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Abstract

The notion of an s-normal cone, introduced here, allows different characteriza-

tions of strictly real Banach algebras. The normality of H+, the cone of positive

elements, makes of the algebra a function algebra. The nuclearity of H+ implies

finite dimensionality.
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1 Introduction

Characterizations of strictly real algebras have been examined in [5]. The specificity

of our approach lies in the use of properties of normal cones. We first show that a real

Banach algebra with a convex cone which is s-normal (see Definition 2.1) and contains all

squares is necessarily strictly real. As a consequence, a real Banach algebra is strictly real

if, and only if, the cone K0 of finite sums of squares is s-normal (Corollary 2.5). Other

characterizations are obtained. The normality is stronger than the s-normality. As a

matter of fact a real Banach algebra H is isomorphic to an algebra C(X, R), of continuous

functions on a compact space X if, and only if, its cone H+ of positive elements is normal

(Theorem 3.1). In the commutative case, we have the same result with the cone K0. The

strength of nuclearity of a convex cone is illustrated here by the fact that it implies finite

dimensionality (Theorem 4.1). Different consequences are obtained.

Let (E, ‖.‖) be a normed space. A subspace K, of E, is said to be a convex cone

if x + y ∈ K and αx ∈ K for every x, y in K and α ≥ 0; it is said to be salient if

K ∩ (−K) = {0}. A partial order, on E, is associated to K by x ≤ y if y − x ∈ K.

A convex cone is said to be normal (respectively nuclear) if there is α > 0 (respectively
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a continuous real linear form f on E) such that ‖x‖ ≤ α ‖y‖, whenever 0 ≤ x ≤ y

(respectively ‖x‖ ≤ f(x), for every x ∈ K). Let now (H, ‖.‖) be a real Banach algebra

and designate by HC = H + iH the complexification of H. Recall that, by definition,

SpHx = SpHC
x, for every x ∈ H, where Spx stands for the spectrum. In the sequel,

we denote by ρ the spectral radius given by ρ(x) = sup {|λ| : λ ∈ SpHx} . Also, C(X, R)

stands for the algebra of real continuous functions on the compact space X with the usual

operations and the norm defined by ‖f‖ = sup {|f(t)| : t ∈ X} .

2 Spectrally normal cones and strictly real structure

The convex cone of positive elements, in a strictly real algebra, is not always normal as

it is shown by the algebra C1 ([0, 1] , R) , of class C1 functions, with the usual operations

and the norm defined by ‖f‖1 = ‖f‖∞ + ‖f ′‖∞ . However one has ρ(f) ≤ ρ(g) whenever

0 ≤ f ≤ g. This fact suggests the folowing definition which allows a characterization of

strictly real algebras among real ones.

Definition 2.1. Let A be an algebra and K a convex cone in A. We say that K

is spectrally normal (s-normal in short) if there is an α > 0 such that ρ(x) ≤ αρ(y),

whenever 0 ≤ x ≤ y.

Proposition 2.2. Let (H, ‖.‖) be a strictly real algebra and K a convex cone in H

which is stable by product. If K is normal, then it is s-normal.

Proof. K being normal, let α > 0 such that ‖x‖ ≤ α ‖y‖ , if 0 ≤ x ≤ y. But K

is stable by product, hence it follows, by induction on n, that 0 ≤ x2n ≤ y2n
, for every

n ∈ N∗, whenever 0 ≤ x ≤ y. So 0 ≤ x ≤ y implies
∥
∥
∥x2n

∥
∥
∥

1
2n ≤ α

1
2n

∥
∥
∥y2n

∥
∥
∥

1
2n

, for every

n ∈ N∗. Whence the conclusion by convergence.

Let (H, ‖.‖) be a real Banach algebra with a convex cone K. We consider the following

conditions which are satisfied by the cone of positive elements in a strictly real algebra.

(P1) h2 ∈ K, for every h ∈ H.

(P2) The cone K is s-normal.

The following result is somehow a converse of this fact.

