Rev. Real Academia de Ciencias. Zaragoza. 60: 99–106, (2005).

About Gevrey- L^2 -estimates of pseudo-differential operators associated to the Gevrey symbols

Mohammed Hazi

Department of Mathematics. École Normale Supérieure Kouba-Algiers. Algeria

Abstract

This paper deals with the Gevrey regularity of pseudo-differential operators in C^{∞} . We prove that a result of Taylor [12], remains true in the Gevrey case.

Key words: L^2 -continuity, pseudo-differential operators

1 Introduction

Many authors have been interested in the generalisation of the fundamental theorems on the L^2 and H^s continuity of pseudo-differential operators in C^{∞} and analytic classes. We can quote, Beals [1], Calderon and Vaillancourt [4], Coifman and Meyer [5], Hwang [8] and Rodino [11]. Boulkhemair [2] gave a survey of these results and improved several of them. To our knowledge, the Gevrey regularity of these operators is relatively slightly explored. Boutet de Monvel and Krée [3], Hazi [7] and Matsuzawa [10] have tackled it. The starting-point of this study is a result mentionned in Taylor [12]. More precisely, we have reconsidered it in the Gevrey case and see if it remains true. The answer is positive.

In the sequel, we will use the following conventions:

- \mathbb{R}^n is the *n*-dimensional vector space in which every point x is defined by its n coordinates $x_1, x_2, ..., x_n$.

- Ω denote, unless expressed otherwise, an open set of \mathbb{R}^n .

- x + y is the point of coordinates $x_1 + y_1, x_2 + y, ..., x_n + y_n$.

- dx refers to the element of hypercube $dx_1 dx_1 \dots dx_n$

- The order of a system of integers $p = \{p_1, p_2, ..., p_n\}$ is $|p| = p_1 + p_2 + ... + p_n$

$$- D^{\alpha} = i^{-|\alpha|} \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}} \dots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}$$

$$-\Delta_x = \frac{\partial^2}{\partial x_{1\cdot}^2} + \frac{\partial^2}{\partial x_{2\cdot}^2} + \dots + \frac{\partial^2}{\partial x_{n\cdot}^2}.$$

 $- p! = p_1! p_2! \dots p_n!$

- \widehat{u} stands for the Fourier transform of u.

- A^* is the adjoint of the operator A.

- $\mathcal{E}(\mathbb{R}^n)$ is the space of indefinitely differentiable functions on \mathbb{R}^n .

- $\mathcal{D}(\Omega)$ is the space of indefinitely differentiable functions on \mathbb{R}^n , with compact support in Ω .

We set in ([7], [6]):

Definition 1 Let s a real number greater than or equal to 1. A real function f in $C^{\infty}(\Omega)$ is said of Gevrey class with order s if, for any compact subset $K \subset \Omega$, there exists a constant C > 0 such that $\forall \alpha \in \mathbb{N}^n ||D^{\alpha}f|| \leq C^{|\alpha|+1} (|\alpha|!)^s$.

Definition 2 Let $m \in \mathbb{R}$ and ρ, δ two real numbers such that $0 \leq \delta < \rho \leq 1$. We say that a real function $a = a(x,\xi)$ in $C^{\infty}(\Omega \times \mathbb{R}^n)$, is a Gevrey symbol with order s of type (m, ρ, δ) on Ω if, for any compact subset $K \subset \Omega$, there exist positive constants C_0, C_1, B such that

$$\sup_{(x,\xi)\in(\mathbb{R}^n\times\mathbb{R}^n)} \left| D_{\xi}^{\alpha} D_x^{\beta} a(x,\xi) \right| \le C_0 C_1^{|\alpha+\beta|} \left(|\alpha|! \right)^s \left(|\beta|! \right)^s \left(1 + |\xi|^2 \right)^{\frac{1}{2}(m-\rho|\alpha|+\delta|\beta|)} \tag{1}$$

for any $\xi \in \mathbb{R}^n$ with $|\xi| \ge B |\alpha|^s$ and any $\alpha, \beta \in \mathbb{N}^n$.

