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Ginés R. Pérez Teruel

e-mail: gipete@alumni.uv.es

Rev. Real Academia de Ciencias. Zaragoza. 67: 105–111, (2012).

ISSN: 0370-3207

Abstract

In the framework of nonsymmetric gravitational theories we consider the equa-

tions of motion for matter fields. It is found that the antisymmetric part of the

metric is the Pauli matrix in 4 dimensions, suggesting a possible deep relation

between spin and geometry. Some arguments about the possibility of building a

fermionic space-time instead the ordinary bosonic space-time are discussed.

1 Introduction

The possible extensions of General Relativity is a subject that has experimented a

lot of different theoretical approximations since the formulation of the general theory in

1915. For example: Einstein, Schrodinger, Weyl, and many others [1]–[5], tried to unify

electromagnetism and gravity using a formalism which defined both, a metric tensor and

an affine connection that were non symmetric. This theory, despite its high degree of

mathematical elegance did not work, and failed in the attempt to recover some classical

results like the Lorentz Force. Years before the formulation of Einstein-Schrodinger theory,

Cartan [6, 7], studied how to extend general relativity in order to incorporate torsion(the

antisymmetric part of the affine connection). His efforts yields to the conception of space-

time with curvature and torsion, unlike usual General Relativity where torsion is zero.

More recently, other physicists like John Moffat [8] have studied in detail the field

equations of general theories based in nonsymmetric metric tensors. We will accept this

theoretical framework as our starting point, with the aim of investigate the implications

for particle physics. In particular, we want to study how the wave equations of the matter

fields will be affected by the addition of a non symmetric contribution in the metric tensor.

The mathematical discussion that follows provides the result that allow us to identify the

Pauli matrix in 4 dimensions with the antisymmetric part of the metric.
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2 The line element in General Relativity. Bosonic space-time and fermionic

space-time

We begin with the standard definition for the line element in General Relativity:

ds2 = gαβ(x)dxαdxβ, (1)

where the metric tensor is regarded as symmetric.Note that if we add a skew symmetric

contribution to the metric tensor, wαβ=−wβα, the line element remains unchanged due

to a simple fact: usual space-time coordinates commute. In such sense, they are bosonic

coordinates and represent bosonic degrees of freedom:

ds2 = (gαβ + wαβ)dxαdxβ = gαβdx
αdxβ, (2)

[xα, xβ] = 0 =⇒ dxαdxβ = dxβdxα. (3)

For this reason the term wαβdx
αdxβ vanishes identically.

We want to generalize (1) for a more general space-time configurations. Let us inves-

tigate how the line element in (1) can be extended in situations where the metric tensor

is not generally symmetric, and where coordinates do not generally commute. Let us

assume the hypothesis that this general expression of the line element is preserved:

ds2 = Gαβdx
αdxβ = (gαβ + wαβ)(

1

2
{dxα, dxβ} +

1

2
[dxα, dxβ])

=
1

2
gαβ{dx

α, dxβ} +
1

2
wαβ[dxα, dxβ], (4)

where we have made the following decomposition:

dxαdxβ =
1

2
{dxα, dxβ} +

1

2
[dxα, dxβ] (5)

and where the nonsymmetric metric Gαβ consists in the sum of two contributions:

Gαβ
= gαβ + wαβ , (6)

with

gαβ = 1

2
(Gαβ +Gβα), (7)

wαβ = 1

2
(Gαβ −Gβα). (8)

The contravariant tensor Gαβ is defined in terms of the equation

GµνGσν = δµ
σ . (9)
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For usual commutative geometry and bosonic space-time :

[dxα, dxβ] = 0, (10)

{dxα, dxβ} = 2dxαdxβ. (11)

In this case, the second term in the right side of (4) vanishes, and we recover the usual

expression (1), for the line element in General Relativity. But it is more interesting analys

what would happen if we consider a fermionic configuration of space-time. This means

that at each point exists a chart of coordinates that are Grassman numbers and verify

the following relations:

{dθα, dθβ} = 0, (12)

[dθα, dθβ] = 2dθαdθβ. (13)

Under these conditions, the general line element (4) becomes:

ds2 = Gαβdx
αdxβ = wαβdθ

αdθβ. (14)

