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Kouba-Algiers. Algeria

Rev. Real Academia de Ciencias. Zaragoza. 60: 99–106, (2005).

Abstract

This paper deals with the Gevrey regularity of pseudo-differential operators in

C∞. We prove that a result of Taylor [12], remains true in the Gevrey case.
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1 Introduction

Many authors have been interested in the generalisation of the fundamental theorems

on the L2 and Hs continuity of pseudo-differential operators in C∞ and analytic classes.

We can quote, Beals [1], Calderon and Vaillancourt [4], Coifman and Meyer [5], Hwang

[8] and Rodino [11]. Boulkhemair [2] gave a survey of these results and improved several

of them. To our knowledge, the Gevrey regularity of these operators is relatively slightly

explored. Boutet de Monvel and Krée [3], Hazi [7] and Matsuzawa [10] have tackled it.

The starting-point of this study is a result mentionned in Taylor [12]. More precisely, we

have reconsidered it in the Gevrey case and see if it remains true. The answer is positive.

In the sequel, we will use the following conventions:

- R
n is the n-dimensional vector space in which every point x is defined by its n

coordinates x1, x2, ..., xn.

- Ω denote, unless expressed otherwise, an open set of R
n.

- x + y is the point of coordinates x1 + y1, x2 + y, ..., xn + yn.

- dx refers to the element of hypercube dx1dx1...dxn

- The order of a system of integers p = {p1, p2, ..., pn} is |p| = p1 + p2 + ... + pn

- Dα = i−|α| ∂α1

∂x
α1
1

∂
α2

∂x
α2
2

... ∂αn

∂xαn
n

.
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- ∆x = ∂2

∂x2
1.

+ ∂2

∂x2
2.

+ ... + ∂2

∂x2
n.

.

- p! = p1!p2!...pn!

- û stands for the Fourier transform of u.

- A∗ is the adjoint of the operator A.

- E(Rn) is the space of indefinitely differentiable functions on R
n.

- D(Ω) is the space of indefinitely differentiable functions on R
n, with compact support

in Ω.

We set in ([7], [6]):

Definition 1 Let s a real number greater than or equal to 1. A real function f in C∞(Ω)

is said of Gevrey class with order s if, for any compact subset K ⊂ Ω, there exists a

constant C > 0 such that ∀α ∈ N
n ‖Dαf‖ ≤ C |α|+1 (|α|!)s .

Definition 2 Let m ∈ R and ρ, δ two real numbers such that 0 ≤ δ < ρ ≤ 1. We say

that a real function a = a(x, ξ) in C∞(Ω × R
n), is a Gevrey symbol with order s of type

(m, ρ, δ) on Ω if, for any compact subset K ⊂ Ω, there exist positive constants C0, C1, B

such that

sup
(x,ξ)∈(Rn×Rn)

∣
∣Dα

ξ Dβ
xa(x, ξ)

∣
∣ ≤ C0C

|α+β|
1 (|α|!)s (|β|!)s (

1 + |ξ|2
) 1

2
(m−ρ|α|+δ|β|)

(1)

for any ξ ∈ R
n with |ξ| ≥ B |α|s and any α, β ∈ N

n.

The vector space of such symbols, somtimes called usual or classical symbols, is refered

to as ρ,δS
m
(G,s)(Ω × R

n).

We are concerned with the class of symbols (m, 1, 1). Let us to point out here that

the function a(x, ξ) = a is taken of Gevrey class with order s in x and ξ whereas, often

in the literature (see in particular [3]), it is taken of Gevrey class with order s in x and

analytic (s = 1) in ξ (which amounts to take s = 1 in the factor (|α|!)s).

The following theorem gives the asymptotic extension of a symbol.

Theorem 1 Let aj a symbol of ρ,δS
mj

(G,s)(Ω×R
n), where (mj)j is a real sequence decreasing

to −∞. Then, there exists a symbol a of ρ,δS
m0

(G,s)(Ω×R
n) such that, for any N > 0, there

holds

a −
N−1∑

0

aj ∈ρ,δ SmN

(G,s)(Ω × R
n).

We also write in this case a ∼

∞∑

0

aj.
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A pseudo-differential operator of class s, A = a(x, D), associated to a symbol a of the

space ρ,δS
m
(G,s)(Ω×R

n) is defined, relatively to the standard quantization, by the formula

a(x, D)u(x) = (2π)−n

∫

Rn

eixξa(x, ξ)û(ξ)dξ, u ∈ D(Rn).