The vector space of such symbols, somtimes called usual or classical symbols, is referred to as $_{\rho,\delta}S^m_{(G,s)}(\Omega \times \mathbb{R}^n)$.

We are concerned with the class of symbols (m, 1, 1). Let us to point out here that the function $a(x, \xi) = a$ is taken of Gevrey class with order s in x and ξ whereas, often in the literature (see in particular [3]), it is taken of Gevrey class with order s in x and analytic (s = 1) in ξ (which amounts to take s = 1 in the factor $(|\alpha|!)^s$).

The following theorem gives the asymptotic extension of a symbol.

Theorem 1 Let a_j a symbol of $_{\rho,\delta}S^{m_j}_{(G,s)}(\Omega \times \mathbb{R}^n)$, where $(m_j)_j$ is a real sequence decreasing to $-\infty$. Then, there exists a symbol a of $_{\rho,\delta}S^{m_0}_{(G,s)}(\Omega \times \mathbb{R}^n)$ such that, for any N > 0, there holds

$$a - \sum_{0}^{N-1} a_j \in_{\rho,\delta} S^{m_N}_{(G,s)}(\Omega \times \mathbb{R}^n).$$

We also write in this case $a \sim \sum_{0}^{\infty} a_j$.

A pseudo-differential operator of class s, A = a(x, D), associated to a symbol a of the space $_{\rho,\delta}S^m_{(G,s)}(\Omega \times \mathbb{R}^n)$ is defined, relatively to the standard quantization, by the formula

$$a(x,D)u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix\xi} a(x,\xi)\widehat{u}(\xi)d\xi, \qquad u \in \mathcal{D}(\mathbb{R}^n).$$

We write A = opa and say that A belongs to $Op_{\rho,\delta}S^m_{(G,s)}(\Omega \times \mathbb{R}^n)$.

The distribution-kernel T of a(x, D) is defined by

$$T(x,y) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(x-y)\xi} a(x,\xi) d\xi.$$

2 Chronological recall of some results.

Among the considerable results devoted to the L^2 continuity of pseudo-differential operators in the case of C^{∞} -quantizations, (see [2] in particular), we recall

Theorem 2 A = a(x, D) sends continuously $L^2(\mathbb{R}^n)$ in itself whenever

$$\left\| D_x^{\beta} D_{\xi}^{\alpha} a(x,\xi) \right\| \le C_{\alpha\beta} \tag{2}$$

for all multi-indices α, β such that $|\alpha|, |\beta| \leq 3n + 4$ ($C_{\alpha\beta}$ being a positive constant). In addition, if we set

$$||A||_0 = \sup_{|\alpha,\beta| \le 3n+4} C_{\alpha\beta}$$

where $C_{\alpha\beta}$ are given by (2), then

$$||a(x,D)u||_{L^{2}(\mathbb{R}^{n})} \leq C ||A||_{0} ||u||_{L^{2}(\mathbb{R}^{n})}$$

where C is a positive constant depending only on n.

Theorem 3 a(x, D) defines a bounded operator on $L^2(\mathbb{R}^n)$ whenever

$$D_x^\beta D_\xi^\alpha a(x,\xi) \in L^\infty(\mathbb{R}^n \times \mathbb{R}^n)$$

for all multi-indices α, β such that $|\alpha|, |\beta| \leq \left[\frac{n}{2}\right]$ or $\alpha, \beta \in \{0, 1\}^n$. ([u] denotes the integer part of the real u.)

In 1972, Calderón and Vaillancourt, [4], proved the following result :

Theorem 4 a(x,D) is bounded in $L^2(\mathbb{R}^n)$ if there exists δ such that $0 \leq \delta < 1$ and

$$\left| D_x^{\beta} D_{\xi}^{\alpha} a(x,\xi) \right| \le C \left| \xi \right|^{\delta(|\beta| - |\alpha|)}$$

for

$$|\alpha| \le n+2\left[\frac{n}{2}\right]$$
 and $|\beta| \le 2N$, with $N \ge \frac{5n}{4(1-\delta)}$.

