About Gevrey- L^{2}-estimates of pseudo-differential operators associated to the Gevrey symbols

Mohammed Hazi
Department of Mathematics. École Normale Supérieure
Kouba-Algiers. Algeria

Abstract

This paper deals with the Gevrey regularity of pseudo-differential operators in C^{∞}. We prove that a result of Taylor [12], remains true in the Gevrey case.

Key words: L^{2}-continuity, pseudo-differential operators

1 Introduction

Many authors have been interested in the generalisation of the fundamental theorems on the L^{2} and H^{s} continuity of pseudo-differential operators in C^{∞} and analytic classes. We can quote, Beals [1], Calderon and Vaillancourt [4], Coifman and Meyer [5], Hwang [8] and Rodino [11]. Boulkhemair [2] gave a survey of these results and improved several of them. To our knowledge, the Gevrey regularity of these operators is relatively slightly explored. Boutet de Monvel and Krée [3], Hazi [7] and Matsuzawa [10] have tackled it. The starting-point of this study is a result mentionned in Taylor [12]. More precisely, we have reconsidered it in the Gevrey case and see if it remains true. The answer is positive.

In the sequel, we will use the following conventions:

- \mathbb{R}^{n} is the n-dimensional vector space in which every point x is defined by its n coordinates $x_{1}, x_{2}, \ldots, x_{n}$.
- Ω denote, unless expressed otherwise, an open set of \mathbb{R}^{n}.
$-x+y$ is the point of coordinates $x_{1}+y_{1}, x_{2}+y, \ldots, x_{n}+y_{n}$.
- $d x$ refers to the element of hypercube $d x_{1} d x_{1} \ldots d x_{n}$
- The order of a system of integers $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is $|p|=p_{1}+p_{2}+\ldots+p_{n}$
- $D^{\alpha}=i^{-|\alpha|} \frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \frac{\partial^{\alpha_{2}}}{\partial x_{2}^{\alpha_{2}}} \ldots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}}$.
$-\Delta_{x}=\frac{\partial^{2}}{\partial x_{1}^{2} .}+\frac{\partial^{2}}{\partial x_{2}^{2} .}+\ldots+\frac{\partial^{2}}{\partial x_{n}^{2}}$.
- $p!=p_{1}!p_{2}!\ldots p_{n}$!
- \widehat{u} stands for the Fourier transform of u.
- A^{*} is the adjoint of the operator A.
- $\mathcal{E}\left(\mathbb{R}^{n}\right)$ is the space of indefinitely differentiable functions on \mathbb{R}^{n}.
- $\mathcal{D}(\Omega)$ is the space of indefinitely differentiable functions on \mathbb{R}^{n}, with compact support in Ω.

We set in ([7], [6]):
Definition 1 Let s a real number greater than or equal to 1. A real function f in $C^{\infty}(\Omega)$ is said of Gevrey class with order s if, for any compact subset $K \subset \Omega$, there exists a constant $C>0$ such that $\forall \alpha \in \mathbb{N}^{n}\left\|D^{\alpha} f\right\| \leq C^{|\alpha|+1}(|\alpha|!)^{s}$.

Definition 2 Let $m \in \mathbb{R}$ and ρ, δ two real numbers such that $0 \leq \delta<\rho \leq 1$. We say that a real function $a=a(x, \xi)$ in $C^{\infty}\left(\Omega \times \mathbb{R}^{n}\right)$, is a Gevrey symbol with order s of type (m, ρ, δ) on Ω if, for any compact subset $K \subset \Omega$, there exist positive constants C_{0}, C_{1}, B such that

$$
\begin{equation*}
\sup _{(x, \xi) \in\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)}\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{0} C_{1}^{|\alpha+\beta|}(|\alpha|!)^{s}(|\beta|!)^{s}\left(1+|\xi|^{2}\right)^{\frac{1}{2}(m-\rho|\alpha|+\delta|\beta|)} \tag{1}
\end{equation*}
$$

for any $\xi \in \mathbb{R}^{n}$ with $|\xi| \geq B|\alpha|^{s}$ and any $\alpha, \beta \in \mathbb{N}^{n}$.

The vector space of such symbols, somtimes called usual or classical symbols, is refered to as ${ }_{\rho, \delta} S_{(G, s)}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$.

