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1 Polynomial interpolation in one variable

Interpolation is an ubiquitous technique arising in Mathematics, specially in Numerical

Analysis. The name interpolation itself means to place something between selected sites , in

contrast to extrapolation which means place something outside. Interpolation is generally

more accurate than extrapolation leading to better stability in computations and lower

error bounds. Since most methods can be used for both interpolation and extrapolation,

the word interpolation is preferred.

Simple interpolation methods can be dated back to babylonians and the greeks. The

Mathematical Syntaxis of Ptolemy shows how to construct a table of chords as a func-

tion of its corresponding arcs, the first table of a trigonometric function 2 sin(x/2). John

Napier and Joost Bürgi introduced in the 17th century tables of logarithms which were

improved by Henry Briggs, who introduced new tables of functions. The tables of func-

tions contained a lot of decimal places and computing them was a very laborious task.

The idea of approximating a curve by its chord or a parabola leads to a first instance of

linear or quadratic interpolation. Interpolation formulae were implicit or explicitly used

for constructing and filling up the tables. Briggs propose to subtitute the true logarithmic

function by a quadratic function in some parts of the table (see Chapter 1 of [22]) which

can be regarded as an interpolation by a quadratic polynomial. The result obtained leads

to very accurate results.

The final user of a table might need to access to a value not contained in the table

without having to recompute a whole part of the table. If extremely accurate results

are not required, tables can be filled up using linear interpolation. For better results,

quadratic and cubic interpolation methods are preferred. This offers the possibility of
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using short tables, which are more handy if not many significant digits are required. Only

a subtraction, a multiplication and an addition are enough to obtain the value of a linear

interpolant.

Assume that a table of a function f is known at two points x0, x1. The chord joining

(x0, f(x0)) and (x1, f(x1)) is a segment whose equation is y = p(x), x ∈ [x0, x1], where

p(x) := f(x0) +
f(x1) − f(x0)

x1 − x0
(x − x0).

Substituting the true value of the function f(x) by the value of the first degree polynomial

p(x) might lead to big errors but if the function is smooth and the points x0, x1 are close

enough, the error might be very small. In fact, the difference f(x)−p(x) can be bounded

in terms of the second derivative of f by the formula

|f(x) − p(x)| ≤ M

8
h2, M := max

x∈[x0,x1]
|f ′′(x)|, h := x1 − x0. (1.1)

Therefore, if the second derivative is bounded, the interpolation error tends to zero when

h → 0. Figure 1 shows how close is the linear interpolant p to the logarithm function at

x0 = 1, x1 = 2. Figure 4 shows the linear interpolant of the log function on the intervals

[1, 3], [3, 5] and [5, 7]. We observe that the second derivative of the log function −x−2 is

much lower on the interval [5, 7] than on the interval [1, 3] and so the interpolation error

is lower on [5, 7] than on [1, 3].

Figure 1. The natural logarithm and its linear interpolant at x0 = 1, x1 = 2.

While the error for linear interpolation is quadratic on h, the convergence order can

be improved by using polynomials of higher degree.
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Let us pose the Lagrange interpolation problem for polynomials of degree less than

or equal to n. Given a function f , the Lagrange interpolation problem at x0 < · · · < xn

consists of finding a polynomial p of degree not greater than n such that p(xi) = f(xi),

i = 0, . . . , n. The solution of the problem is provided by the Lagrange formula

p(x) =

n
∑

i=0

f(xi)li(x), li(x) =
∏

j 6=i

x − xj

xi − xj
.

Another possibility is to express the interpolant as a sum of polynomials of increasing

degree by Newton’s formula

p(x) =

n
∑

k=0

f [x0, . . . , xk−1]πk(x), πk(x) =

k−1
∏

i=0

(x − xi),

where f [xi, . . . , xi+k] are the k-th order divided differences, which can be computed by

the recurrence formula

f [xi, . . . , xi+k] =
f [xi+1, . . . , xi+k] − f [xi, . . . , xi+k−1]

xi+k − xi

,

starting from the initial values f [xi] := f(xi), i = 0, . . . , n. A third formula for the

interpolant is the Aitken-Neville formula

p(x | xi, . . . , xj) =
x − xi

xj − xi
p(x | xi+1, . . . , xj) +

xj − x

xj − xi
p(x | xi, . . . , xj−1),

where p(x | x0, · · · , xn) denotes the value at x of the interpolating polynomial of f at

x0, . . . , xn. The Aitken-Neville formula suggests an algorithm for computing the inter-

polant based on the idea of repeated linear interpolation.

A formula for the error of the interpolant is of the form

f(x) − p(x) =
f (n+1)(ξ)

(n + 1)!

n
∏

i=0

(x − xi), (2.1)

where n is the degree, ξ is any point of a compact interval I containing all the interpolation

sites x0, . . . , xn. A typical error bound for the interpolant can be expressed in the form

|f(x) − p(x)| ≤ K sup
x∈I

|f (n+1)(x)| hn+1,

where h is the length of a compact interval I containing all the interpolation sites and

K is a constant which does not depend on f but might depend on the distribution of

the interpolation sites in I. Let us observe, that even with very low degrees, powerful

approximation methods can be devised using polynomial interpolation.

As an example, let us discuss how polynomial interpolation can be used to compute

the functions sin x and cos x using only few arithmetic operations similarly as it is done
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in scientific calculators, function libraries of programming languages or simple computer

applications. The functions sin x, and cos x are periodical of period 2π. Furthermore

sin(x + π) = − sin x, cos(x + π) = − cos x

Therefore, if x̂ is the value in (−π/2, π/2] such that

n :=
x − x̂

π
∈ Z,

then we can reduce the problem of computing the values of both trigonometric functions

to the interval (−π/2, π/2]

sin(x) = (−1)n sin(x̂), cos(x) = (−1)n cos(x̂).

The relations

sin(−x) = − sin(x), cos(−x) = cos(x), sin(π/2−x) = cos(x), cos(π/2−x) = sin(x),

allow us to reduce the problem to the interval [0, π/4] for both functions. Taking into

account that the cosine can be expressed in terms of the sine of the half angle

cos x = 1 − 2 sin2(x/2),

the problem is reduced to compute the value sin x for x ∈ [0, π/4]. There are many

approches for computing the value. One might use the MacLaurin expansion

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− e9(x), x ∈ [0, 1],

where 0 < e9(x) < 1.8 × 10−9. Computing the sine function using the above expansion

has computational cost of 13 operations: 4 subtractions, 5 products and 4 divisions.