We write A = opa and say that A belongs to Opρ,δS
m
(G,s)(Ω × R

n).

The distribution-kernel T of a(x, D) is defined by

T (x, y) = (2π)−n

∫

Rn

ei(x−y)ξa(x, ξ)dξ.

2 Chronological recall of some results.

Among the considerable results devoted to the L2 continuity of pseudo-differential

operators in the case of C∞−quantizations, (see [2] in particular), we recall

Theorem 2 A = a(x, D) sends continuously L2(Rn) in itself whenever

∥
∥Dβ

xDα
ξ a(x, ξ)

∥
∥ ≤ Cαβ (2)

for all multi-indices α, β such that |α| , |β| ≤ 3n + 4 (Cαβ being a positive constant).

In addition, if we set

‖A‖0 = sup
|α,β|≤3n+4

Cαβ

where Cαβ are given by (2), then

‖a(x, D)u‖L2(Rn) ≤ C ‖A‖0 ‖u‖L2(Rn)

where C is a positive constant depending only on n.

Theorem 3 a(x, D) defines a bounded operator on L2(Rn) whenever

Dβ
xDα

ξ a(x, ξ) ∈ L∞(Rn × R
n)

for all multi-indices α, β such that |α| , |β| ≤
[

n
2

]
or α, β ∈ {0, 1}n. ([u] denotes the integer

part of the real u.)

In 1972, Calderón and Vaillancourt, [4], proved the following result :

Theorem 4 a(x, D) is bounded in L2(Rn) if there exists δ such that 0 ≤ δ < 1 and

∣
∣Dβ

xDα
ξ a(x, ξ)

∣
∣ ≤ C |ξ|δ(|β|−|α|)

for

|α| ≤ n + 2
[n

2

]

and |β| ≤ 2N, with N ≥ 5n

4(1 − δ)
.
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In 1978, Coifman and Meyer, [5], improved this result:

Theorem 5 an opa is bounded in L2(Rn) if there exists δ such that 0 ≤ δ < 1 and

∣
∣Dβ

xDα
ξ a(x, ξ)

∣
∣ ≤ C |ξ|δ(|β|−|α|) for |α| , |β| ≤

[n

2

]

+ 1.

In 1987, Hwang, [8], proved that:

Theorem 6 an opa is bounded in L2(Rn) if there exists δ such that 0 ≤ δ < 1 and
∣
∣Dβ

xDα
ξ a(x, ξ)

∣
∣ ≤ C |ξ|δ(|β|−|α|)

for αj = 0 or 1 and βj = 0 or 1 if n = 1 and βj = 0, 1 or 2 in general.

3 Our problem

In what follows, we will prove

Theorem 7 Assume a(x, ξ) ∈δ,δ Sm
(G,s)(Ω × R

n), m ≤ 0, 0 ≤ δ < 1, and

sup
x∈K

∣
∣Dβ

xDα
ξ a(x, ξ)

∣
∣ ≤ C0C

|α+β|
1 (|α|!)s (|β|!)s (

1 + |ξ|2
)m−δ(|α|−|β|)

(3)

for any ξ ∈ R
n with |ξ| ≥ B|α|s and |α|, |β| ≤ 3n + 4 = N .

(B is the constant in the relation (1)).

Then, the operator A = a(x, D) acts continuously from L2(Ω) in itself.

Moreover, if

|A|δ = sup
|α,β|≤N

C0C
|α+β|
1 (|α|!)s (|β|!)s

we get

‖a(x, D)u‖L2(Rn) ≤ C ‖A‖δ ‖u‖L2(Rn)

where C is a positive constant depending only on δ.

Proof. It is sufficient to prove this theorem for a ∈δ,δ S0
Gs(Ω × R

n). We make use of two

results. The first of which is due to M. Cotlar and E. Stein, on sums of almost orthogonal

operators.

