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Abstract

In this note we have obtained an extension of a bilateral generating function of
modified Hypergeometric polynomial from the existence of a quasi bilateral gener-

ating relation by group-theoretic methods.

1 Introduction

In [1], the “quasi bilinear” generating function for the special function p{*(x) is given
by
G(z,u,t) Zanpn i (u)t". (1)

In this note we proceed to prove the existence of a more general generating relation from
the existence of a quasi bilinear generating relation involving certain special function.
In [2], the following theorem on bilateral generating function involving Hypergeometric

Polynomial has been obtained by group-theoretic method.

Theorem 1 If
'UJ) = Z G, 2F1(_n> B? V3 x)wn7
n=0

then

(1 —w)" V(1 - zw) PG (% ) Zw Zaq U+)1' o Fy (—n, ;v — n; x)v.
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Here we have obtained the following extension of the above result from the concept of

quasi-bilinear generating function by group-theoretic method.
Theorem 2 If there exists a quasi bilinear generating relation of the form

G(x,u,w) Zanzﬂ —n, B;v; ) o F1 (—m, By n; u)w",

then
(1= w)~™(1 +w)*" V(1 + 2w) G (%’ u+ (1 —u)w, 1livw)
o0 o0 00 n+p+q
- Z Z Z n S 1)q(—U + 1)(1 X (2>
n=0 p=0 ¢q=0 pq
X (n + m()s)(n - ﬁ)p 2F1(—(n + Q),B; v —(,; x) 2F1(_m7ﬁ; n + p; U)
Proof

At first, we consider the following two linear partial differential operators Ry and R,,
3, 4]:
0 0
Rl—l’(l—l')y Za—‘FZa—y—(xﬁ“‘ ) -
0 0
Ry = (1 —u)t=— +t*—
2= (1=t + o+ (m = B,

such that

R1(2F1(_n>ﬁ;v;x)yvzn) = (’U - 1)2F1(_( ) ﬁa 7 ) v 1Zn+17

(n +m(n - 3))

Ro(oF1(—m, B;n;u)t") = JFi(—m, Bin+ 1; u)tn+17

and

(14 zw/y)
(14 z2w/y)

exp(wRy) f(u,t) = (1 —wt)P~™f <u + (1 — utw), ﬁ) :

exp(wRy) f(z,y. 2) = (14 zw0/y) " (1 + zw/y) S ( (1t 2w fy), ) ,

Let
G(z,u,w) ZaMFl —n, B;v;x) o Fy (—m, B;n;u)w”. (3)

Now replacing w by wztv and then multiplying both sides of (3) by y*, we get
y'G(x,u,w) Z an 2 1 (=, B;032) Y 2" o Fi (—m, By n; u)t”™ (wo)™. (4)
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On operating both sides of (4) by exp(wR;) exp(wR3), we get

exp(wRy) exp(wRy)(y'G(x, u, wztv)) =

= exp(wR) exp(wR,) io: an (2F1(=n, B;0;2) y°2") o F1 (—m, B5n; u)t™ (wo)".

n=0

The left member of (5) becomes

_ _ , 14+ zw/y) wztv
1 v A1 —wt)P ™G (+zwfy) 1 —u)tw, ——— | .
(1+ 2w/y) (1+zzw/y) 7 (1 — wt)”™y x(1+xzw/y)’u+( u) w, T
(6)
On the other hand, the right member of (5) becomes
Y n+p+q (n+m)y(n— ),

(—=1)(=v+ 1),

S

n=0 p=0 q=0 pq' (n)P (7)
X2 I (=(n+q), Bv — g 2)y* "1y Fy(—m, Bin + pyu)t™P
Now, equation (6) and (7) then using y = z =t = 1, we get Equation (2), which is
our desired result.

Particular Case: If we put m = 0, we notice from our theorem that G(x, u, w) becomes

G(z,w) for o F1(—m, B;n;u) at m = 0 becomes 1. Hence, from our theorem, we obtain

<1—qu+wwhw1+mmwG(ﬂl+w) wv>

l+zw  1—w
n+q )
ZZ% (=) (=v+1)q 2F1(=(n+q), Biv Z
n= Oq 0 ! p=0
_ )n+q _ oy —v \" B
Zzan U+1)q2F1( (TL—F(]),ﬁ,U Q7I) 1 —w (1 UJ) :

n=0 g=0
At first we replace (—v/(1 —w)) by v and then w by (—w), we get
— )01 — gt (P W)
(1—w) (1 —2w) G(l—xw7wv

n+q

= ZZan i (—v+1) 2B (—(n+q), B;v — ¢;x)v"

n=0 q=0

> —v+1),_
—Zw Zaq —q)) ~—— R (—n, B0 — n+ q; o),

which is Theorem 1.
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