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Abstract

We deal with Arzéla-Ascoli type theorems in non-locally convex weighted spaces

CV0(X, E) and CVp(X, E).
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1 Introduction and Preliminaries

In this paper we characterize the precompact subsets of the weighted spaces CV0(X, E)

and CVp(X, E) for an arbitrary topological vector space (TVS) E. This extends to the

non-locally convex setting Arzéla-Ascoli type theorems given in [12]. Whenever the space

E happens to be quasicomplete, this turns out to be characterizations of relative com-

pactness. The importance of Arzéla-Ascoli type theorems is evident. Their applications

already in the case of scalar-valued functions are numerous, namely in differential equa-

tions, in finding extremal curves, in Mazure-Orlicz criterion for the consistency of sys-

tems involving certain inequalities etc. For example, by the Arzéla-Ascoli theorem, every

bounded equicontinuous sequence in C(X), with X compact, has a uniformly convergent

subsequence. This observation is very useful in the existence of solutions of differential

equations. In [12], W.M. Ruess and W.H. Summers used effectively the Arzéla-Ascoli the-

orem for the locally convex weighted spaces to obtain a solution of the Cauchy problem
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concerning the asymptotic almost periodic behavior of motion solutions. Our results may

then provide a framework for further applications in the non-locally convex setting.

Throughout this paper, unless stated otherwise, X will denote a completely regular Haus-

dorff space and E a non-trivial Hausdorff topological vector space (TVS) with a base W
of closed balanced neighborhoods of 0. A Nachbin family V on X is a set of non-negative

upper semicontinuous functions on X, called weights, such that given u, v ∈ V , t ≥ 0

and x ∈ X, there exists w ∈ V with tu, tv ≤ w (pointwise) and w(x) > 0. Let

C(X, E) be the vector space of all continuous E-valued functions on X, and Cb(X, E)

(resp. Cp(X, E), C0(X, E)) the subspace of C(X, E) consisting of those functions which

are bounded (resp. have precompact range, vanish at infinity). Further, let

CVb(X, E) = {f ∈ C(X, E) : vf(X) is bounded in E for all v ∈ V },
CVp(X, E) = {f ∈ C(X, E) : vf(X) is precompact in E for all v ∈ V },
CV0(X, E) = {f ∈ C(X, E) : vf vanishes at infinity on X for all v ∈ V }

Clearly, CV0(X, E) ⊂ CVp(X, E) ⊂ CVb(X, E). The first inclusion is due to the upper

semicontinuity of the weights. When E = IK, the above spaces are denoted by C(X),

Cb(X), Cp(X), C0(X), CVb(X), and CV0(X). If ϕ ∈ C(X) and a ∈ E, then ϕ ⊗ a is the

function in C(X, E) defined by (ϕ ⊗ a)(x) = ϕ(x)a; x ∈ X. The weighted topology wV

[11, 4] on CVb(X, E) is defined as the linear topology which has a base of neighborhoods

of 0 consisting of all sets of the form

N(v, G) = {f ∈ CVb(X, E) : vf(X) ⊂ G},

where v ∈ V and G ∈ W . We mention that, in the non-locally convex setting, the

weighted function spaces CV0(X, E) and CVb(X, E) have been studied by several authors

in recent years for a variety of problems; see e.g. [4, 5, 7, 8, 10, 13].

The following are some instances of weighted spaces.

1. If V = K+(X) = {λχX : λ > 0}, the set of all non-negative constant functions on

X, then CVb(X, E) = Cb(X, E), CVp(X, E) = Cp(X, E), CV0(X, E) = C0(X, E), and wV

is the uniform topology σ.

2. If V = S+
0 (X), the set of all non-negative upper semi-continuous functions on X

which vanish at infinity, then CVb(X, E) = CVp(X, E) = CV0(X, E) = Cb(X, E) and wV

is the strict topology β0.

3. If V = K+
c (X) = {λχK : λ > 0 and K ⊂ X, K compact}, then CVb(X, E) =

CVp(X, E) = CV0(X, E) = C(X, E) and wV is the compact-open topology k.

4. If V = K+
f (X) = {λχA : λ > 0 and A ⊂ X, A finite }, then CVb(X, E) =

CVp(X, E) = CV0(X, E) = C(X, E) and wV is the pointwise topology p.
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Clearly p ≤ k on C(X, E) and k ≤ β0 ≤ σ on Cb(X, E). Moreover, the conditions on

a Nachbin family V imply that p ≤ wV .