Theorem 2.3. Let (H, ‖.‖) be a unitary real Banach algebra and K a (non void)

convex cone in H. If K satisfies (P1) and (P2), then (H, ‖.‖) is strictly real.
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Proof. Let HC , the complexification of H, be endowed with the involutive anti-

morphism ∗ : h+ ik �−→ h− ik, for h, k in H. By (P2), there is α > 0 such that ρ(u+v) ≥
αρ(u), for every u and v in K. If x = h + ik ∈ HC , with hk = kh, then xx∗ = h2 + k2

with h2, k2 in K. One, then, shows that there is β > 0 such that ρ(xx∗) ≥ βρ2(x). Writing

this for xn and using the normality of x, we obtain ρ2(x) ≥ ρ(xx∗) ≥ β
1
n ρ2(x). Whence

ρ(xx∗) = ρ2(x), for every normal element x in HC . Now let h ∈ H. If α+ iβ ∈ SpHh with

α and β real, put a = h + it with t a real number. Then a is a normal element, of HC ,

such that α + i(β + t) ∈ SpHC
a. Since aa∗ = h2 + t2, it follows that

α2 + (β + t)2 ≤ ρ(a)2 = ρ(aa∗) ≤ ρ(h)2 + t2.

Whence α2 + β2 + 2βt ≤ ρ(h)2, for each t ∈ R. This implies that β = 0.

Remark 2.4. None of conditions (P1) or (P2) alone is sufficient. Indeed, in any real

algebra, the cone K0 =
{

∑

finite h2, h ∈ H
}

satisfies (P1); and in any commutative real

algebra the cone H+ = {x ∈ H : SpHx ⊂ R+} satisfies (P2). In fact we have the following.

Corollary 2.5. The algebra (H, ‖.‖) is strictly real if, and only if, the cone K0 is

s-normal.

Corollary 2.6. The algebra (H, ‖.‖) is strictly real if, and only if, K0 = H+; where

K0 is the closure of K0.

Now, it is worth to establish a link between s-normality and real strictness for a convex

cone, in general.

Proposition 2.7. Let (H, ‖.‖) be a unitary real Banach algebra and K a closed

convex cone, in H, satisfying (P1). The following assertions are equivalent.

i) K is s-normal and stable by product.

ii) ρ(y) ≥ ρ(x), whenever y ≥ x ≥ 0.

iii) H is strictly real and K = H+.

Proof. i)=⇒ii) Since K is stable by product, one has y2n ≥ x2n ≥ 0, for every n ∈ N∗,

if y ≥ x ≥ 0. But, K being s-normal, there is α > 0 such that ρ(x) ≥ α
1

2n ρ(y), for every

n in N∗, if y ≥ x ≥ 0. Whence ii) by convergence.

ii)=⇒iii) By theorem 2.3, the algebra H is strictly real. By (P1), we obtain H+ ⊂ K.

Now, if x ∈ K and r > 0 are such that −r ∈ SpHx, then ρ(x) ≥ ρ(x)+ r which is absurd;

the inequality follows from ii) for ρ(x), ρ(x) − x and ρ(x) − (ρ(x) − x) are in K.
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iii)=⇒i) By theorem 4.8 of [7].

Combining (P1) et (P2), one obtains characterizations of real strictness.

Theorem 2.8. Let (H, ‖.‖) be a unitary real Banach algebra. The following assertions

are equivalent.

i) (H, ‖.‖) is strictly real.

ii) ρ(h2 + k2) ≥ ρ(h2); h, k ∈ H.

iii) There is α > 0 such that ρ(h2 + k2) ≥ αρ(h2); h, k ∈ H.

iv) There is α > 0 such that ρ(h2 + k2) ≥ αρ(h2); h, k ∈ H with hk = kh.

In [5], L. Ingelstam defines, in non unitary Banach algebras, a modified exponential

function by ex = −∑

n≥1
xn

n!
; and gives a sufficient, but not necessary, condition for a real

Banach algebra to be strictly real. Here are some conditions which are necessary and

sufficient.

Proposition 2.9. Let (H, ‖.‖) be real Banach algebra. The following assertions are

equivalent.

i) H is strictly real.

ii) ρ(e−αh2
) ≤ 1; h ∈ H, α > 0.

iii) (∀h ∈ H) (∃β > 0) : ρ(e−αh2
) ≤ β; α > 0.

In the unitary case, i), ii) and iii) are also equivalent to

iv) ρ(h2 − k2) ≤ max(ρ(h2), ρ(k2)); h, k ∈ H.

v) ∃α > 0 : ρ(h2 − k2) ≤ α max(ρ(h2), ρ(k2)); h, k ∈ H.

3 Normal cones and function algebra structure

The cone of positive elements H+ in a strictly real algebra H is not normal in general

(cf section 2). It turns out that this condition is a strong one as the following result shows.

Theorem 3.1. A unitary and strictly real Banach algebra (H, ‖.‖) is isomorphic to

C(X, R) if, and only if, H+ is normal.