We are concerned with the class of symbols $(m, 1,1)$. Let us to point out here that the function $a(x, \xi)=a$ is taken of Gevrey class with order s in x and ξ whereas, often in the literature (see in particular [3]), it is taken of Gevrey class with order s in x and analytic $(s=1)$ in ξ (which amounts to take $s=1$ in the factor $\left.(|\alpha|!)^{s}\right)$.

The following theorem gives the asymptotic extension of a symbol.
Theorem 1 Let a_{j} a symbol of $\rho_{\rho, \delta} S_{(G, s)}^{m_{j}}\left(\Omega \times \mathbb{R}^{n}\right)$, where $\left(m_{j}\right)_{j}$ is a real sequence decreasing to $-\infty$. Then, there exists a symbol a of $\rho_{\rho, \delta} S_{(G, s)}^{m_{0}}\left(\Omega \times \mathbb{R}^{n}\right)$ such that, for any $N>0$, there holds

$$
a-\sum_{0}^{N-1} a_{j} \in_{\rho, \delta} S_{(G, s)}^{m_{N}}\left(\Omega \times \mathbb{R}^{n}\right)
$$

We also write in this case $a \sim \sum_{0}^{\infty} a_{j}$.

A pseudo-differential operator of class $s, A=a(x, D)$, associated to a symbol a of the space ${ }_{\rho, \delta} S_{(G, s)}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$ is defined, relatively to the standard quantization, by the formula

$$
a(x, D) u(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \xi} a(x, \xi) \widehat{u}(\xi) d \xi, \quad u \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

We write $A=o p a$ and say that A belongs to $O p_{\rho, \delta} S_{(G, s)}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$.
The distribution-kernel T of $a(x, D)$ is defined by

$$
T(x, y)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i(x-y) \xi} a(x, \xi) d \xi
$$

2 Chronological recall of some results.

Among the considerable results devoted to the L^{2} continuity of pseudo-differential operators in the case of C^{∞}-quantizations, (see [2] in particular), we recall

Theorem $2 A=a(x, D)$ sends continuously $L^{2}\left(\mathbb{R}^{n}\right)$ in itself whenever

$$
\begin{equation*}
\left\|D_{x}^{\beta} D_{\xi}^{\alpha} a(x, \xi)\right\| \leq C_{\alpha \beta} \tag{2}
\end{equation*}
$$

for all multi-indices α, β such that $|\alpha|,|\beta| \leq 3 n+4$ ($C_{\alpha \beta}$ being a positive constant).
In addition, if we set

$$
\|A\|_{0}=\sup _{|\alpha, \beta| \leq 3 n+4} C_{\alpha \beta}
$$

where $C_{\alpha \beta}$ are given by (2), then

$$
\|a(x, D) u\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C\|A\|_{0}\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

where C is a positive constant depending only on n.
Theorem $3 a(x, D)$ defines a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$ whenever

$$
D_{x}^{\beta} D_{\xi}^{\alpha} a(x, \xi) \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)
$$

for all multi-indices α, β such that $|\alpha|,|\beta| \leq\left[\frac{n}{2}\right]$ or $\alpha, \beta \in\{0,1\}^{n}$. ([u] denotes the integer part of the real u.)

In 1972, Calderón and Vaillancourt, [4], proved the following result :
Theorem $4 a(x, D)$ is bounded in $L^{2}\left(\mathbb{R}^{n}\right)$ if there exists δ such that $0 \leq \delta<1$ and

$$
\left|D_{x}^{\beta} D_{\xi}^{\alpha} a(x, \xi)\right| \leq C|\xi|^{\delta(|\beta|-|\alpha|)}
$$

for

$$
|\alpha| \leq n+2\left[\frac{n}{2}\right] \quad \text { and } \quad|\beta| \leq 2 N, \quad \text { with } \quad N \geq \frac{5 n}{4(1-\delta)}
$$

In 1978, Coifman and Meyer, [5], improved this result:
Theorem 5 an opa is bounded in $L^{2}\left(\mathbb{R}^{n}\right)$ if there exists δ such that $0 \leq \delta<1$ and

$$
\left|D_{x}^{\beta} D_{\xi}^{\alpha} a(x, \xi)\right| \leq C|\xi|^{\delta(|\beta|-|\alpha|)} \quad \text { for }|\alpha|,|\beta| \leq\left[\frac{n}{2}\right]+1 .
$$

In 1987, Hwang, [8], proved that:
Theorem 6 an opa is bounded in $L^{2}\left(\mathbb{R}^{n}\right)$ if there exists δ such that $0 \leq \delta<1$ and

$$
\left|D_{x}^{\beta} D_{\xi}^{\alpha} a(x, \xi)\right| \leq C|\xi|^{\delta(|\beta|-|\alpha|)}
$$

for $\alpha_{j}=0$ or 1 and $\beta_{j}=0$ or 1 if $n=1$ and $\beta_{j}=0,1$ or 2 in general.