In 1978, Coifman and Meyer, [5], improved this result:

Theorem 5 an opa is bounded in $L^2(\mathbb{R}^n)$ if there exists δ such that $0 \leq \delta < 1$ and

$$\left| D_x^{\beta} D_{\xi}^{\alpha} a(x,\xi) \right| \le C \quad |\xi|^{\delta(|\beta| - |\alpha|)} \quad \text{for } |\alpha|, |\beta| \le \left[\frac{n}{2}\right] + 1.$$

In 1987, Hwang, [8], proved that:

Theorem 6 an opa is bounded in $L^2(\mathbb{R}^n)$ if there exists δ such that $0 \leq \delta < 1$ and $\left| D_x^\beta D_{\xi}^\alpha a(x,\xi) \right| \leq C \left| \xi \right|^{\delta(|\beta| - |\alpha|)}$

for $\alpha_j = 0$ or 1 and $\beta_j = 0$ or 1 if n = 1 and $\beta_j = 0, 1$ or 2 in general.

3 Our problem

In what follows, we will prove

Theorem 7 Assume
$$a(x,\xi) \in_{\delta,\delta} S^m_{(G,s)}(\Omega \times \mathbb{R}^n), \ m \le 0, \ 0 \le \delta < 1, \ and$$
$$\sup_{x \in K} \left| D^{\beta}_x D^{\alpha}_{\xi} a(x,\xi) \right| \le C_0 C_1^{|\alpha+\beta|} \left(|\alpha|! \right)^s \left(|\beta|! \right)^s \left(1 + |\xi|^2 \right)^{m-\delta(|\alpha|-|\beta|)}$$
(3)

for any $\xi \in \mathbb{R}^n$ with $|\xi| \ge B|\alpha|^s$ and $|\alpha|, |\beta| \le 3n + 4 = N$. (B is the constant in the relation (1)).

Then, the operator A = a(x, D) acts continuously from $L^2(\Omega)$ in itself.

Moreover, if

$$|A|_{\delta} = \sup_{|\alpha,\beta| \le N} C_0 C_1^{|\alpha+\beta|} (|\alpha|!)^s (|\beta|!)^s$$

we get

$$||a(x,D)u||_{L^{2}(\mathbb{R}^{n})} \leq C ||A||_{\delta} ||u||_{L^{2}(\mathbb{R}^{n})}$$

where C is a positive constant depending only on δ .

Proof. It is sufficient to prove this theorem for $a \in_{\delta,\delta} S^0_{G^s}(\Omega \times \mathbb{R}^n)$. We make use of two results. The first of which is due to M. Cotlar and E. Stein, on sums of almost orthogonal operators.

Definition 3 (Almost orthogonal operators) We will call a family of continuous operators $\{A_i : i \in \mathbb{Z}\}$ almost orthogonal, if they satisfy the following conditions:

$$||A_i^*A_j|| \le a(i,j), \qquad ||A_iA_j^*|| \le b(i,j)$$

where a(i, j) and b(i, j) are non negative symmetric functions on $\mathbb{Z} \times \mathbb{Z}$ which satisfy

$$\|a\|_{\infty,1/2}^{1/2} = \sup_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} a^{1/2}(i,j) < \infty, \qquad \|b\|_{\infty,1/2}^{1/2} = \sup_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} b^{1/2}(i,j) < \infty.$$

Lemma 1 Let A_1, A_2, \ldots, A_N be bounded operators from a Hilbert space H_1 to another H_2 such that

$$\sum_{k} \sqrt{\left\|A_j^* A_k\right\|} \le M, \qquad \sum_{k} \sqrt{\left\|A_j A_k^*\right\|} \le M,\tag{4}$$

where M is a positive constant. Then, there follows that $\|\sum_{k} A_{j}\| \leq M$.

