An extension of the bilateral generating functions of modified Hypergeometric polynomial

Arabinda Das
Salt Lake School (English Medium)
CA-221, Salt Lake City, Calcutta 700 064. India
A.K. Chongdar
Dept. of Mathematics. Bengal Engineering and Science University
Shibpur, Howarah 711 103. India

Abstract

In this note we have obtained an extension of a bilateral generating function of modified Hypergeometric polynomial from the existence of a quasi bilateral generating relation by group-theoretic methods.

1 Introduction

In [1], the "quasi bilinear" generating function for the special function $p_{n}^{(\alpha)}(x)$ is given by

$$
\begin{equation*}
G(x, u, t)=\sum_{n=0}^{\infty} a_{n} p_{n}^{(\alpha)}(x) p_{m}^{(n)}(u) t^{n} . \tag{1}
\end{equation*}
$$

In this note we proceed to prove the existence of a more general generating relation from the existence of a quasi bilinear generating relation involving certain special function.

In [2], the following theorem on bilateral generating function involving Hypergeometric Polynomial has been obtained by group-theoretic method.

Theorem 1 If

$$
G(x, w)=\sum_{n=0}^{\infty} a_{n 2} F_{1}(-n, \beta ; v ; x) w^{n},
$$

then
$(1-w)^{(v-1)}(1-x w)^{-\beta} G\left(\frac{x(1-w)}{1-x w}, w v\right)=\sum_{n=0}^{\infty} w^{n} \sum_{q=0}^{n} a_{q} \frac{-v+1}{(n-q)!}{ }_{2} F_{1}(-n, \beta ; v-n ; x) v^{q}$.

Here we have obtained the following extension of the above result from the concept of quasi-bilinear generating function by group-theoretic method.

Theorem 2 If there exists a quasi bilinear generating relation of the form

$$
G(x, u, w)=\sum_{n=0}^{\infty} a_{n 2} F_{1}(-n, \beta ; v ; x)_{2} F_{1}(-m, \beta ; n ; u) w^{n},
$$

then

$$
\begin{align*}
&(1-w)^{\beta-m}(1+w)^{(v-1)}(1+x w)^{-\beta} G\left(\frac{x(1+w)}{1+x w}, u+(1-u) w, \frac{w v}{1-w}\right) \\
&=\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{w^{n+p+q}}{p!q!} v^{q}(-1)^{q}(-v+1)_{q} \times \tag{2}\\
& \times \frac{(n+m)_{p}(n-\beta)_{p}}{(n)_{p}}{ }_{2} F_{1}(-(n+q), \beta ; v-q ; x)_{2} F_{1}(-m, \beta ; n+p ; u) .
\end{align*}
$$

Proof

At first, we consider the following two linear partial differential operators R_{1} and R_{2}, $[3,4]$:

$$
\begin{gathered}
R_{1}=x(1-x) y^{-1} z \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}-(x \beta+1) y^{-1} z, \\
R_{2}=(1-u) t \frac{\partial}{\partial u}+t^{2} \frac{\partial}{\partial t}+(m-\beta) t,
\end{gathered}
$$

such that

$$
\begin{gathered}
R_{1}\left({ }_{2} F_{1}(-n, \beta ; v ; x) y^{v} z^{n}\right)=(v-1)_{2} F_{1}(-(n+1), \beta ; v-1 ; x) y^{v-1} z^{n+1}, \\
R_{2}\left({ }_{2} F_{1}(-m, \beta ; n ; u) t^{n}\right)=\frac{(n+m(n-\beta))}{n}{ }_{2} F_{1}(-m, \beta ; n+1 ; u) t^{n+1}
\end{gathered}
$$

and

$$
\begin{aligned}
& \exp \left(w R_{1}\right) f(x, y, z)=(1+z w / y)^{-1}(1+z w / y)^{-\beta} f\left(x \frac{(1+z w / y)}{(1+x z w / y)}, y(1+z w / y), z\right) \\
& \exp \left(w R_{2}\right) f(u, t)=(1-w t)^{\beta-m} f\left(u+(1-u t w), \frac{t}{(1-t w)}\right)
\end{aligned}
$$

Let

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n 2} F_{1}(-n, \beta ; v ; x){ }_{2} F_{1}(-m, \beta ; n ; u) w^{n} . \tag{3}
\end{equation*}
$$