3 Our problem

In what follows, we will prove
Theorem 7 Assume $a(x, \xi) \in_{\delta, \delta} S_{(G, s)}^{m}\left(\Omega \times \mathbb{R}^{n}\right), m \leq 0,0 \leq \delta<1$, and

$$
\begin{equation*}
\sup _{x \in K}\left|D_{x}^{\beta} D_{\xi}^{\alpha} a(x, \xi)\right| \leq C_{0} C_{1}^{|\alpha+\beta|}(|\alpha|!)^{s}(|\beta|!)^{s}\left(1+|\xi|^{2}\right)^{m-\delta(|\alpha|-|\beta|)} \tag{3}
\end{equation*}
$$

for any $\xi \in \mathbb{R}^{n}$ with $|\xi| \geq B|\alpha|^{s}$ and $|\alpha|,|\beta| \leq 3 n+4=N$.
(B is the constant in the relation (1)).
Then, the operator $A=a(x, D)$ acts continuously from $L^{2}(\Omega)$ in itself.
Moreover, if

$$
|A|_{\delta}=\sup _{|\alpha, \beta| \leq N} C_{0} C_{1}^{|\alpha+\beta|}(|\alpha|!)^{s}(|\beta|!)^{s}
$$

we get

$$
\|a(x, D) u\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C\|A\|_{\delta}\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

where C is a positive constant depending only on δ.
Proof. It is sufficient to prove this theorem for $a \in_{\delta, \delta} S_{G^{s}}^{0}\left(\Omega \times \mathbb{R}^{n}\right)$. We make use of two results. The first of which is due to M. Cotlar and E. Stein, on sums of almost orthogonal operators.

Definition 3 (Almost orthogonal operators) We will call a familly of continuous operators $\left\{A_{i}: i \in \mathbb{Z}\right\}$ almost orthogonal, if they satisfy the following conditions:

$$
\left\|A_{i}^{*} A_{j}\right\| \leq a(i, j), \quad\left\|A_{i} A_{j}^{*}\right\| \leq b(i, j),
$$

where $a(i, j)$ and $b(i, j)$ are non negative symmetric functions on $\mathbb{Z} \times \mathbb{Z}$ which satisfy

$$
\|a\|_{\infty, 1 / 2}^{1 / 2}=\sup _{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} a^{1 / 2}(i, j)<\infty, \quad\|b\|_{\infty, 1 / 2}^{1 / 2}=\sup _{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} b^{1 / 2}(i, j)<\infty .
$$

Lemma 1 Let $A_{1}, A_{2}, \ldots, A_{N}$ be bounded operators from a Hilbert space H_{1} to another H_{2} such that

$$
\begin{equation*}
\sum_{k} \sqrt{\left\|A_{j}^{*} A_{k}\right\|} \leq M, \quad \sum_{k} \sqrt{\left\|A_{j} A_{k}^{*}\right\|} \leq M \tag{4}
\end{equation*}
$$

where M is a positive constant. Then, there folows that $\left\|\sum_{k} A_{j}\right\| \leq M$.
Proof If $A=\sum A_{j}$, we have $\|A\|^{2}=\left\|A^{*} A\right\|$, and more generaly, by the spectral theorem, $\|P\|^{2 m}=\left\|\left(A^{*} A\right)^{m}\right\|$. We expand in a sum and use the fact that

$$
\begin{aligned}
& \left\|A_{j_{1}}^{*} A_{j_{2}} \ldots A_{j_{2 m-1}}^{*} A_{j_{2 m}}\right\| \leq \\
& \quad \min \left(\left\|A_{j_{1}}^{*} A_{j_{2}}\right\| \ldots\left\|A_{j_{2 m-1}}^{*} A_{j_{2 m}}\right\|,\left\|A_{j_{1}}^{*}\right\|\left\|A_{j_{2}} A_{j_{3}}^{*}\right\| \ldots\left\|A_{j_{2 m-2}} A_{j_{2 m-1}}^{*}\right\|\left\|A_{j_{2 m}}\right\|\right)
\end{aligned}
$$