Another approach is the use of tables. The function has been previously computed with

high accuracy (for instance, taking enough terms in the MacLaurin expansion) at selected

points obtaining a table of the function, which is kept in memory. These tables can be

combined with the addition formulae to reduce the interval to be considered, allowing

to reduce the number of terms in the MacLaurin expansion. Another possibility is to

subtitute sin(x) by a polynomial approximation. The Approximation Theory shows that

polynomials obtained by interpolation exhibit remarkable approximation properties.

A good approximation of sin(x) on [0, π/4] can be obtained using the symmetry prop-

erties of this function. Let us introduce the cardinal sine function

sinc(x) =
sin(x)

x
,

and consider the polynomial interpolant p(x) of degree 2n+3 at the symmetrically placed

sites

−xn < −xn−1 < · · · < −x0 < 0 < x0 < · · · < xn−1 < xn
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of sinc(x). Due to the fact that sinc(x) is an even function, it immediately follows that

p(x) is also an even function with p(0) = 1. Therefore the interpolant p(x) can be written

in the form

p(x) = 1 − x2q(x2),

where q(t) is the polynomial of degree n which interpolates the function

f(t) =
1 − sinc(

√
t)

t

at the sites ti = x2
i , i = 0, . . . , n. The error formulae of polynomial interpolation allow us

to deduce that

| sin(x) − x(1 − x2q(x2))| ≤ 1

(2n + 4)!
sin(x)x3|x2 − x2

0| · · · |x2 − x2
n|, x ∈ [0, π/4].

and taking

n = 2, x0 = 1/2, x1 = 5/8, x2 = 3/4,

we have the following bound for the relative error

er(x) =
| sin(x) − x(1 − x2q(x2))|

sin(x)
≤ 1

40320
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∣

∣
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4

∣
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∣
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x2 − 25
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∣
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∣
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∣
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x2 − 9

16

∣

∣

∣
, x ∈ [0, π/4].

We may bound er(x) by the maximum value of the right hand side attained at x = π/4

to find that

er(x) ≤ 5.42 × 10−8 (2.2)

which is lower than the maximal accuracy that can be ensured in simple precision arith-

metic ǫ = 2−24 ≈ 5.96 × 10−8.

Now it remains to compute the polynomial q. First, we need to have the values

of sin(1/2), sin(5/8) and sin(3/4), which can be obtained taking enough terms in the

MacLaurin expansion. Then we compute the quadratic interpolation polynomial to f(t)

at 1/16, 1/4, 9/16

q(t) ≈ 0.16666652− 0.0083930591 t + 0.00019512189 t2.

and obtain an approximation of the sine function on [0, π/4] using the formula

sin(x) ≈ x(1 − x2q(x2)).

The evaluation of the sine then is reduced to 3 products and 1 sum and the compu-

tational cost of an evaluation of q, which needs 2 sums and 2 products. So the amount

of computations to be done to compute the sine function on [0, π/4] is 8 operations: 5

products and 3 sums. Taking into account that trigonometric functions might be eval-

uated many times in a computer program, the saving in computational cost implies a
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substantial reduction in the computation time of many tasks in scientific computing. The

maximal error occurs in x = π/4. Computations in double precision arithmetic lead

to the value 0.7071067752634779 whose relative error with respect to the correct value√
2/2 ≈ 0.7071067811865476 is less than 10−8, lower than the predicted error bound (2.2)

and below the unit roundoff in single precision arithmetic.

Figure 2. The sine function and the 7th degree polynomial approximant

Figure 2 shows that the approximant is very close to the sine function even in wider

intervals than [−π/4, π/4]. The figure shows that the absolute error keeps very low even

in the interval [−π, π] which is 4 times wider. The absolute error in the approximation of

sin π = 0 is 4.7 × 10−2.

2 High amplitude oscilations of polynomial interpolants

Polynomial interpolants may not look as expected. They might oscillate much more

than the function to be interpolated. It often happens that, when increasing the degree,

the error increases. In fact, the sequence of interpolants might not converge to the func-

tion. A first question which arises is to derive conditions which imply the convergence

of the interpolant. Since the power series centered at c can be seen as an special case

when all the interpolation sites tend to coincide with c, we deduce that the analyticity

of f at some points might play an important role in the discussion of the convergence.

Formula (2.1) allows us to deduce the following error bound for the interpolant pn at sites
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x0,n, . . . , xn,n in a compact interval [a, b] of length h = b − a

|f(x) − pn(x)| ≤ Mn+1

(n + 1)!
hn, Mn+1 := max

x∈I
|f (n+1)(x)|.

We observe that if
Mn+1h

n

(n + 1)!
→ 0,

then pn converges to f uniformly on the interval I. This condition is satisfied if f is

analytical in [a−h/2, b+h/2] and the power series centered at c = (a+b)/2 has convergence

radius R > 3h/2. In general convergence of the interpolant might depend on the function

f and the distribution of the sites in the interval [a, b]. In [26], Carl Runge studied the

convergence in the case of equidistant sites xi = a + ih/n, i = 0, . . . , n. He showed that

even in the simple case of interpolation of a C∞ differentiable function with equidistant

sites, the interpolant might not converge. For his example, he chose the function f(x) =

(1 + x2)−1 on the interval [−5, 5]. Observe that the function can be expanded in a power

series centered at the origin

1

1 + x2
=

∞
∑

k=0

(−1)kx2k, |x| < 1

with convergence radius R = 1 < 15 = 3h/2. An analysis of the error formula (2.1) for

even degree n = 2k leads to

∣

∣

∣

1

1 + x2
− p2k(x)

∣

∣

∣
=

1

1 + x2

k
∏

j=0

|x2 − (5j/k)2|
1 + (5j/k)2

.

Taking into account that

lim
k→∞

5

k
log

(

k
∏

j=0

|x2 − (5j/k)2|
1 + (5j/k)2

)

= q(x) :=

∫ 5

0

log
( |x2 − t2|

1 + t2

)

dt

the convergence depends on the sign of q(x). Let ξ ≈ 3.63 be the zero of q on [0, 5]. It

can be shown that, if |x| < ξ, then the sequence of interpolating polynomials converges,

while if |x| > ξ the sequence diverges. Figure 3, shows then interpolants corresponding

to degrees 2, 8 and 14.
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1/(1+x2)

p2

p8

p14

Figure 3. Runge’s example

The previous example shows that interpolation by polynomials of high degree leads to

interpolants of high amplitude oscillations. The same can be said for the basic Lagrange

polynomials

li(x) =
∏

j 6=i

x − xj

xi − xj
, i = 0, . . . , n

whose maximal absolute value increases when the number of points increases. This fact

has an important consequence: the bad stability and poor condition of polynomial inter-

polation with high degree polynomials. Assuming that the given data yi are not exact

but very close to the function values

|yi − f(xi)| ≤ ǫ

then we find that the perturbed interpolant p̃(x) :=
∑n

i=0 yili(x) may differ considerably

from the true interpolant p(x) :=
∑n

i=0 f(xi)li(x)

|p̃(x) − p(x)| ≤ ǫΛ(x),

where

Λ(x) :=

n
∑

i=0

|li(x)|

is the Lebesgue function corresponding to the sequence of nodes x0, . . . , xn. The norm

(and condition) of the interpolation operator is given by maxx∈[a,b] Λ(x) and depends on

14



the degree and the distribution of the nodes on the interval. In general we can say that

the norm of the operator tends to infinity and satisfies

max
x∈[a,b]

Λ(x) >
2

π
log(n) + 0.5212.