Definition 3 (Almost orthogonal operators) We will call a familly of continuous

operators {Ai : i ∈ Z} almost orthogonal, if they satisfy the following conditions:

‖A∗
i Aj‖ ≤ a(i, j),

∥
∥AiA

∗
j

∥
∥ ≤ b(i, j),

where a(i, j) and b(i, j) are non negative symmetric functions on Z × Z which satisfy

‖a‖1/2
∞,1/2 = sup

i∈Z

∑

j∈Z

a1/2(i, j) < ∞, ‖b‖1/2
∞,1/2 = sup

i∈Z

∑

j∈Z

b1/2(i, j) < ∞.
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Lemma 1 Let A1, A2, . . . , AN be bounded operators from a Hilbert space H1 to another

H2 such that
∑

k

√∥
∥A∗

jAk

∥
∥ ≤ M,

∑

k

√

‖AjA∗
k‖ ≤ M, (4)

where M is a positive constant. Then, there folows that ‖
∑

k

Aj‖ ≤ M.

Proof If A =
∑

Aj, we have ‖A‖2 = ‖A∗A‖ , and more generaly, by the spectral theorem,

‖P‖2m = ‖(A∗A)m‖ . We expand in a sum and use the fact that

‖A∗
j1

Aj2
...A∗

j2m−1
Aj2m

‖ ≤
min

(
‖A∗

j1
Aj2

‖...‖A∗
j2m−1

Aj2m
‖, ‖A∗

j1
‖‖Aj2

A∗
j3
‖...‖Aj2m−2

A∗
j2m−1

‖‖Aj2m
‖
)

Taking the geometric mean of the two estimates and noting that ‖Aj‖ ≤ M . y hypothesis,

we obtain

‖A‖2m≤ M
∑ √

‖A∗
j1

Aj2
‖
√

‖Aj2
A∗

j3
‖...

√

‖A∗
j2m−1

Aj2m
‖

The sum is taken over j1, j2, ..., j2m. If we use (4) to estimate successivley the sum

over j2m, j2, ..., j2,then only the sum over j1 is left over and we see that

‖A‖2m = NM2m.

Taking 2m-th roots and, letting m tends to ∞, we get ‖A‖ ≤ M , as expected. �
We also need the following

Lemma 2 Let X be a measurable space. Assume K(x, y) to be a kernel-distribution

satisfying ∫

X

‖K(x, y)‖dy ≤ C0,

∫

X

‖K(x, y)‖dx ≤ C1,

with C0 and C1 being two positive constants.

Then Pu(x) =
∫

K(x, y)u(y)dy defines a continuous operator on L2(X); moreover

‖P‖ ≤
√

C0C1

Proof We have

‖〈Pu, v〉‖ ≤
∫
‖K(x, y)‖‖u(x)‖‖v(y)‖dxdy

=
∫ (√

‖K(x, y)‖‖u(x)‖
) (√

‖K(x, y)‖‖v(y)‖
)

dxdy

≤
√∫

‖K(x, y)‖‖u(x)‖2dydx
√∫

‖K(x, y)‖‖v(y)‖2dxdy

≤
√

C0‖u‖L2

√
C1‖v‖L2 ,

and the claim follows. �

Let us turn back to the proof of our main theorem. We shall put the operator A under

the form of a sum of quasi-orthogonal operators A =
∑

Aj . To this end, we shoose a
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partition of the unity ϕj on [0,∞[ ,−1, 0, 1, 2, . . . ,such that ϕ−1 has support in [0, 1[, ϕj

has support in ]2j−1, 2j+1[ , j ≥ 0, and that

ϕj(t) = 1, if
∣
∣t − 2j

∣
∣ ≤ 1

4
2j; j ≥ 0, and ϕ

(k)
j (t) ≤ Ck2

jk, j ≥ 0.

Such partition exists. Set

aj(x, ξ) = ϕj

(

C
(
1 + |ξ|2

) δ
2

)

a(x, ξ),

for a certain constant C > 0.

We aim to apply lemma 1. Firstly, we estimate the norm of the operator aj(x, D). On

the support of aj(x, ξ), we have

2j−1 ≤ C
(
1 + |ξ|2

) δ
2 ≤ 2j.

As a consequence, Eq. (3) yields

sup
x∈K

‖Dα
ξ Dβ

xaj(x, ξ)‖ ≤ C0C̃
‖α+β‖
1 (‖α‖!)s (‖β‖!)s (

1 + ‖ξ‖2
)j(‖β‖−‖α‖)

, (5)

where C̃ is a positive constant depending on j. Now, let us consider Uj the unit operator

on L2(Rn), defined by

Ujψ(x) = 2
nj
2 ψ(2jx).