Let B(E, F ) denote the algebra of all continuous linear mappings T from a TVS E

into another F . For any collection A of subsets of E, BA(E, F ) denotes the subspace of

B(E, F ) consisting of those T which are bounded on the members of A together with the

topology τA of uniform convergence on the elements of A. This topology has a base of

neighborhoods of 0 consisting of all sets of the form

M(A, U) := {T ∈ B(E, F ) : T (A) ⊂ U},

where A ∈ A and U is a neighborhood of 0 in F .

Finally, we will say that a net {xα : α ∈ I} is a V -net if it is contained in Sv,1 := {x ∈
X : v(x) ≥ 1} for some v ∈ V . Following Bierstedt [1], X is said to be a VIR-space if a

function f : X → IR is continuous whenever, for each v ∈ V , the restriction of f to Sv,1

is continuous. If V = K(X), then X is a VIR-space means that X is a kIR-space.

2 Main Results

For any x ∈ X, let δx : CVb(X, E) → E denote the evaluation map δx(f) = f(x)

at x. Clearly, δx ∈ B(CVb(X, E), E). Next, define the evaluation map ∆ : X →
B(CVb(X, E), E) by ∆(x) = δx, x ∈ X. If the subscript c in Bc(CVb(X, E), E) stands for

the topology of uniform convergence on precompact subsets of CVb(X, E), then one has

the following lemma given in [10], see also [1, 12]

Lemma 2.1 The evaluation map ∆ : X → Bc(CVb(X, E), E) is continuous if and only if

every precompact subset of CVb(X, E) is equicontinuous. In particular, if X is VIR-space,

then every precompact subset of CVb(X, E) is equicontinuous.

The following theorem extends Theorem 2.1 of [12] to the general setting of TVS’s.

Theorem 2.2 Let A be a subset of CV0(X, E). Then A is precompact whenever the

following conditions hold.

i. A is equicontinuous.

ii. A(x) = {f(x) : f ∈ A} is precompact in E for each x ∈ X.

iii. vA vanishes at infinity on X for each v ∈ V . This is for each v ∈ V and G ∈ W,

there exists a compact set K ⊂ X such that v(y)f(y) ∈ G for all f ∈ A and y ∈ X \ K.

If X happens to be a VIR-space, then the converse is also true.

Proof. Suppose i. − iii. hold. Since CV0(X, E) ⊂ C(X, E), by i., A is an equicon-

tinuous subset of C(X, E). Further, since, by ii., A is p-precompact, it follows from ([14],
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p. 289) that A is a precompact subset of (C(X, E), k). To show that A is precompact in

CV0(X, E), let v ∈ V and G ∈ W. Choose a balanced H ∈ W such that H + H ⊂ G. By

iii., there exists a compact K ⊂ X such that

v(y)f(y) ∈ H for all f ∈ A and y ∈ X \ K. (1)

Since v is upper-semicontinuous, ‖v‖K = sup{v(y) : y ∈ K} < ∞. But A is precompact

in (C(X, E), k). Then there exist h1, . . . , hn ∈ A such that

A ⊂
n⋃

i=1

(hi + N(χK , (‖v‖k + 1)−1H)). (2)

We claim that

A ⊂
n⋃

i=1

{hi + N(v, G)}.

Let f ∈ A and y ∈ X. If y ∈ K, by (2), there exists j ∈ {1, ..., n} such that

v(y)(f(y) − hj(y)) ∈ v(y)(‖v‖k + 1)−1H ⊂ H.

If y ∈ X \ K, then, for any i ∈ {1, ..., n}, (1) gives

v(y)(f(y) − hi(y)) = v(y)f(y) − v(y)hi(y) ∈ H − H ⊂ G.

This establishes our claim, and so A is precompact in CV0(X, E). Now, Suppose X is a

VIR-space and that A is a precompact subset of CV0(X, E). Let us verify i.− iii. Since X

is a VIR-space, by (2.1), A is equicontinuous whereby i. On the other hand, since p ≤ wV ,

H is p-precompact. Hence, for each x ∈ X, A(x) is precompact in E. Whence ii. Finally,

let v ∈ V and G ∈ W and choose a balanced H ∈ W with H + H ⊂ G. Since A is

precompact, there exist h1, . . . , hn ∈ A such that

A ⊂
n⋃

i=1

(hi + N(v, H)). (3)

Put K = ∪n
i=1{y ∈ X : v(y)hi(y) /∈ H}. Since hi ∈ CV0(X, E) for each i, K is compact.