In the case of Chebyshev nodes

xj =
a + b

2
+

b − a

2
cos

(2j − 1

2n
π
)

, j = 0, . . . , n,

we find an almost optimal behaviour and the norm of the interpolation operator satisfies

max
x∈[a,b]

Λ(x) <
2

π
log(n) + 1.

For equidistant nodes, the norm of the interpolation operator exhibits an exponential

growth

max
x∈[a,b]

Λ(x) ∼ 2n

en log(n)
.

Therefore equidistant nodes are not recomended for interpolation problems of high degree.

For more information see Chapter 3 of [18].

3 Spline interpolation

Piecewise interpolation has a long history. The linear interpolation for function tables

mentioned above defines a continuous piecewise linear interpolant, due to the fact that

different linear polynomials are used to represent the interpolant depending on the relative

position of the point with respect to the data. Geometrically, this means that the graph of

the function in approximated by the polygon joining the points (xi, f(xi)), i = 0, . . . , n.

If we increase the number of interpolation sites on an interval in such a way that the

mesh size h := maxi=0,...,n−1 |xi+1 − xi| tends to 0, the convergence of the piecewise linear

interpolant to f is ensured by (1.1).

15



log(x)
s(x)

Figure 4. Piecewise linear interpolation

The inflexibility of polynomials can be avoided using piecewise polynomial functions

also called spline functions. Piecewise polynomial functions arise in a natural way in

elasticity theory of beams and flexible bars. The Bernoulli-Euler law relates the deflection

of a beam and the bending moment. Assume that we are given a long and thin beam and

that the cross-section is constant along its axis and composed of an isotropic material.

The neutral axis is the locus of the barycenters of each cross-section. Assume that forces

(loads) are applied orthogonally to the neutral axis and act in a unique plane causing

the beam to bend. Then the curvature of the neutral axis is proportional to the bending

moment,

M = κ/R,

where M represents the bending moment at a given point of the beam, κ the curvature

of the neutral axis and R is a constant called flexural rigidity.

In order to formulate mathematically these ideas, we first choose coordinates to rep-

resent the neutral axis on the plane x, y, where (0, 1, 0) is the direction of the forces

bending the beam and (0,0,1) is the direction on the load plane orthogonal to the beam.

Let us assume that the deflections are sufficiently small, so that we may represent the

position of the neutral axis in R
3 by (x, y(x), 0), where y(x) is a function of x such that

|y′(x)| << 1 and the force density (load) at (x, y(x), 0) is given by (0, f(x), 0), x ∈ [0, L].
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The curvature at the point (x, y(x), 0) is given by

κ(x) =
y′′(x)

(1 + (y′(x))2)3/2
≈ y′′(x)

The flexural rigidity R = EI depends on the material and on the geometry of the cross

section D, E represents the Young’s elasticity modulus and I is the area inertia moment

I =

∫

D

z2dydz.

Then we can express the Euler-Bernoulli formula by the following approximate equation

y′′(x) =
1

R
M(x).

The bending moment at the point (x, y(x), 0) is given by

M(x) = M0 + R0x +

∫ x

0

f(t)(x − t)dt = M0 + R0x +

∫ L

0

f(t)(x − t)+dt,

where R0 = M ′(0) is the force exerted at the left end (0, y(0), 0) and M0 = M(0) is the

moment applied to the left end of the beam. The force R0 is usually due to the reaction

of the pivot where it is supported or of the wall where it is clamped. The moment M0

is usually due to the clamping moment and elastic supports. We use the simbol (x − t)+

to indicate the positive part of x − t. For more general purposes the truncated power

function can be used

(x − t)k
+ =

{

(x − t)k, if t ≤ x,

0, if t > x.

Differentiating with respect to x we deduce that

M ′′(x) = f(x).

So, for a given distribution of the force density f , the deflection y of a beam can be

approximately found by solving the differential equation

y(4)(x) =
1

R
f(x).

An interesting case not covered by the above reasoning is the case in which the forces

acting on the beam are concentrated at points τ0, . . . , τn ∈ (0, L). Assume that a force

(0, Fi, 0) is applied at (τi, y(τi), 0), i = 0, . . . n, and no forces act on the other points.

Additional terms must be included to take into account the reaction forces R0 = M ′(0),

RL = M ′(L) and bending moments M0 = M(0), ML = M(L) acting at the ends τ−1 = 0

and τn+1 = L, respectively, to meet static equilibrium conditions

M ′(0) +
n

∑

i=0

Fi + M ′(L) = 0, M(0) +
n

∑

i=1

τiFi + LM ′(L) + M(L) = 0
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and to fit boundary conditions. Then we may represent the bending moment by the

formula

M(x) = M0 + R0x +

n
∑

i=1

Fi(x − τi)+,

and, by the Bernoulli-Euler law, the deflection of the beam satisfies the differential equa-

tion

Ry′′(x) = M0 + R0x +
n

∑

i=0

Fi(x − τi)+.

Figure 5. A beam clamped between two walls with two concentrated loads

We deduce that y must be a C2 piecewise cubic function, because the second derivative

is a continuous piecewise linear function. Figure 5 shows the deflection of a beam clamped

to the ends with two symmetrically placed loads in the places indicated by the arrows.

Two supporting forces at the end are necessary to fit the boundary conditions.

In each subinterval [τi, τi+1], i = −1, . . . , n, the deflection y is represented by a cubic

polynomial. The points τi, i = 0, . . . , n, are called the knots of the cubic spline function.