Taking the geometric mean of the two estimates and noting that $\left\|A_{j}\right\| \leq M$. y hypothesis, we obtain

$$
\|A\|^{2 m} \leq M \sum \sqrt{\left\|A_{j_{1}}^{*} A_{j_{2}}\right\|} \sqrt{\left\|A_{j_{2}} A_{j_{3}}^{*}\right\|} \ldots \sqrt{\left\|A_{j_{2 m-1}}^{*} A_{j_{2 m}}\right\|}
$$

The sum is taken over $j_{1}, j_{2}, \ldots, j_{2 m}$. If we use (4) to estimate successivley the sum over $j_{2 m}, j_{2}, \ldots, j_{2}$, then only the sum over j_{1} is left over and we see that

$$
\|A\|^{2 m}=N M^{2 m}
$$

Taking $2 m$-th roots and, letting m tends to ∞, we get $\|A\| \leq M$, as expected.
We also need the following
Lemma 2 Let X be a measurable space. Assume $K(x, y)$ to be a kernel-distribution satisfying

$$
\int_{X}\|K(x, y)\| d y \leq C_{0}, \quad \int_{X}\|K(x, y)\| d x \leq C_{1}
$$

with C_{0} and C_{1} being two positive constants.
Then $P u(x)=\int K(x, y) u(y) d y$ defines a continuous operator on $L^{2}(X)$; moreover

$$
\|P\| \leq \sqrt{C_{0} C_{1}}
$$

Proof We have

$$
\begin{aligned}
\|\langle P u, v\rangle\| & \leq \int\|K(x, y)\|\|u(x)\|\|v(y)\| d x d y \\
& =\int(\sqrt{\|K(x, y)\|\|u(x)\|})(\sqrt{\|K(x, y)\|}\|v(y)\|) d x d y \\
& \leq \sqrt{\int\|K(x, y)\|\|u(x)\|^{2} d y d x} \sqrt{\int\|K(x, y)\|\|v(y)\|^{2} d x d y} \\
& \leq \sqrt{C_{0}}\|u\|_{L^{2}} \sqrt{C 1}\|v\|_{L^{2}},
\end{aligned}
$$

and the claim follows.
Let us turn back to the proof of our main theorem. We shall put the operator A under the form of a sum of quasi-orthogonal operators $A=\sum A_{j}$. To this end, we shoose a
partition of the unity φ_{j} on $\left[0, \infty\left[,-1,0,1,2, \ldots\right.\right.$, such that φ_{-1} has support in $\left[0,1\left[, \varphi_{j}\right.\right.$ has support in $] 2^{j-1}, 2^{j+1}[, j \geq 0$, and that

$$
\varphi_{j}(t)=1, \quad \text { if } \quad\left|t-2^{j}\right| \leq \frac{1}{4} 2^{j} ; \quad j \geq 0, \quad \text { and } \quad \varphi_{j}^{(k)}(t) \leq C_{k} 2^{j k}, \quad j \geq 0
$$

Such partition exists. Set

$$
a_{j}(x, \xi)=\varphi_{j}\left(C\left(1+|\xi|^{2}\right)^{\frac{\delta}{2}}\right) a(x, \xi),
$$

for a certain constant $C>0$.
We aim to apply lemma 1 . Firstly, we estimate the norm of the operator $a_{j}(x, D)$. On the support of $a_{j}(x, \xi)$, we have

$$
2^{j-1} \leq C\left(1+|\xi|^{2}\right)^{\frac{\delta}{2}} \leq 2^{j}
$$

As a consequence, Eq. (3) yields

$$
\begin{equation*}
\sup _{x \in K}\left\|D_{\xi}^{\alpha} D_{x}^{\beta} a_{j}(x, \xi)\right\| \leq C_{0} \tilde{C}_{1}^{\|\alpha+\beta\|}(\|\alpha\|!)^{s}(\|\beta\|!)^{s}\left(1+\|\xi\|^{2}\right)^{j(\|\beta\|-\|\alpha\|)}, \tag{5}
\end{equation*}
$$

where \tilde{C} is a positive constant depending on j. Now, let us consider U_{j} the unit operator on $L^{2}\left(\mathbb{R}^{n}\right)$, defined by