Now, let f ∈ A and y ∈ X \ K. By (3), there exists i ∈ {1, ..., n} such that f ∈
hi + N(v, H). Hence

v(y)f(y) = v(y)(f(y) − hi(y)) + v(y)hi(y) ∈ H + H ⊂ G.

Thus vA vanishes at infinity on X.

The following result is an extension of Theorem 2.2 of [12]. Following W.M. Ruess

and W.H. Summers, we shall set, for any A ⊂ CVp(X, E), v ∈ V and G ∈ W ,

Tx(A, v, G) = {y ∈ X : v(y)f(y) − v(x)f(x) ∈ G for all f ∈ A}, x ∈ X.

110



Theorem 2.3 Consider the following assertions:

a. (i) A is equicontinuous;

(ii) A(x) is precompact in E for each x ∈ X,

(iii) given v ∈ V and G ∈ W, there exists a compact set K ⊂ X such that {Tx(A, v, G) :

x ∈ K} covers X.

b. (i) vA(X) = {v(x)f(x) : x ∈ X, f ∈ A} is precompact in E for each v ∈ V ;

(ii) given v ∈ V and G ∈ W, there exists a finite set F ⊂ X such that {Tx(A, v, G) :

x ∈ F} covers X.

c. (i) A(x) is precompact in E for each x ∈ X;

(ii) given v ∈ V and G ∈ W, there exists a finite set F ⊂ X such that {Tx(A, v, G) :

x ∈ F} covers X.

d. A is precompact.

Then a. =⇒ b. =⇒ c. =⇒ d. If X is in addition a VIR-space, then also c. =⇒ d.

Proof. a. =⇒ b. Suppose a. holds. We first note that (i) and (ii) together imply, as

in the proof of (2.2), that A is a precompact subset of (C(X, E), k). We now verify b. (i)

and b (ii).

For b. (i), let v ∈ V , G ∈ W and choose a balanced H ∈ W such that H+H+H+H ⊂
G. By a. (iii), there exists a compact K ⊂ X such that

X =
⋃
{Tx(A, v, H) : x ∈ K}. (4)

Since A is precompact in (C(X, E), k), there exist h1, ..., hn ∈ A such that

A ⊂
n⋃

i=1

(hi + N(χk, (‖v‖k + 1)−1H). (5)

Moreover, since each vhi(K) is precompact in E, there exist {xij}ni
j=1 ⊂ K such that

vhi(K) ⊂
ni⋃

j=1

(v(xij)h(xij) + H). (6)

Now, fix any y ∈ X and f ∈ A. By (4), y ∈ Tx(A, v, H) for some x ∈ K and so

v(y)f(y) − v(x)f(x) ∈ H for all f ∈ A. (7)

By (5), there exists i ∈ {1, ..., n} such that

(f − hi)(K) ⊂ (‖v‖k + 1)−1H. (8)

By (6), there exists j ∈ {1, ..., n} such that

v(x)hi(x) − v(xi)hi(xij) ∈ H. (9)
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By (7), (8) and (9)

v(y)f(y) − v(xij)hi(xij) = (v(y)f(y) − v(x)f(x)) + v(x)(f(x) − h(x))

+(v(x)hi(x) − v(xij)hi(xij))

∈ H +
v(x)

‖v‖k + 1
H + H ⊂ G. (10)

i.e. vA(X) ⊂ ⋃n
i=1

⋃ni
j=1(v(xij)hi(xij) + G) and vA(X) is precompact in E.

For b. (ii), let v ∈ V and G ∈ W , and suppose these be same as in the proof of b. (i).

Also, let hi and xij be as above. Set F = ∪n
i=1{xij : j = 1, ..., ni}. Then, for any fixed

y ∈ X and f ∈ A, (9) and (10) give

v(y)f(y) − v(xij)f(xij) = (v(y)f(y) − v(xij)hi(xij))

+(v(xij)hi(xij) − v(xij)f(xij))

∈ (H + H + H) + H ⊂ G;

that is, y ∈ Tx(A, v, G) with x ∈ F . Hence {Tx(A, v, G) : x ∈ F} covers X.

The implication b. =⇒ c. is trivial.

c. =⇒ d. : Suppose that c. holds. Fix any v ∈ V and G ∈ W and choose a balanced

H ∈ W with H + H + H ⊂ G. By c. (ii) there exists a finite set F ⊂ X such that

{Tx(A, v, H) : x ∈ F} covers X. By c. (i), A is p-precompact, and so there exists

hi, ..., hn ∈ A such that

A ⊂
n⋃

i=1

(hi + N(χF , (‖v‖F + 1)−1H). (11)

We claim that A ⊂ ⋃n
i=1(hi +N(v, G)). Fix any f ∈ A. By (11), there exists i ∈ {1, ..., n}

such that

(f − hi)(F ) ⊂ (‖v‖F + 1)−1H).