Beams, wooden rods and bars have been used for the design of ships based on the

fact that boundary conditions at the ends and concentrated loads on the interior knots

τi, i = 0, . . . , n, can be selected so that the deflection attained at the knots can have

prescribed values yi. This experimental fact can be confirmed analyzing the interpolation

problem at the knots

y(τi) = yi, i = 0, . . . , n,

with boundary conditions

y(a) = y−1, y′(a) = m−1, y(b) = yn+1, y′(b) = mn+1.

by cubic spline functions in S3(τ0, . . . , τn)[a, b], the space of all C2 piecewise cubic functions

at knots a < τ0 < · · · < τn < b on the interval [a, b]. A simple discussion of a related linear

system of equations shows that this interpolation problem has always a unique solution.
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General spline function spaces of arbitrary degree can be constructed. If τ0 < · · · < τn,

then we denote by Sk(τ0, . . . , τn)[a, b] the space of Ck−1 functions which coincide with

polynomials of degree k on each subinterval [τi, τi+1], i = −1, . . . , n where τ−1 := a and

τn+1 := b. When knots tend to coincide smoothness properties of the spline functions are

lost. If m(τi) is the number of times that the knot τi appears in the sequence τ0, . . . , τn,

then we only require that the spline function is of class Ck+1−m(τi) in a neighbourhood of

τi

Sk(τ0, . . . , τn)[a, b] : = {s : s|(τi,τi+1) ∈ Pk, i = −1, . . . , n,

s ∈ Ck+1−m(τi) on a neighbourhood of τi}.
It follows from the definition that Sk(τ0, . . . , τn)[a, b] is a vector space of dimension n+k+2.

The Schoenberg-Whitney theorem [28] shows that a necessary and sufficient condition on

the interpolation sites for the Lagrange interpolation problem

s(xi) = yi, i = 0, . . . , n + k + 1,

in Sk(τ0, . . . , τn)[a, b] to have always a unique solution is that

x0 ∈ [a, τ0), xi ∈ (τi−k−1, τi), i = 1, . . . , n + k, xn+k+1 ∈ (τn, b].

We use the convention that τ−k−1 = · · · = τ−1 = a and τn+1 = · · · = τn+k+1 = b.

As a consequence of the Schoenberg-Whitney theorem, we can say that there are

many possibilities for choosing the degree and the knot positions for spline interpolation

problems. This freedom gives rise to different interpolation problems with the same data

whose solutions are interpolants with different smoothness properties.

4 Shape-preserving interpolation

Spline interpolants are often used for curve design. They also arise in the numerical

analysis of differential equations. They are a fundamental tool in experimental data fitting

because smoothness and order approximation can be adjusted in spline interpolation.

Although spline interpolants do not present oscillations of much higher amplitude than

the data, they may present oscillations not suggested by the data. A typical example is

when a rapid transition between two states needs to be simulated. This often arises in

examples from biology, chemistry and physics. An increasing function changes its rate

of increase. First the function increases slowly, then in the transition zone it increases

quickly and after this transition has been crossed the function turns again to present a

slow increasing behaviour.

The use of a non-monotonic interpolating function might be problematic. For instance

assume that we are evaluating the relative concentration of a substance arising in an

19



non-reversible chemical reaction. Monotonicity is a fundamental feature of the process.

Furthermore relative concentrations below 0 and greater than 1 do not make sense.

x : 0.00 0.50 0.90 1.10 1.50 2.00

y : 0.00 0.05 0.15 0.85 0.95 1.00

Figure 6. A rapid transition between two states

Figure 6 depicts the data, the piecewise linear interpolant and a cubic spline inter-

polant. The cubic spline interpolant oscillates taking values beyond the minimum and

maximum of the data while the piecewise linear interpolant preserves monotonicity. In

this case, the piecewise linear interpolant reflects important features of the solution al-

though it is not smooth and presents lower degree of approximation.

Another shape property which might be preserved is convexity. Again the piecewise

linear interpolant is convexity preserving but it is not smooth. Monotonicity and convexity

provide a control on the oscillation properties of the interpolant. The search of smooth

shape-preserving interpolants is a difficult task. The problem is non-linear in its nature.

One reason is that the set of increasing or convex functions is not a vector space. Another

problem arises when trying to establish a linear correspondence between convex data and

convex functions. Assume that we want to find a convex interpolant to the data

p(0) = 0, p′(0) = −1, p(1) = 0, p′(1) = m,

with m > 0. Since the data are convex then we deduce

−min(x, m(1 − x)) ≤ p(x) ≤ 0.
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0 1

y=-x y=m(x-1)

Figure 7. When m → 0+, the convexity preserving

interpolant must converge to the zero function

Taking into account that limm→0+ min(x, m(1 − x)) = 0, we deduce that the solution

of the problem converges to the zero function when m → 0+. But the zero function

does not satisfy the condition p′(0) = −1. This indicates that, if we define a convexity

preserving interpolant to data, continuous dependence on the parameters will be lost and

then the method will be nonlinear.

Tension methods are a simple and versatile way of solving shape-preserving interpola-

tion problems. The name tension refers to a free parameter and goes back to a paper by

Schweikert [29], considering the shape of a beam or flexible bar under tension as a way of

solving shape-preserving interpolation problems.

If the deflections are sufficiently small and all tension forces and bending moments lie

on the same plane, we can represent the position of the neutral axis in R
3 by (x, y(x), 0),

where y(x) is a function of x such that |y′(x)| ≪ 1. The force density at (x, y(x), 0) is

given by (0, f(x), 0), x ∈ [0, L].

The tension acting at the ends of a flexible bar is transmitted to all the points in the

bar and is exerted in a direction tangent to the bar. Therefore the tensile stress T(x) has

constant modulus T0 and can be described by

T(x) = T0

(

1

(1 + y′(x))2
,

y′(x)

(1 + y′(x))2
, 0

)

≈ (T0, T0y
′(x), 0).

X X0 1

T(X   )1

-T(X   )0

T(X   )-T(X  )1 0
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Figure 8. A beam in tension

We observe that if the bar has been curved by the effect of the loads the resultant of

all tensile stresses acting on the piece of the bar between (x0, y(x0), 0) and (x1, y(x1), 0)

is given by T(x1) − T(x0). When x1 → x0, a force density arises due to tension

lim
x→x0

1

x1 − x0
(T(x1) − T(x0)) = T′(x0) ≈ (0, T0y

′′(x0), 0).

Now we can introduce the effect of tension in the computation of the bending moment

M(x) ≈ M0 + R0x +

∫ x

0

(f(t) + T0y
′′(t))(x − t)dt

and applying the Bernoulli-Euler law, M(x) ≈ Ry′′(x), we deduce that

Ry(4)(x) ≈ M ′′(x) = f(x) + T0y
′′(x).

In the case of concentrated loads (0, Fi, 0) applied at (τi, y(τi), 0), i = 0, . . . , n, the deflec-

tion of the beam can be described by the solution of the differential equation

y′′(x) − T0

R
(y(x) − y(0) − xy′(0)) =

1

R

(

M0 + R0x +
n

∑

i=0

Fi(x − τi)+

)

.