Automatically, it arises the question: What is the physical meaning of this construc-

tion? Does a fermionic space-time make sense after all? General Relativity is a theory

formulated in a purely bosonic space-time where geometry is widely regarded as commu-

tative. Meanwhile, Grassman variables represent fermions, and are present in the path

formulation of fermionic fields in quantum field theory. Besides, exist in supersymmetry

the superspace where bosonic coordinates are completed with Grassmann numbers, but in

a framework where the metric is considered like a symmetric tensor. Given our hypothesis

of a general metric with a decomposition in a symmetric and antisymmetric tensors, It

seems that the last relations suggest that an unusual type of fermionic fields could be able

to feel the antisymmetric part, while bosons and the other ordinary fermions only couple

to the symmetric part. Despite the beauty and symmetry of this approach, we will show

in the next section that if we accept the possibility of (12) and (13), the formalism leads

to the existence of tachyons.

3 The metric tensor and the spin of the particles

In Minkowski space-time, a symmetric metric tensor given with signature (+,−,−,−)

we have the Casimir

P µPµ = gµνP
µP ν = m2. (15)

By application of the correspondence principle Pµ → i∂µ we obtain the free Klein

Gordon wave equation

(gµν∂
µ∂ν +m2)φ(x) = 0. (16)
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Again, we make now the following observation: in the case free, if we add an antisym-

metric field wµν to the metric tensor in (15) the Casimir is not affected by this addition,

because P µP ν is a purely symmetric object describing bosonic matter. However, when we

have interactions, the correspondence principle is modified by inserting covariant deriva-

tives P α → iDα instead of usual derivatives, P α → i∂α. This substitution has the effect

of changing the symmetry of P αP β, because DαDβ no longer commutes, and this will

generate an additional term involving the antisymmetric part of the metric.

To show this in detail, let us write the Klein-Gordon equation in general curved space-

time:

(Gαβ(x)DαDβ +m2)φ(x) = [(gαβ + wαβ)(
1

2
{Dα, Dβ} +

1

2
[Dα, Dβ]) +m2]φ(x) = 0. (17)

By a direct computation of the product in the last equation we obtain:

(
1

2
gαβ{Dα, Dβ} +

1

2
wαβ[Dα, Dβ] +m2)φ(x) = 0. (18)

Straightforward manipulations show that the commutator of the covariant derivative

can be written as:

[Dα, Dβ]φ(x) = −(Γc
αβ − Γc

βα)∂cφ(x). (19)

General Relativity is torsion- free and this means that the Levi-Civita connection

is symmetric. In these conditions the last commutator vanishes. Nevertheless, in our

analysis this term gives an additional contribution that we shall bear in mind.

Similarly, it can be found an expression for the anti-commutator of the covariant

derivatives, but involving the symmetric part of the affine connection:

{Dα, Dβ}φ(x) = 2∂α∂βφ(x) − (Γc
αβ + Γc

βα)∂cφ(x). (20)

Eqs. (19) and (20) can be used to write the compact expression for the Klein-Gordon

field in curved nonsymmetric space-time. Replacing these relations in (18) we find after

straightforward calculations:

(gαβ∂α∂β +m2)φ(x) = GαβΓc
αβ∂cφ(x), (21)

where

Γc
αβ =

1

2
(Γc

αβ + Γc
βα) +

1

2
(Γc

αβ − Γc
βα). (22)

The left side of (21) is identical to the corresponding Klein-Gordon equation in General

Relativity. The difference lies in the right side: now the metric and the affine connection

are not symmetric, but it is worth to note that the form of the equation remains the same.

What about Dirac fields? The explicit and detailed treatment of Dirac fields in a

general curved space-time is a much more complicated task (see for instance [9]), but we
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only want to take a general picture in order to inquire some aspects of the field wαβ. For

this reason, we will not solve the covariant derivative over Dirac fields. We will limit to

the task of requiring that the Dirac equation could be expressed as the square root of the

Klein-Gordon field.