Proof If $A = \sum A_j$, we have $||A||^2 = ||A^*A||$, and more generally, by the spectral theorem, $||P||^{2m} = ||(A^*A)^m||$. We expand in a sum and use the fact that

$$\begin{split} \|A_{j_1}^*A_{j_2}...A_{j_{2m-1}}^*A_{j_{2m}}\| &\leq \\ \min\left(\|A_{j_1}^*A_{j_2}\|...\|A_{j_{2m-1}}^*A_{j_{2m}}\|, \|A_{j_1}^*\|\|A_{j_2}A_{j_3}^*\|...\|A_{j_{2m-2}}A_{j_{2m-1}}^*\|\|A_{j_{2m}}\|\right) \end{split}$$

Taking the geometric mean of the two estimates and noting that $||A_j|| \leq M$. y hypothesis, we obtain

$$\|A\|^{2m} \le M \sum \sqrt{\|A_{j_1}^*A_{j_2}\|} \sqrt{\|A_{j_2}A_{j_3}^*\|} \dots \sqrt{\|A_{j_{2m-1}}^*A_{j_{2m}}\|}$$

The sum is taken over $j_1, j_2, ..., j_{2m}$. If we use (4) to estimate successivley the sum over $j_{2m}, j_2, ..., j_2$, then only the sum over j_1 is left over and we see that

$$||A||^{2m} = NM^{2m}.$$

Taking 2*m*-th roots and, letting *m* tends to ∞ , we get $||A|| \leq M$, as expected. \Box We also need the following

Lemma 2 Let X be a measurable space. Assume K(x, y) to be a kernel-distribution satisfying

$$\int_{X} \|K(x,y)\| dy \le C_0, \qquad \int_{X} \|K(x,y)\| dx \le C_1,$$

with C_0 and C_1 being two positive constants.

Then $Pu(x) = \int K(x, y)u(y)dy$ defines a continuous operator on $L^2(X)$; moreover

$$\|P\| \le \sqrt{C_0 C_1}$$

Proof We have

$$\begin{aligned} \|\langle Pu, v \rangle \| &\leq \int \|K(x, y)\| \|u(x)\| \|v(y)\| dx dy \\ &= \int \left(\sqrt{\|K(x, y)\|} \|u(x)\|\right) \left(\sqrt{\|K(x, y)\|} \|v(y)\|\right) dx dy \\ &\leq \sqrt{\int \|K(x, y)\| \|u(x)\|^2 dy dx} \sqrt{\int \|K(x, y)\| \|v(y)\|^2 dx dy} \\ &\leq \sqrt{C_0} \|u\|_{L^2} \sqrt{C1} \|v\|_{L^2}, \end{aligned}$$

and the claim follows.

Let us turn back to the proof of our main theorem. We shall put the operator A under the form of a sum of quasi-orthogonal operators $A = \sum A_j$. To this end, we shoose a partition of the unity φ_j on $[0, \infty[, -1, 0, 1, 2, \dots]$, such that φ_{-1} has support in $[0, 1[, \varphi_j]$ has support in $]2^{j-1}, 2^{j+1}[, j \ge 0$, and that

$$\varphi_j(t) = 1$$
, if $|t - 2^j| \le \frac{1}{4} 2^j$; $j \ge 0$, and $\varphi_j^{(k)}(t) \le C_k 2^{jk}$, $j \ge 0$.

Such partition exists. Set

$$a_j(x,\xi) = \varphi_j\left(C\left(1+|\xi|^2\right)^{\frac{\delta}{2}}\right)a(x,\xi),$$

for a certain constant C > 0.