Therefore y is a C2 function satisfying in each subinterval (τi, τi+1), i = −1, . . . , n the

fourth order differential equation

y(4)(x) − α2y′′(x) = 0,

where α =
√

T0/R. It immediately follows that the restriction of y(x) to each subinterval

(τi, τi+1) must be of the form

y(x) = c0 + c1x + c2 cosh(αx) + c3 sinh(αx).

The space of hyperbolic functions

Hα = 〈1, x, cosh(αx), sinh(αx)〉 = 〈1, x, eαx, e−αx〉,

depending on the tension parameter α, can be used to introduce hyperbolic spline function

spaces.

Hα(τ0, . . . , τn)[a, b] := {s ∈ C2[a, b] : s|(τi,τi+1) ∈ Hα, i = −1, . . . , n}
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Figure 9. A rapid transition between two states simulated with hyperbolic splines

the tension parameters are α = 10 (left) and α = 20 (right)

When the tension parameter α increases, the solution of the problem converges to the

piecewise linear interpolant which is shape preserving. On the other hand if the tension

parameter tends to 0, the solution converges to the usual cubic spline. For more flexibility,

different tension parameters can be used in each subinterval. If we choose large tension

parameters, the shape requirements will be satisfied but smoothness properties become

worse. The choice of the tension parameters might be a difficult task and other methods

for obtaining shape preserving interpolants have been considered. Most of them can be

regarded as tension methods, where the tension parameters are automatically selected.

The minimal amount of work necessary to take a beam from the equilibrium position

to a stressed state due to tension forces and bending moments caused by transversal loads

can be summarized by the energy integral

E =
1

2T0

∫ L

0

‖T‖2ds +
1

2

∫ L

0

Mκds,

where s denotes the arc-length parameter of the neutral axis. In the case of small deflec-

tions this energy can be described by a functional

E = RJα[y], Jα[y] :=
1

2

∫ L

0

y′′(x)2dx +
T0

2R

∫ L

0

y′(x)2dx =
1

2

∫ L

0

(y′′(x)2 + α2y′(x)2)dx.

The hyperbolic spline in tension can be regarded as a solution of the following mini-

mization problem: find s minimizing the energy functional Jα subject to interpolation and

boundary conditions. Observe that the interpolation by cubic spline functions corresponds

to α = 0, and cubic spline interpolants minimize the integral J0[y] =
∫ b

a
y′′(x)2dx.

Several methods for the construction of shape-preserving interpolants use the solution

of a minimization functional subject to the shape constraints. Let us describe the approach

given in [1, 2, 3, 4, 5]. We want to obtain a solution of the interpolation problem

u(xi) = yi, i = 0, 1, . . . , n,

among all strictly convex functions with bounded second derivative

K = {u ∈ C1[a, b] | u′′ ∈ L∞[a, b], ess inf u > 0}.

Assuming that the data are strictly convex

yi+1 − yi

xi+1 − xi
<

yi+2 − yi+1

xi+2 − xi+1
, i = 0, . . . , n − 2,

it can be shown that the set of all interpolants in K is an infinite convex set

L = {u ∈ K | u(xi) = yi, i = 0, 1, . . . , n}.
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Then we can choose the unique interpolant minimizing a penalty functional

J [u] =

∫ b

a

Fp(u
′′),

where p ∈ [0, 1] and

Fp(t) :=











t log t, if p = 1,

−tp/p, if 0 < p < 1,

− log t, if p = 0.

In [1, 2], it was shown that there exists a unique interpolant u characterized by the fact

that in each subinterval [xi, xi+1] satisfies the fourth order nonlinear differential equation

u(4)(x) − (2 − p)
(u(3)(x))2

u′′(x)
= 0.

If we solve the above equation we find that in each subinterval the function u is of the

form

u(x) = c0 + c1x + a(x + b)(1−2p)/(1−p), 0 < p < 1/2, or 1/2 < p < 1.

There are three special cases for p = 0, 1/2, 1

u(x) = c0 + c1x + a exp(bx), (p = 1)

u(x) = c0 + c1x + a log(bx), (p = 1/2)

u(x) = c0 + c1x + a(x + b) log(x + b), (p = 0)

We remark that the interpolation problem is nonlinear. So, in order to find the unique

solution of the problem, a nonlinear system of equations must be solved.

Figure 10 shows a convex interpolant obtained with p = 1. The second derivative of

the interpolant is a continuous piecewise exponential function and minimizes the entropy

functional
∫ b

a
f(x) log f(x)dx.

Figure 10. Convex interpolant minimizing the entropy of the second derivative
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5 Tensor-product constructions in multivariate interpolation

Let U be a vector space of continuous functions defined on the set Ω ⊂ R
d and let X

be a finite set of points (usually called nodes). Given a function f : X → R, the Lagrange

interpolation problem on the set of nodes X consist of finding a function u ∈ U such that

u(x) = f(x), ∀x ∈ X.

We say that the set X is correct for the Lagrange interpolation problem by functions in

U if it is unisolvent, that is, there exists a unique solution to the Lagrange problem in

U for any f . Multivariate interpolation is a more difficult task than the problem in one

variable because even the existence of interpolants is an interesting problem by itself.

In 1918, Haar [23] discussed the problem of finding the best uniform approximation to

a function. The uniqueness of the best approximation u0 ∈ U to a function f by functions

in a space U on a compact domain Ω in the sense of Chebyshev

max
x∈Ω

|f − u0| = min
u∈U

max
x∈Ω

|f − u|

is equivalent to the fact that the Lagrange interpolation problem is unisolvent on X for

any set X with #X = dim U . In one variable, there exists function spaces (called Haar

spaces) U such that there exists a unique interpolant u ∈ U for any function f and any

set X with #X = dim U . However, in [23] it was shown that there exist no Haar spaces

if Ω contains interior points, d > 1 and the set X contains more than one point. In

1955, Mairhuber [25] solved a problem suggested by I. J. Schoenberg, showing that U is

a Haar space with dim U ≥ 2 if and only if Ω is homeomorphic to a closed subset of the

circumference of a circle. For more information on this problem see the book of Zielke

[30].

A consequence of the above result is that the Lagrange interpolation problem on a

given space U of functions defined on a multivariate domain Ω will not be unisolvent for

certain sets X.

The use of polynomial interpolants give rise to local function representations with

high order of approximation. Interpolation by multivariate polynomials is a powerful

approximation technique used in the finite element method for finding a numerical solution

to partial differential equations. The domain is subdivided into small subdomains called

elements. This is a usual technique used in engineering analysis of structures. In many

practical cases elements can be taken as rectangles or triangles in two variables (boxes

or simplices in more than two variables) and the space of interpolants can be chosen any

subspace of the space of polynomials containing all polynomials up to a given total degree.