There follows that Bj = U∗
j AjUj is a pseudo-differential operator of Gevrey symbol

type bj(x, ξ) = aj(2
−jx, 2jξ), of class s, and (2.3) implies

sup
x∈K

‖Dα
ξ Dβ

xbj(x, ξ)‖ ≤ C0C̃
‖α+β‖
1 (‖α‖!)s (‖β‖!)s (6)

Theorem 2 yields ‖Aj‖ ≤ CH, where

H = sup
|α|,|β|≤N

C0C̃
|α+β|
1 (|α|!)s (|β|!)s .

Now, we give estimates of the norms of the operators A∗
kAj and AjA

∗
k, with ‖k−j‖ ≥ 4.

In each case, the symbols Aj and Ak have disjoint supports, and A∗
kAj and AjA

∗
k admit

regular kernels. Hence, we may expect to obtain convenient bounds for their norms by

elementary tools.

For k − j ≥ 4, if ak(x, η) aj(y, ξ) �= 0 , then

(
1 + ‖η‖2

) δ
2 ∼ 2k and

(
1 + ‖ξ‖2

) δ
2 ∼ 2j

and simultaneously, this implies

‖ξ − η‖ ≥ C(2j + 2k)1+γ
(
1 + ‖ξ − η‖2

) γ
2 , with γ =

1 − δ

δ(1 + δ)
(7)
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Now, A∗
kAju(x) =

∫
F (x, y)u(y)dy, where

F (x, y) =

∫

ak(x, ξ)aj(z, η)ei(xξ−zξ+zη−yη)dzdξdη.

An integration by parts gives

F (x, y) =

∫

bL(x, y, z, ξ, η)ei(xξ−zξ+zη−yη)dzdξdη, (8)

with

bL(x, y, z, ξ, η) = (1 + ‖x − z‖2)
−L

(1 + ‖z − y‖2)
−L

(1 − ∆ξ)
N(1 − ∆η)

L‖ξ − η‖2L(−∆z)
Lak(z, ξ)aj(z, η).

Then

‖bL(x, y, z, ξ, η)‖ ≤ C
[(

1 + ‖x − z‖2
)−L

2
(
1 + ‖z − y‖2

)−L
2 ‖ξ − η‖−1(2j + 2k)

]2L

. (9)

Hence, in Supp (bL), if ‖k − j‖ ≥ 4 , the relation (7) is plausible. Substituting into

(9), yields

‖bL(x, y, z, ξ, η)‖ ≤ C
[(

1 + ‖x − z‖2
)−L

2
(
1 + ‖z − y‖2

)−L
2

(
1 + ‖ξ − η‖2

)− γ
2 (2j + 2k)−γ

]2L

.

(10)

If

L > max

(
n

2
,

3

2γ
,

n

2γ

)

,

we may make an integration in (10), and with (8), we deduce

‖F (x, y)‖ ≤ C
(
1 + ‖x − y‖2

)−L− γ
2 (2j + 2k)−γ,

from which there folows

‖A∗
kAj‖ ≤ C(2j + 2k)−γ

provided ‖k − j‖ ≥ 4. Now, for ‖k − j‖ ≤ 4, we have

‖A∗
kAj‖ ≤ ‖A∗

k‖ ‖Aj‖ ≤ H2.

Then, in all cases, we obtain

‖A∗
kAj‖ ≤ C2−γ‖j−k‖. (11)

Estimating AjA
∗
k is easier. Indeed, ÂjA∗

ku(ξ) =
∫

χ(ξ, η)û(η)dη, where

χ(x, η) =

∫

aj(x, ζ)ak(y, ζ)ei(−xξ+xζ−yζ+yη)dxdζdy.

Now, ‖k − j‖ ≥ 4 implies χ(x, η) = 0, then AjA
∗
k = 0 for ‖k − j‖ ≥ 4. When

‖k − j‖ ≤ 4, we make use the inequality

‖A∗
kAj‖ ≤ ‖A∗

k‖ ‖Aj‖ ≤ H2
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to get

‖AjA
∗
k‖ ≤ C2−γ‖j−k‖. (12)

Combining (11) and (12) together with Cotlar-Knapp-Stein lemma, we deduce that

the operator A = a(x, D) =
∑

Aj is bounded in L2(Rn).

The second statement of the theorem is straightforward. �
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