We aim to apply lemma 1. Firstly, we estimate the norm of the operator $a_j(x, D)$. On the support of $a_j(x, \xi)$, we have

$$2^{j-1} \le C \left(1 + |\xi|^2\right)^{\frac{\delta}{2}} \le 2^j$$

As a consequence, Eq. (3) yields

$$\sup_{x \in K} \|D_{\xi}^{\alpha} D_{x}^{\beta} a_{j}(x,\xi)\| \le C_{0} \tilde{C}_{1}^{\|\alpha+\beta\|} \left(\|\alpha\|!\right)^{s} \left(\|\beta\|!\right)^{s} \left(1+\|\xi\|^{2}\right)^{j(\|\beta\|-\|\alpha\|)},$$
(5)

where \tilde{C} is a positive constant depending on j. Now, let us consider U_j the unit operator on $L^2(\mathbb{R}^n)$, defined by

$$U_j\psi(x) = 2^{\frac{n_j}{2}}\psi(2^jx).$$

There follows that $B_j = U_j^* A_j U_j$ is a pseudo-differential operator of Gevrey symbol type $b_j(x,\xi) = a_j(2^{-j}x,2^j\xi)$, of class s, and (2.3) implies

$$\sup_{x \in K} \|D_{\xi}^{\alpha} D_{x}^{\beta} b_{j}(x,\xi)\| \le C_{0} \tilde{C}_{1}^{\|\alpha+\beta\|} \left(\|\alpha\|!\right)^{s} \left(\|\beta\|!\right)^{s}$$
(6)

Theorem 2 yields $||A_j|| \leq CH$, where

$$H = \sup_{|\alpha|, |\beta| \le N} C_0 \tilde{C}_1^{|\alpha+\beta|} \left(|\alpha|! \right)^s \left(|\beta|! \right)^s.$$

Now, we give estimates of the norms of the operators $A_k^*A_j$ and $A_jA_k^*$, with $||k-j|| \ge 4$. In each case, the symbols A_j and A_k have disjoint supports, and $A_k^*A_j$ and $A_jA_k^*$ admit regular kernels. Hence, we may expect to obtain convenient bounds for their norms by elementary tools.

For $k - j \ge 4$, if $a_k(x, \eta) a_j(y, \xi) \ne 0$, then

$$(1 + ||\eta||^2)^{\frac{\delta}{2}} \sim 2^k$$
 and $(1 + ||\xi||^2)^{\frac{\delta}{2}} \sim 2^j$

and simultaneously, this implies

$$\|\xi - \eta\| \ge C(2^j + 2^k)^{1+\gamma} \left(1 + \|\xi - \eta\|^2\right)^{\frac{\gamma}{2}}, \quad \text{with} \quad \gamma = \frac{1 - \delta}{\delta(1 + \delta)} \tag{7}$$

Now, $A_k^* A_j u(x) = \int F(x, y) u(y) dy$, where

$$F(x,y) = \int \overline{a_k(x,\xi)} a_j(z,\eta) e^{i(x\xi - z\xi + z\eta - y\eta)} dz d\xi d\eta.$$

An integration by parts gives

$$F(x,y) = \int b_L(x,y,z,\xi,\eta) e^{i(x\xi-z\xi+z\eta-y\eta)} dz d\xi d\eta,$$
(8)

with

$$b_L(x, y, z, \xi, \eta) = (1 + ||x - z||^2)^{-L} (1 + ||z - y||^2)^{-L} (1 - \Delta_{\xi})^N (1 - \Delta_{\eta})^L ||\xi - \eta||^{2L} (-\Delta_z)^L \overline{a_k(z, \xi)} a_j(z, \eta).$$

Then

$$\|b_L(x, y, z, \xi, \eta)\| \le C \left[\left(1 + \|x - z\|^2 \right)^{-\frac{L}{2}} \left(1 + \|z - y\|^2 \right)^{-\frac{L}{2}} \|\xi - \eta\|^{-1} (2^j + 2^k) \right]^{2L}.$$
 (9)

Hence, in Supp (b_L) , if $||k - j|| \ge 4$, the relation (7) is plausible. Substituting into (9), yields

$$\|b_L(x,y,z,\xi,\eta)\| \le C \left[\left(1 + \|x-z\|^2\right)^{-\frac{L}{2}} \left(1 + \|z-y\|^2\right)^{-\frac{L}{2}} \left(1 + \|\xi-\eta\|^2\right)^{-\frac{\gamma}{2}} (2^j + 2^k)^{-\gamma} \right]^{2L}$$
(10)