The use of a interpolants to represent or approximate the solution has the advantage that
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we can add or manipulate easily physical constraints or boundary conditions and that

we can interprete easily the values of the polynomials as approximation of the values to

the true solution of the differential equation. Continuity conditions for relating different

patches of the global solution can easily be imposed and low order smoothness condition

are not hard to incorporate. The approximation power of polynomial representations

makes it easy the design of finite elements with high order of approximation which might

imply fast convergence properties of finite element method.

Reaction Load

Tension

Figure 11. Analysis of the mechanical properties of a structure with finite elements

On the other hand, bivariate interpolation techniques are fundamental in the repre-

sentation of surface patches by polynomials. The use of bivariate polynomial interpolants

give rise to local surface representations for reproducing surfaces accurately.

In surface design other representations than the representations by interpolation are

preferred. However, in the design process it is usual to impose conditions for restricting

the freedom of the surface. Many restrictions can be formulated as interpolation or

approximation conditions leading to bivariate interpolation problems.

In most of the above applications, the interpolation nodes and the space of inter-

polants can be chosen. If we are free to select the nodes and the space, tensor product

constructions, based on simpler univariate problems can be easily described, analyzed and

implemeted. In order to simplify our discussion, we shall draw our attention on bivariate

problems.

The interpolation problems on rectangular grids

X = {(xi, yj) | i = 0, . . . , n, j = 0, . . . , m} = {xi | i = 0, . . . n} × {yj | j = 0, . . . , m},

x0 < x1 < · · · < xn, y0 < y1 < · · · < ym,

are usually called tensor product constructions because the space of polynomial inter-

polants

Pn,m = {p(x, y) | degx p ≤ n, degy q ≤ m} = 〈xiyj | i = 0, . . . , n, j = 0, . . . , m〉
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can be regarded as a tensor product of univariate polynomial function spaces Pn⊗Pm. We

observe that dim Pn,m = (n + 1)(m + 1) = #X. Furthermore, the Lagrange interpolation

problem is unisolvent and a Lagrange formula can be derived immediately

p(x, y) =
n

∑

i=0

f(xi, yj)l
x
i (x)lyj (y), lxi (x) =

∏

k 6=i

x − xk

xi − xk

, lyj (y) =
∏

k 6=j

y − yj

yk − yj

.

Multivariate extensions for the Newton and Aitken-Neville formulae can also be easily

derived in this case.

Tensor product interpolants provide excellent approximations properties and give rise

to low errors. However they share the inflexibility properties of the univariate polynomials

and are not able to represent global surfaces in large areas of the domain and they should

rather be used to represent local surface patches. It is not recommended to use surface

interpolants of very high degree because the complexity of the formulae representing the

interpolant increases. Since the dimension of Pn,n is (n + 1)2, we may expect to obtain

the interpolant as the sum of (n + 1)2. This gives rise to 441 terms to be considered for

n = 20 and 961 terms for n = 30. By increasing the degree, the condition of the problem

measured by the Lebesgue functions also grows very fast. The higher complexity of the

formula implies more computation time and an increased risk of error propagation.
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Figure 12. The surface z = exp(x2 + y2)/3 cos(x2 + y2)
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Figure 13. The P8,8 tensor product interpolant and its error
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Figure 14. The P12,12 tensor product interpolant and its error

Figure 12 shows a moderately oscillating function whose behaviour can only be imi-

tated by considering a large number of data

f(x, y) = exp
(

− x2 + y2

3

)

cos(x2 + y2), x, y ∈ [−5/2, 5/2].

We consider tensor product interpolants in Pn,n at the grid of points

(

− 5

2
+

5i

n
,−5

2
+

5j

n

)

, i, j = 0, . . . , n.

When n = 8 (91 data points) the behaviour of the interpolant is only very well imitated

at the center of the square [−5/2, 5/2]× [−5/2, 5/2] (see Figure 13). By increasing a little

the degree n = 12 (169 data points) , we obtain more acceptable results in the boundary

(the error is lower than the 10% of the range) and very good approximation properties at

the center of the square (see Figure 14).
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6 Multivariate interpolation by polynomials of bounded degree

Lagrange interpolation in more than one variable in a finite dimensional space of

polynomial functions will not be unisolvent for certain sets X as a consequence of Haar’s

results in [23]. In order to face this problem two different but complementary approaches

have been considered. If the set of nodes X ⊂ Ω cannot freely be chosen, search for

a space of polynomial functions such that the Lagrange interpolation problem at X is

unisolvent. The second possibility is that the space of interpolants is fixed. The space of

polynomials with total degree not greater than n is considered in most cases

P d
n = {p(x1, . . . , xd) | deg p ≤ n} = 〈xi1

1 · · ·xid
d | i1 + · · · + id ≤ n}

because of this space has optimal approximation order properties with respect other poly-

nomial spaces of the same dimension. Then the problem consists in identifying or con-

structing correct sets for the given space and provide efficient algorithms to find the

interpolant.

A polynomial interpolant to any set of data can be obtained by increasing the total

degree n according to the data. A simple construction of a polynomial of degree not

greater than n = #X − 1 similar to the univariate construction can be obtained as

follows:

p(x) =
∑

y∈X

f(y)ly(x), ly(x) :=
∏

z∈X\{y}

(y − z)T (x − z)

‖y − z‖2
. (6.1)

Reducing the degree as much as possible allows us to fully exploit the power of approx-

imation of multivariate polynomials. Another reason is that the growth and oscillation

properties of the polynomials might be better controlled by keeping the degree as low as

possible. A minimal degree interpolation space for a set of nodes X is any interpolation

space U such that U ⊆ Pn such that no interpolation space for the set of nodes X is

contained in the space Pn−1. The space generated by the polynomials ly, y ∈ X, in (6.1)

is a minimal degree interpolation space if and only if all nodes lie on the same line. For

most distributions of points lower degree interpolants can be obtained. For instance, if

X consists of three noncollinear points on the plane, then a linear interpolant in P1 can

be always provided, whereas formula (6.1) provides quadratic interpolants. For most sets

X, the degree can be considerably reduced and attains its minimal possible value n with

dim Pn−1 < #X ≤ dim Pn.

A related question is degree reduction. Given a set X, we can define the restriction

operator which associates to each function f its restriction f |X to the set X. For any space

U of polynomials such that the Lagrange interpolation problem is unisolvent the restriction

operator is a bijection between U and R
X . The inverse of the restriction operator is the
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interpolation operator which associates to each function on X, a polynomial function

defined on a wider domain LU : R
X → U . The interpolation at points X by functions in

U is degree reducing if for any polynomial p, we have that deg LU [p] ≤ deg p. Any degree

reducing space is a minimal degree interpolation space but the converse is not true in

general. The construction of degree reducing and minimal degree spaces for any sets of

nodes has been investigated by T. Sauer among others (see [27]).