Proof. Only sufficiency has to be shown. Since H is strictly real, one has 0 ≤
h(ρ(h) + 1

n
)−1 + e ≤ 2e, for any h ∈ H and any n ∈ N∗. So, H+ being normal, there is

α > 0 such that ρ(h) ≥ α ‖h‖ , for every h ∈ H; hence H is semi-simple. But then, it is

commutative by theorem 4.8 of [7]. And so, its complexification HC, endowed with the
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involution ∗ : h + ik �−→ h − ik, is a hermitian Banach algebra such that ρ(h) ≥ α ‖h‖ ,

for every h ∈ H. Hence, HC is a C∗-algebra for an equivalent norm, by theorem 8.4 of

[12]. We conclude by the well known Gelfand-Näımark theorem.

Proposition 3.2. Let (H, ‖.‖) be a unitary real Banach algebra and K a convex

cone, in H, closed and stable by product. If K is normal and satisfies (P1), then H is

isomorphic to an algebra C(X, R).

Proof. cf. propositions 2.2 and 2.7.

Corollary 3.3. Let H be a unitary and commutative real Banach algebra. It is

isomorphic to an algebra C(X, R) if, and only if, the cone K0 is normal.

Proof. It is sufficient to notice that the closure of K0 is also normal and apply propo-

sition 3.2.

Remark 3.4. In the three previous results, one can not expect the isomorphism

between H and C(X, R) to be an isometry. Indeed, the normality of a convex cone does

not depend on the norm defining the topology.

Now, we reconsider theorem 2.4 of [8]; it appears, in particular, that commutativity

is implicitely contained in hypotheses.

Proposition 3.5. Let (H, ‖.‖) be a unitary real Banach algebra. The following

assertions are equivalent.

i) H is isomorphic to an algebra C(X, R).

ii) (∃α > 0), (∃β > 0) : ‖h2‖ ≥ α ‖h‖2 and ‖h2 + k2‖ ≥ β ‖h2‖ ; h, k ∈ H.

iii) H is strictly real and H+ is normal.

Proof. All what we have to show is ii)=⇒iii). Since ‖h2‖ ≥ α ‖h‖2 , for every h in

H, one obtains, by iteration, and convergence that ρ(h) ≥ α ‖h‖ , for every h in H. Now

ρ(h2 + k2) ≥ α ‖h2 + k2‖ ≥ αβρ(h2), for every h and k in H. Hence H is strictly real, by

theorem 2.9. On the other hand, for every u ∈ H+, there is v ∈ H+ such that u = v2 ([9],

theorem 2.2). Hence the relation ‖h2 + k2‖ ≥ β ‖h2‖ is nothing else than the normality

of H+.

Corollary 3.6. Let (H, ‖.‖) be a unitary real Banach algebra. If ‖h2 + k2‖ ≥ ‖h2‖ ,

for every h and k in H. Then H is isometrically isomorphic to C(X, R).
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4. Nuclear cones and finite dimensionality. The nuclearity of a convex cone,

introduced in [6], is stronger than its normality. This fact is illustrated here by the fol-

lowing result.

Theorem 4.1. Let (H, ‖.‖) be a unitary strictly real algebra. If the cone H+ is

nuclear, then H is of finite dimension.

Proof. The cone H+, being nuclear, is normal and hence H is isomorphic to an al-

gebra C(X, R). Now, by theorem 3.4.3 of [11], the algebra H is nuclear; and hence finite

dimensional for it is a normed space.

Corollary 4.2. Let H be a unitary strictly real algebra. If there is, on H, a real

scalar product 〈., .〉 such that ‖x‖ ≤ 〈x, e〉 , for every x ∈ H+, then H is of finite dimension.

Finally, here, are some particular cases of normality and nuclearity which characterize

the algebra R of real numbers.

Proposition 4.3. Let (H, ‖.‖) be a unitary strictly real algebra of unit e such that

‖e‖ = 1. The following assertions are equivalent.

i) H is isometrically isomorphic to R.

ii) There is a real scalar product 〈., .〉 , on H, such that 〈e, e〉 = 1 and ‖u‖ ≤ 〈u, e〉 ,

for every u in H+.

iii) There is a real linear form f , on H, such that f(e) = 1 and ‖u‖ ≤ f(u), for every

u in H+.

iv) There is a real linear form f, on H, such that f(e) = 1 and ‖u‖=f(u), for every

u in H+.

v) ‖v‖ > ‖u‖ , whenever v ≥ u ≥ 0 and u �= v.
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