$$
U_{j} \psi(x)=2^{\frac{n j}{2}} \psi\left(2^{j} x\right) .
$$

There follows that $B_{j}=U_{j}^{*} A_{j} U_{j}$ is a pseudo-differential operator of Gevrey symbol type $b_{j}(x, \xi)=a_{j}\left(2^{-j} x, 2^{j} \xi\right)$, of class s, and (2.3) implies

$$
\begin{equation*}
\sup _{x \in K}\left\|D_{\xi}^{\alpha} D_{x}^{\beta} b_{j}(x, \xi)\right\| \leq C_{0} \tilde{C}_{1}^{\|\alpha+\beta\|}(\|\alpha\|!)^{s}(\|\beta\|!)^{s} \tag{6}
\end{equation*}
$$

Theorem 2 yields $\left\|A_{j}\right\| \leq C H$, where

$$
H=\sup _{|\alpha|,|\beta| \leq N} C_{0} \tilde{C}_{1}^{|\alpha+\beta|}(|\alpha|!)^{s}(|\beta|!)^{s}
$$

Now, we give estimates of the norms of the operators $A_{k}^{*} A_{j}$ and $A_{j} A_{k}^{*}$, with $\|k-j\| \geq 4$. In each case, the symbols A_{j} and A_{k} have disjoint supports, and $A_{k}^{*} A_{j}$ and $A_{j} A_{k}^{*}$ admit regular kernels. Hence, we may expect to obtain convenient bounds for their norms by elementary tools.

For $k-j \geq 4$, if $a_{k}(x, \eta) a_{j}(y, \xi) \neq 0$, then

$$
\left(1+\|\eta\|^{2}\right)^{\frac{\delta}{2}} \sim 2^{k} \quad \text { and } \quad\left(1+\|\xi\|^{2}\right)^{\frac{\delta}{2}} \sim 2^{j}
$$

and simultaneously, this implies

$$
\begin{equation*}
\|\xi-\eta\| \geq C\left(2^{j}+2^{k}\right)^{1+\gamma}\left(1+\|\xi-\eta\|^{2}\right)^{\frac{\gamma}{2}}, \quad \text { with } \quad \gamma=\frac{1-\delta}{\delta(1+\delta)} \tag{7}
\end{equation*}
$$

Now, $A_{k}^{*} A_{j} u(x)=\int F(x, y) u(y) d y$, where

$$
F(x, y)=\int \overline{a_{k}(x, \xi)} a_{j}(z, \eta) e^{i(x \xi-z \xi+z \eta-y \eta)} d z d \xi d \eta
$$

An integration by parts gives

$$
\begin{equation*}
F(x, y)=\int b_{L}(x, y, z, \xi, \eta) e^{i(x \xi-z \xi+z \eta-y \eta)} d z d \xi d \eta \tag{8}
\end{equation*}
$$

with

$$
\begin{aligned}
b_{L}(x, y, z, \xi, \eta)=(1+ & \left.\|x-z\|^{2}\right)^{-L}\left(1+\|z-y\|^{2}\right)^{-L} \\
& \left(1-\Delta_{\xi}\right)^{N}\left(1-\Delta_{\eta}\right)^{L}\|\xi-\eta\|^{2 L}\left(-\Delta_{z}\right)^{L} \overline{a_{k}(z, \xi)} a_{j}(z, \eta) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\left\|b_{L}(x, y, z, \xi, \eta)\right\| \leq C\left[\left(1+\|x-z\|^{2}\right)^{-\frac{L}{2}}\left(1+\|z-y\|^{2}\right)^{-\frac{L}{2}}\|\xi-\eta\|^{-1}\left(2^{j}+2^{k}\right)\right]^{2 L} \tag{9}
\end{equation*}
$$

Hence, in $\operatorname{Supp}\left(b_{L}\right)$, if $\|k-j\| \geq 4$, the relation (7) is plausible. Substituting into (9), yields
$\left\|b_{L}(x, y, z, \xi, \eta)\right\| \leq C\left[\left(1+\|x-z\|^{2}\right)^{-\frac{L}{2}}\left(1+\|z-y\|^{2}\right)^{-\frac{L}{2}}\left(1+\|\xi-\eta\|^{2}\right)^{-\frac{\gamma}{2}}\left(2^{j}+2^{k}\right)^{-\gamma}\right]^{2 L}$.