In the second approach we fix the interpolation space P d
n and search for correct sets.

A set X ⊂ R
d is correct if and only if

#X = dim P d
n =

(

n + d

d

)

and all the points in X are not contained in an algebraic hypersurface of degree n. This

geometric condition is not practical to check because it requires almost the same effort

than trying to solve the interpolation problem and find that there exist no unique solution.

We should take into account that, for d > 1, the number of nodes and the dimension

of the interpolation space P d
n grows considerably with the degree. This implies additional

complexity in the formulae. For instance, if we perform bivariate interpolation of degree

15 we would need to manipulate, in general, 105 different terms because dim P 2
15 = 105.

This also means that, apart from the condition of the problem, stability of computations

should be carefully considered to avoid propagation of the roundoff errors.

The Lagrange polynomials ly ∈ P d
n , y ∈ X, are implicitly defined by the conditions

ly(y) = 1, lx(y) = 0, ∀x ∈ X \ {y}.

and give a representation of the interpolant by means of the Lagrange formula

p(x) =
∑

y∈X

f(y)ly(x).

The Lagrange formula is often used in the finite element method because its coefficients

are directly the values of the solution and further evaluation of the formula might be

avoided if we are dealing with a sufficiently fine grid.

On the other hand Newton-like formulae

p(x) =

N
∑

k=0

ckπk(x)

are more versatile than the Lagrange formulae and can be applied to a wider set of

problems. A Newton-like basis πk(x), k = 0, . . . , N , is usually formed by polynomial

whose degree gradually increases with k and vanishes on subsets Xk of X whose size

gradually increases

0 = X0 ⊆ · · · ⊆ XN ⊂ X,
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so that, the Lagrange interpolation problem leads to a triangular (or block triangular)

system of equations. The coefficients of a Newton-like formula can be regarded as general-

izations of the divided diferences. The computation of the coefficients is usually unstable,

in contrast to Lagrange formula whose coefficients are the interpolation data f(y), y ∈ X.

The complexity of the formulae representing the Lagrange polynomials must also be

considered in the choice of a Lagrange formula to represent the interpolant. Each of

the Lagrange polynomials will be expressed in terms of a basis of P d
n and might have

dim P d
n terms. Taking into account that the Lagrange formula express the solution as

a sum of dim P d
n terms, the final value is the sum of (dim P d

n)2 terms. For n = 15,

d = 2, this gives a huge number of terms 10125 making the evaluation of the interpolant

a high demanding computational task leading to a unreliable computed value. Chung

and Yao suggested to use sets X leading to simple Lagrange formulae, in the sense that

the Lagrange polynomials can be completely factored into first degree polynomial factors.

These sets can be characterized by the following property

Geometric characterization by Chung and Yao. For each node x ∈ X, there exists a

set of n hyperplanes Γx,X = {Hx
1 , . . . , Hx

n} such that x /∈ ⋃n
i=1 Hx

i and X \{x} ⊂ ⋃n
i=1 Hx

i .

We say that X is a GCn set for short.

For GCn sets the Lagrange formula can be written as follows

p(x) =
∑

y∈X

f(y)ly(x), ly(x) =

n
∏

i=1

hy
i (x)

hy
i (y)

,

where hy
i is a first degree polynomial such that hy

i (x) = 0 is the equation of the hyperplane

Hy
i ∈ Γy,X (determined up to a constant factor). The formula retains many features of

the univariate one and has a similar computational complexity.

A lattice is determined by a set of affine/projective manifolds and its incidence rela-

tions. A lattice ca be described as a set of points X equipped with a lattice structure,

which means sets of lines, planes, hyperplanes, containing relevant subsets of X. An im-

portant feature of the lattice structure is the inclusion and the incidence relations between

the different affine/projective manifolds of the structure (points contained in lines, lines

in planes, planes intersecting in lines, lines intersecting at points, etc). In the analysis

of GCn sets X, it will be important the lattice structure provided by the hyperplanes

in Γx,X, x ∈ X and other auxiliary manifolds used to understand its structure. For this

reason, structured GCn sets are also called lattices.

Principal lattices of degree n can be defined as a set of points of the form

xα =

d
∑

r=0

αr

n
Vr, |α| = n
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where V0, . . . , Vd are the vertices of a nondegenerate simplex [V0, . . . , Vn], α = (α0, . . . , αd)

is a multiindex (a vector whose components are nonnegative integers) and |α| =
∑d

r=0 αi.

Let us observe that all the points xα with αr = i, lie on the same hyperplane

Hr
i = {x ∈ R

d | λr(x) = i/n},

where λr(x) denotes the r-th barycentric coordinate of the simplex [V0, . . . , Vd], defined

to be the unique linear function such that

λr(Vr) = 1, λr(Vj) = 0 j 6= r.

On the other hand xα can be regarded as the unique intersection of the hyperplanes Hr
i .

Therefore we have

Hr
i = aff hull{xα | αr = i, |α| = n}, {xα} =

d
⋂

r=0

Hr
αr

,

where aff hull denotes the affine hull of a set of points. The relation between points and

hyperplanes gives rise to a characteristic lattice structure. Let us observe that the set of

n hyperplanes

Γxα,X = {Hr
i | i < αr, r ∈ {0, . . . , d}}

contains all points in X \ {α} but not xα. Therefore any principal lattice of degree n is a

GCn set.

Principal lattices in the plane have a triangular structure. The points are points

regularly distributed on a triangle. There are three pencils of parallel lines and each point

is the intersection of the three concurrent lines each from one different pencil (see Figure

15). An analogous structure can be described for more than two variables: the points are

regularly distributed on a simplex. The hyperplanes belong to d + 1 different pencils of

parallel hyperplanes and each point is the intersection of d+1 hyperplanes each belonging

to a different pencil.

Figure 15. A planar principal lattice

All the interpolation nodes of a principal lattice lie inside the simplex [V0, . . . , Vd]. This

fact is fundamental for the construction of piecewise interpolants on a simplicial partition.
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Assuming that a multidimensional domain is subdivided into simplices, we can find an

interpolant to given data on each simplex. Since interpolants defined on adjacent simplices

agree on the common facet, we deduce that the piecewise polynomial interpolant is at

least continuous. Unfortunately, smoothness conditions are far from being trivial require

additional work. Principal lattices are often used for surface reconstruction and in the

finite element method. The subdivision of a bidimensional domain into triangles (also

called triangulation) is a more flexible tool than subdivision into rectangular pieces. For

higher dimensional domains, we can say that a partition into boxes suggests regular grids

while simplicial partitions offer more possibilities for constructing nonuniform partitions.