The Dirac equation in curved space-time can be written as

(iγαDα −m)ψ(x) = 0, (23)

where Dα = ∂α + Γα. As we have said before, we make the assumption that the Dirac

field in general curved space-time can be expressed as the square root of the Klein-Gordon

equation. This allows us to write

(−iγαDα −m)(iγβDβ −m)ψ(x) = 0. (24)

If we assume Dαγ
β = 0, which seems a plausible generalization of the condition

∂αγ
β = 0 that is verified by the Dirac matrices in a flat space-time, we find

(γαγβDαDβ +m2)ψ(x) = 0. (25)

This is nothing but the Klein-Gordon equation in general nonsymmetric curved space-

time (17). Thus, we can make the identification

γαγβ =
1

2
{γα, γβ} +

1

2
[γα, γβ] = Gαβ = gαβ + wαβ. (26)

That provides

gαβ =
1

2
{γα, γβ}, (27)

wαβ =
1

2
[γα, γβ]. (28)

Equation (27) is a well known result that remit us to the field of Clifford algebra.

On the other hand, the commutator of the Dirac matrices transforms as a tensor, and

is a clue concept to understand the behavior of the Dirac field under general Lorentz

transformations. We suggest a new interpretation of this tensor in the framework of

nonsymmetric space-time, where the metric tensor has an antisymmetric part.

With these results in mind let us return to the previous section where we studied the

notion of a fermionic space-time of Grassmann coordinates, that couple to the antisym-

metric part of the metric tensor in the definition of the general line element(4). Let us

begin writing the left side of the Casimir invariant (15), in a flat space-time doted with a

nonsymmetric metric Gαβ = γαγβ. Then we have

Gαβpαpβ = γαγβpαpβ. (29)
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Making contact now with (12) and (13), for fermionic degrees of freedom

{pα, pβ} = pαpβ + pβpα = 0. (30)

This allow us to make the substitution: pαpβ = −pβpα in equation (29) and we have

−γαγβpβpα. (31)

Note that γβpβ is nothing but the Dirac equation in momentum space: γβpβψ = mψ.

Therefore, equation (29) provides after a direct computation a global term of −m2, and

this means that we are dealing with tachyons.

If we repeat the same reasoning for bosonic commutative variables, the result gives

the correct sign for the Casimir invariant.

This result is intriguing. It likely means that we are not allowed to describe usual

fermions with anticommutative variables in the external space-time, but only in their

own internal vectorial space. Maybe this result is telling us something about tachyons.

Tachyons would be Grassman fields that behave in the space-time being able to feel the

antisymmetric part of the metric tensor, undetectable for us and the other ordinary mat-

ter. Indeed, bosons and the usual fermions that are represented by Grassmann variables

in their internal spinor space, are all associated with standard bosonic coordinates when

they move in the space-time.

In any case, this last result only questions the assumptions of the equations (12) and

(13), but says nothing about the validity of nonsymmetrical gravitational theories.

4 Discussion

In this paper we have explored an alternative approach which combines some insights

of nonsymmetrical gravitational theories with concepts of noncommutative geometry. In

this approach, we have discussed that the inclusion of an antisymmetric part in the metric

tensor has some interesting consequences when is considered the possibility of extend

the conception of bosonic space-time with coordinates that do not commute. We have

postulated a generalization for the invariant line element in General relativity, which puts

bosonic and fermionic coordinates on an equal footing. Bosonic degrees of freedom couple

to the symmetric part of the metric, while unusual fermionic degrees of freedom would do

the same but with the other part.

Nevertheless, these assumptions lead to the wrong sign for the square of the mass

in the Casimir invariant, which means that tachyons arise inevitably when we describe

these unusual type of fermions. In other words: Grassman coordinates in a nonsymmetric

space-time represent degrees of freedom that behave like tachyons.

On the other hand, it has been studied in some detail the wave equations for matter

fields in the framework of nonsymmetric gravitational theories, suggesting a possible new
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interpretation for the commutator of the Dirac matrices, which emerges naturally as the

antisymmetric part of the metric tensor.

Until now, it has not been found any experimental evidence of the nonsymmetric

nature of the metric tensor. But we point out that if these nonsymmetric theories of

gravity are finally found to be a correct description of nature, then such identification of

the antisymmetric part of the metric tensor with the commutator of the gamma matrices

could be naturally established as a theoretical consequence.
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