If

$$
\begin{equation*}
L>\max \left(\frac{n}{2}, \frac{3}{2 \gamma}, \frac{n}{2 \gamma}\right) \tag{10}
\end{equation*}
$$

we may make an integration in (10), and with (8), we deduce

$$
\|F(x, y)\| \leq C\left(1+\|x-y\|^{2}\right)^{-L-\frac{\gamma}{2}}\left(2^{j}+2^{k}\right)^{-\gamma}
$$

from which there folows

$$
\left\|A_{k}^{*} A_{j}\right\| \leq C\left(2^{j}+2^{k}\right)^{-\gamma}
$$

provided $\|k-j\| \geq 4$. Now, for $\|k-j\| \leq 4$, we have

$$
\left\|A_{k}^{*} A_{j}\right\| \leq\left\|A_{k}^{*}\right\|\left\|A_{j}\right\| \leq H^{2}
$$

Then, in all cases, we obtain

$$
\begin{equation*}
\left\|A_{k}^{*} A_{j}\right\| \leq C 2^{-\gamma\|j-k\|} \tag{11}
\end{equation*}
$$

Estimating $A_{j} A_{k}^{*}$ is easier. Indeed, $\widehat{A_{j} A_{k}^{*}} u(\xi)=\int \chi(\xi, \eta) \widehat{u}(\eta) d \eta$, where

$$
\chi(x, \eta)=\int a_{j}(x, \zeta) \overline{a_{k}(y, \zeta)} e^{i(-x \xi+x \zeta-y \zeta+y \eta)} d x d \zeta d y
$$

Now, $\|k-j\| \geq 4$ implies $\chi(x, \eta)=0$, then $A_{j} A_{k}^{*}=0$ for $\|k-j\| \geq 4$. When $\|k-j\| \leq 4$, we make use the inequality

$$
\left\|A_{k}^{*} A_{j}\right\| \leq\left\|A_{k}^{*}\right\|\left\|A_{j}\right\| \leq H^{2}
$$

to get

$$
\begin{equation*}
\left\|A_{j} A_{k}^{*}\right\| \leq C 2^{-\gamma\|j-k\|} \tag{12}
\end{equation*}
$$

Combining (11) and (12) together with Cotlar-Knapp-Stein lemma, we deduce that the operator $A=a(x, D)=\sum A_{j}$ is bounded in $L^{2}\left(\mathbb{R}^{n}\right)$.

The second statement of the theorem is straightforward.

References

[1] Beals, R., A general calculus of pseudo-differential operators. Comm. Pure Appl. Math. 27 (1974), pp. 1-24.
[2] Boulkhemair, A. Opérateurs pseudo-différentiels, paradifférentiels et intégraux de Fourier non réguliers: continuité et applications aux équations non linéaires, Th'ese d'habilitation, Université de Nantes, 1998.
[3] Boutet De Monvel, L. and Krée, P. Pseudo-differential operators and Gevrey classes; Ann. Inst. de Fourier, Grenoble, 17.1, (1967), pp. 295-323.
[4] Calderón, A. and Vaillancourt, R., A class of bounded pseudo-differential operators; Proc. Nat. Acad. Sci. USA, 69 (1972), pp.1185-1187.
[5] Coifman, R. and Meyer, Y., Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1978), Société Mathématiques de France.
[6] De Donno, G. and Rodino, L, Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity, Rend. Scien. Mat. Univ. Pol. Torino, Vol.58, 4 (2000), pp. 435-448.
[7] Hazi, M. About the Gevrey regularity of the solutions of Euler's equation; Arab Gulf Journal of scientific research, 16 (3), pp. 611-620 (1998).
[8] Hwang, I.L., On the L^{2}-boundedness of pseudo-differential operators, Trans. Amer. Math. Soc. 302 (1987), No. 1, pp. 55-76.
[9] Marcolongo, P., On the solvability in Gevrey classes of linear operator in two variables, Rend. Scien. Mat. Univ. Pol. Torino, Vol. 60,2 (2002), pp. 401-414.
[10] Matsuzawa, T., Journées d'équations aux dérivées partielles, Saint Jean de Monts, 7 Juin 1982.
[11] Rodino, L., Linear partial differential operators in Gevrey classes, World Scientific, 1993, Singapour.
[12] Taylor, M. E., Pseudo-differential operators, Princeton University Press, Princeton, New Jersey, 1981.