The use of nonuniform partitions is crucial for solving certain differential equations by

the finite element method. Using a more detailed representation in selected regions of the

domain (like corners), improves considerably the degree of approximation of the numerical

solution.

Figure 16. A triangulation of a domain for finite element analysis

Generalizations of principal lattices have been described. One may replace the condi-

tion that all hyperplanes in Hr
0 , . . . , H

r
n are parallel for r = 0, . . . , d by the more general

condition

Hr
0 , . . . , H

r
n ∈ Λr,

where Λr denotes a linear pencil of hyperplanes (see [24]). Lattices generated by polyno-

mial pencils of hyperplanes have also described.
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Figure 17. A three-pencil lattice
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Lattices generated by polynomial pencils of hyperplanes have also described [13]. This

motivates the following definition

Definition 6.1. A generalized principal lattice of degree n is a set X that can be so

indexed as X = {xα : α ∈ Γ0
n} that, for d + 1 families of hyperplanes

(Hr
i , i = 0, . . . , n), r ∈ {0, . . . , d},

containing altogether (d + 1)(n + 1) distinct hyperplanes,

{xα} =
d

⋂

r=0

Hr
αr

=
d

⋂

r∈{0:d}\{l}

Hr
αr

, ∀α ∈ Γ0
n, ∀l ∈ {0, . . . , d},

and
d

⋂

r=0

Hr
αr

∩ X 6= ∅ =⇒ α ∈ Γ0
n.

It has been recently shown that all lines defining a generalized principal lattice in the

plane must belong to the same cubic pencil [15]. In [10, 11] the generation of generalized

principal lattices from a cubic pencil of lines was discussed. In[12] a complete classification

of all lattices generated by cubic pencils was provided. Figure 18 shows some lattices

obtained by lines in the same reducible cubic pencil formed by a linear pencil and a

quadratic pencil. Figure 19 illustrates lattices obtained by lines in the same irreducible

cubic pencil. Multivariate constructions of generalized principal lattices using polynomial

pencils have been discussed in [13].
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Figure 18. Lattices generated by linear pencil and a quadratic pencil
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Figure 19. Lattices generated by cubic pencils of lines

Apart from generalized principal lattices some other kinds of GCn sets can be de-

scribed. For general dimension, the description is complicated and many questions re-

main unsolved. So, we shall limit our classification to planar GCn sets. As a criterion of

classification we shall use the number of lines containing n + 1 points of X

KX := {L ∈ ΓX | #(L ∩ X) = n + 1}, ΓX :=
⋃

x∈X

Γx,X.

Definition 6.2. We say that a GCn set X has defect d if the number of lines containing

n + 1 points of X is #KX = n + 2 − d. We also say that X is a GCn,d set for short.

It is easy to deduce that #K ≤ n + 2. Therefore, the defect of a GCn set is a nonneg-

ative number less than or equal to n − 2. However, Gasca and Maeztu [20] conjectured

that for any GCn set, there exists a line in ΓX containing n + 1 points of X, in other

words KX 6= ∅.

Conjecture GM. The defect d of any GCn,d set of degree n is less than n + 2, that is,

d < n + 2.

The conjecture has been proved for n ≤ 4 by J. R. Busch (see [6]) but even for n = 5,

this conjecture has not been settled. Let us introduce the greatest degree for which we
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can ensure that conjecture GM holds for a GCn set and all possible GC subsets

ν := max{n | Conjecture GM holds for all GC sets of degree <= n} ≥ 4.

In [8], it was shown that, for every planar GCn,d set X with n ≤ ν, then there

exists at least three lines in ΓX containing n + 1 points #K ≥ 3, that is, the defect is

≤ n − 1. Since GCn,n−1 sets with n ≤ ν + 2 are just generalized principal lattices (see

[14]), the classification of GCn sets, which are not generalized principal lattices is reduced

to examine the defects d < n − 1.

In [21], it was shown that there exist no GCn,d sets with d = 4 < n − 1. From this

fact it can be deduced that higher defects than 3 are not possible. The following result

(see [21]) summarizes the above mentioned results on classification of GCn sets

Theorem 6.3. Let X ⊂ R2 be a GCn,d set with d ≤ ν + 2. Then either 0 ≤ d ≤ 3 or

d = n − 1. If d = n − 1, then X is a generalized principal lattice.

In [19], [7] and [16] GCn,d sets with defects 0, 1, 2, 3 were described. In order to provide

a general description we recall that the lines in KX are in general position: any two lines

in KX meet at a point in X and no triple of lines are concurrent at the same point.

Theorem 6.4. A set X ⊂ R
2 is a GCn,d set, d ∈ {0, 1, 2, 3} if and only if X =

X0 ∪ X1 ∪ X2, where

X0 := {xij | {xij} = Ki ∩ Kj | i 6= j ∈ {0, 1, . . . , n + 1 − d}}

is the set of all intersection points of n + 2 − d lines in general position K0, . . . , Kn+1−d,

#X0 = (n + 1 − d)(n − d)/2,

X1 :=
n+1−d
⋃

i=0

Xi,1, Xi,1 := Ki ∩ X \
⋃

j 6=i

Kj

is the set of points belonging to exactly one of the lines Ki, i = 0, . . . , n + 1 − d, with

#Xi,1 = d and #X1 = d(n + 1 − d) and

X2 := X \
n+1−d
⋃

i=0

Ki

is the set of points in X not belonging to any line Ki, i = 0, . . . , n + 1 − d, containing

#X2 = d(d − 1)/2 points and,

• (a) if d = 0, then X1 = X2 = ∅;

• (b) if d = 1, then X2 = ∅ and not all points in X1 lie on the same line;
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• (c) if d = 2, then there exist three lines L0, L1, L2 such that X2 = L0 ∩ L1 ∩ L2,

Li ∩ Ki ∩ X = ∅, i = 0, 1, 2, and X1 ⊂ L0 ∪ L1 ∪ L2;

• (d) if d = 3, then there exist three lines L0, L1, L2, in general position, such that

X2 = {z01, z12, z02}, {zij} := Li ∩ Lj , i 6= j ∈ {0, 1, 2}
Xi,1 = Ki ∩

⋃

j 6=i Lj ∪ {zi}, {zi} := Xi,1 \
⋃

j 6=i Lj , i = 0, 1, 2,

Xi,1 = Ki ∩ (L0 ∪ L1 ∪ L2), i = 3, . . . , n + 1 − d,

and the points zi, zj , zij are collinear for i 6= j ∈ {0, 1, 2}.

Figures 20 and 21 illustrate the different types of line configurations associated with

GCn,d sets, d = 0, 1, 2, 3.
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Figure 20. A GC5,0 set (left) and a GC5,1 set (right)
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Figure 21. A GC5,2 set (left) and a GC5,3 set (right)
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