Then, for any y ∈ X, y ∈ Tx(A, v, H) for some x ∈ F and so

v(y)f(y) − v(y)hi(y) = (v(y)f(y) − v(x)) + v(x)(f(x) − hi(x))

+(v(x)hi(x) − v(y)hi(y))

∈ H +
v(x)

‖v‖F + 1
H − H

⊂ H + H + H ⊂ G.

This proves our claim; i.e., d. holds.

Now, assume that X is a VIR-space and let us show that d. =⇒ a. Since A is a precompact

subset of CVp(X, E), just as in the proof of (2.2), a.(i) and a.(ii) follow. To prove a.(iii),

112



let v ∈ V and G ∈ W . Choose a balanced H ∈ W such that H + H + H ⊂ G. The

precompactness of A gives h1, ..., hn ∈ A such that

A ⊂
n⋃

i=1

(hi + N(v, H)). (12)

Now, consider the function h : X → En defined by h(x) = (h1(x), h2(x), . . . , hn(x)).

This is a continuous function such that (vh)(X) is precompact, for it is contained in the

product
∏n

i=1(vhi)(X) which is precompact. Hence for the neighborhood Hn, there exists

a finite subset F of X such that

(vh)(X) =
⋃

x∈F

((vh)(x) + Hn) . (13)

This gives

X ⊂
⋃

x∈F

Tx({h1, . . . , hn}, v, H). (14)

We now show that {Tx(A, v, G) : x ∈ F} covers X. Fix y ∈ X. By (14), y ∈
Tx({hi}n

i=1, v, H) for some x ∈ F and so

v(y)hi(y) − v(x)hi(x) ∈ H ∀ i = 1, ..., n. (15)

Given f ∈ A. By (12), there exists i ∈ {1, ..., n} such that f − hi ∈ N(v, H); this is

v(z)(f(z) − hi(z)) ∈ H ∀ z ∈ X. (16)

So, by (15) and (16),

v(y)f(y) − v(x)f(x) = (v(y)f(y) − v(y)hi(y))

+(v(y)hi(y) − v(x)hi(x))

+(v(x)hi(x) − v(x)h(x))

∈ H + H + H ⊂ G.

Hence y ∈ Tx(A, v, G); i.e., a.iii) holds.

We mention that in the particular case of V = S+
0 (X), (2.2) and (2.3) reduce to

Theorem 3.6 of [3]. Further, the Corollaries 2.5.1(a), 2.5.2(a), 2.5.3, 2.5.4(a) of [12]

remain valid in the above general setting and are stated as follows:

Corollary 2.4 ([2], p. 81) Let X be a kIR-space and E a quasicomplete TVS. A subset

A of (C(X, E), k) is relatively compact if and only if the following conditions hold.

(i) A is equicontinuous on each compact subset of X,

(ii) A(x) is relatively compact in E for each x ∈ X.
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Corollary 2.5 Let X be a locally compact space and E a quasicomplete TVS. A subset

A of (C0(X, E), u) is relatively compact if and only if the following conditions hold.

(i) A is equicontinuous,

(ii) A(x) is relatively compact in E for each x ∈ X,

(iii) A uniformly vanishes at infinity on X (i.e., for any G ∈ W, there exists a compact

set K ⊂ X such that f(y) ∈ G for all f ∈ A and y ∈ X\K).

Corollary 2.6 ( [3], Theorem 3.6) Let X be a kIR-space and E a quasicomplete TVS.

A subset A of (Cb(X, E), β0) is relatively compact if and only if the following conditions

hold.

(i) A is equicontinuous on each compact subset of X

(ii) A(x) is relatively compact in E for every x ∈ X,

(iii) A is uniformly bounded (i.e., A(X) is bounded in E).

Corollary 2.7 Let E be a quasicomplete TVS. A subset A of (Cp(X, E), u) is relatively

compact if and only if the following conditions hold.

(i) A(X) is relatively compact in E,

(ii) given G ∈ W, there exists a finite open cover {Ki : i = 1, ..., n} of X such that,

for any i ∈ {1, ..., n} and x, y ∈ Ki,

f(x) − f(y) ∈ G, ∀f ∈ A.
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