Now replacing w by $w z t v$ and then multiplying both sides of (3) by y^{v}, we get

$$
\begin{equation*}
y^{v} G(x, u, w)=\sum_{n=0}^{\infty} a_{n 2} F_{1}(-n, \beta ; v ; x) y^{v} z^{n}{ }_{2} F_{1}(-m, \beta ; n ; u) t^{n}(w v)^{n} . \tag{4}
\end{equation*}
$$

On operating both sides of (4) by $\exp \left(w R_{1}\right) \exp \left(w R_{2}\right)$, we get

$$
\begin{align*}
& \quad \exp \left(w R_{1}\right) \exp \left(w R_{1}\right)\left(y^{v} G(x, u, w z t v)\right)= \\
& =\exp \left(w R_{1}\right) \exp \left(w R_{1}\right) \sum_{n=0}^{\infty} a_{n}\left({ }_{2} F_{1}(-n, \beta ; v ; x) y^{v} z^{n}\right){ }_{2} F_{1}(-m, \beta ; n ; u) t^{n}(w v)^{n} . \tag{5}
\end{align*}
$$

The left member of (5) becomes

$$
\begin{equation*}
(1+z w / y)^{-1+v}(1+x z w / y)^{-\beta}(1-w t)^{\beta-m} y^{v} G\left(x \frac{(1+z w / y)}{(1+x z w / y)}, u+(1-u) t w, \frac{w z t v}{1-t w}\right) \tag{6}
\end{equation*}
$$

On the other hand, the right member of (5) becomes

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \tag{7}\\
& \sum_{q=0}^{\infty} a_{n} \frac{w^{n+p+q}}{p!q!} v^{n}(-1)^{q}(-v+1)_{q} \frac{(n+m)_{p}(n-\beta)_{p}}{(n)_{p}} \\
& \quad \times{ }_{2} F_{1}(-(n+q), \beta ; v-q ; x) y^{v-q} z^{n+q}{ }_{2} F_{1}(-m, \beta ; n+p ; u) t^{n+p} .
\end{align*}
$$

Now, equation (6) and (7) then using $y=z=t=1$, we get Equation (2), which is our desired result.

Particular Case: If we put $m=0$, we notice from our theorem that $G(x, u, w)$ becomes $G(x, w)$ for ${ }_{2} F_{1}(-m, \beta ; n ; u)$ at $m=0$ becomes 1 . Hence, from our theorem, we obtain

$$
\begin{aligned}
& (1-w)^{\beta}(1+w)^{(v-1)}(1+x w)^{-\beta} G\left(\frac{x(1+w)}{1+x w}, \frac{w v}{1-w}\right) \\
& \sum_{n=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{w^{n+q}}{q!} v^{n}(-1)^{q}(-v+1)_{q}{ }_{2} F_{1}(-(n+q), \beta ; v-q ; x) \sum_{p=0}^{\infty} \frac{\left(n-\beta_{n}\right)}{p!} w^{p} \\
& =\sum_{n=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{(-w)^{n+q}}{q!}(-v+1)_{q 2} F_{1}(-(n+q), \beta ; v-q ; x)\left(\frac{-v}{1-w}\right)^{n}(1-w)^{\beta} .
\end{aligned}
$$

At first we replace $(-v /(1-w))$ by v and then w by $(-w)$, we get

$$
\begin{aligned}
& (1-w)^{(v-1)}(1-x w)^{-\beta} G\left(\frac{x(1-w)}{1-x w}, w v\right) \\
& =\sum_{n=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{(w)^{n+q}}{q!}(-v+1)_{q} F_{1}(-(n+q), \beta ; v-q ; x) v^{n} \\
& =\sum_{n=0}^{\infty} w^{n} \sum_{q=0}^{\infty} a_{q} \frac{(-v+1)_{n-q}}{(n-q)!}{ }_{2} F_{1}(-n, \beta ; v-n+q ; x) v^{q},
\end{aligned}
$$

which is Theorem 1.

References

[1] Chatterjea, S.K. and Chakravorty, S.P.: 1989, "A unified group theoretic method of obtaining a more general class of generating relations from a given class of quasi bilateral (or quasi bilinear) generating relations involving some special functions", Pure Math. Manuscript 8, 153-162.
[2] Das, S.: 1982, "On partial differential operators for $F(-n, \beta ; v ; x)$ ", J. Pure Math. 2, 25-39.
[3] Gosh, B.: 1988, "Some generating functions involving Hypergeometric polynomials by Liealgebraic method", Bull. Inst. Math. Acad. Sinica 16(2), 149-155.
[4] Das, S.: 1986, "Group-Theoretic study of certain generating functions for Hypergeometric polynomials-II", Pure Math. Manuscript 5, 71-76.