If

$$L > \max\left(\frac{n}{2}, \frac{3}{2\gamma}, \frac{n}{2\gamma}\right),$$

we may make an integration in (10), and with (8), we deduce

$$||F(x,y)|| \le C \left(1 + ||x-y||^2\right)^{-L-\frac{\gamma}{2}} (2^j + 2^k)^{-\gamma},$$

from which there follows

$$||A_k^*A_j|| \le C(2^j + 2^k)^{-\gamma}$$

provided $||k - j|| \ge 4$. Now, for $||k - j|| \le 4$, we have

$$||A_k^*A_j|| \le ||A_k^*|| ||A_j|| \le H^2.$$

Then, in all cases, we obtain

$$\|A_k^* A_j\| \le C 2^{-\gamma \|j-k\|}.$$
(11)

Estimating $A_j A_k^*$ is easier. Indeed, $\widehat{A_j A_k^*} u(\xi) = \int \chi(\xi, \eta) \widehat{u}(\eta) d\eta$, where

$$\chi(x,\eta) = \int a_j(x,\zeta) \overline{a_k(y,\zeta)} e^{i(-x\xi + x\zeta - y\zeta + y\eta)} dx d\zeta dy.$$

Now, $||k - j|| \ge 4$ implies $\chi(x, \eta) = 0$, then $A_j A_k^* = 0$ for $||k - j|| \ge 4$. When $||k - j|| \le 4$, we make use the inequality

$$||A_k^*A_j|| \le ||A_k^*|| \, ||A_j|| \le H^2$$

to get

$$||A_j A_k^*|| \le C 2^{-\gamma ||j-k||}.$$
(12)

Combining (11) and (12) together with Cotlar-Knapp-Stein lemma, we deduce that the operator $A = a(x, D) = \sum A_j$ is bounded in $L^2(\mathbb{R}^n)$.

The second statement of the theorem is straightforward. \Box

References

- Beals, R., A general calculus of pseudo-differential operators. Comm. Pure Appl. Math. 27 (1974), pp. 1-24.
- [2] Boulkhemair, A. Opérateurs pseudo-différentiels, paradifférentiels et intégraux de Fourier non réguliers: continuité et applications aux équations non linéaires, Th'ese d'habilitation, Université de Nantes, 1998.
- [3] Boutet De Monvel, L. and Krée, P. Pseudo-differential operators and Gevrey classes; Ann. Inst. de Fourier, Grenoble, 17.1, (1967), pp. 295 - 323.
- [4] Calderón, A. and Vaillancourt, R., A class of bounded pseudo-differential operators; Proc. Nat. Acad. Sci. USA, 69 (1972), pp.1185-1187.
- [5] Coifman, R. and Meyer, Y., Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1978), Société Mathématiques de France.
- [6] De Donno, G. and Rodino, L, Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity, Rend. Scien. Mat. Univ. Pol. Torino, Vol.58, 4 (2000), pp. 435-448.
- [7] Hazi, M. About the Gevrey regularity of the solutions of Euler's equation; Arab Gulf Journal of scientific research, 16 (3), pp. 611-620 (1998).
- [8] Hwang, I.L., On the L²-boundedness of pseudo-differential operators, Trans. Amer. Math. Soc.302 (1987), No. 1, pp. 55-76.
- [9] Marcolongo, P., On the solvability in Gevrey classes of linear operator in two variables, Rend. Scien. Mat. Univ. Pol. Torino, Vol. 60,2 (2002), pp. 401-414.
- [10] Matsuzawa, T., Journées d'équations aux dérivées partielles, Saint Jean de Monts, 7 Juin 1982.
- [11] Rodino, L., Linear partial differential operators in Gevrey classes, World Scientific, 1993, Singapour.
- [12] Taylor, M. E., Pseudo-differential operators, Princeton University Press, Princeton, New Jersey, 1981.