY

SPECTRUM - Akademie der Wissenschaften der DDR

STUDIA GEOLOGICA POLONICA - Polska Akademy Nauk Warsovia

SUT JOURNAL OF MATHEMATICS - Science University of Tokio

T. KOSCIUSZKI TECHNICAL - Univesity of Cracow

UNIVERSIDAD NACIONAL DE LA PLATA - Notas del museo de la Plata

UNIVESITY OF THE STATE OF NEW YORK - Bulletin

UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS

VERTEBRATOLOGICKE ZPRAVY CESKOLOVENSKA AKADEMIE BRNO

ZBORNIK RADOVA FILOZOFSKOG - Fakulteta u Nisu-Serija Matematika

ZBORNIK - Acta Musei Nationalis - Pragae

ZOOLOGICA POLONIAE

ZPRAVY USEB (Vertebralogy zpravy) - Brno - Checoslovaquia
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