# Estudio de la relación riesgo-lesión mediante análisis factorial

## Juan Carlos Conte Solano y Emilio Rubio Calvo

Departamento de Microbiología, Medicina Preventiva y Salud Pública Cátedra de Bioestadística. Universidad de Zaragoza. 50009 Zaragoza

#### Abstract

The present study tries to establish, for human populations in a job environment, the relations between two variables (19 risk categories and 19 injury categories); they are the components that we have defined to characterize the labour accident. The object in establishing these relations focusses on distinguishing groups of related categories, which contributes distinctive criteria for both the occurrence and the inter-group relations. The diverse obtained associations individual-environment characterize the system, distinguishing these two elements components of the same one. We have distinguished three groups of risks and three groups of injuries.

**Key words:** Labour Accidentability, Factor Analysis, Risks, Injuries, Classification.

#### 1 Introducción

Los estudios teóricos existentes hasta la actualidad sobre el accidente en poblaciones laborales, no han pasado de la fase empírica. La observación directa y el estudio primario de los registros obtenidos, son los únicos elementos considerados para el análisis y el control del problema. Los esfuerzos invertidos en el desarrollo legislativo, de normas técnicas y de sistemas de gestión preventivos, no están alcanzando el grado de eficacia deseado. La poca fiabilidad y acierto de las anteriores acciones con respecto al control y minimización del accidente, se explica por el elevado grado de subjetividad de las mismas y porque en su diseño no se han incluido aquellas características biológicas propias de las poblaciones humanas.

Se ha intentado abordar la previsión del accidente en poblaciones a partir del desarrollo de unos modelos filosóficos deterministas, modelos de contraste entre lo subjetivamente observado y unas "categorías" ponderadas mediante un valor, cuya finalidad es identificar riesgos potenciales y asociarlos con posibles lesiones de una forma subjetiva y aleatoria.

En este sentido el modelo más difundido y utilizado ha sido el de Fine(1), denominado como "método de evaluación del riesgo", que no representa la realidad del mismo. Al fenómeno natural, que es el accidente, se debe asociar una componente aleatoria que es preciso identificar, analizar y reducir, y cuyo comportamiento va a ser clave a la hora de establecer las previsiones para su control.

El presente estudio trata de establecer las relaciones existentes entre los elementos secuenciales que consideramos(2) son los componentes básicos del accidente laboral, los riesgos y las lesiones. Esta caracterización, de tipo matemático, la hacemos mediante el análisis factorial, aspecto no considerado en la literatura.

Estas relaciones permiten obtener los posibles resultados asociados a la materialización del accidente laboral, pudiendo distinguir además tres grupos de riesgos y otros tres de lesiones, que representan una clasificación del fenómeno. Esta clasificación se establece según un valor medio de materialización de las categorías asociadas al grupo y de su distribución, del origen del riesgo en su caso, o del tipo de lesión resultante en el suyo.

Esta caracterización la habíamos obtenido previamente (3,4) mediante análisis factorial de correspondencias, técnica estadísitica que utilizada de forma única no deja suficientemente claros los límites, qué categorías pertenecen a cada grupo, entre la segunda y la tercera de las tres agrupaciones anteriores. Utilizamos el análisis factorial como un método complementario y aleatorio al de correspondencias, que emplearemos para optimizar el proceso de dilucidación de las categorías pertenecientes a cada grupo, posibilitando estudiar mediante análisis separados, por un lado, los riesgos y, por otro, las lesiones, realizando así un doble análisis.

La aplicación final de estas ideas es el desarrollo de un nuevo método de "tipo de contraste" (5) que hemos denominado ACSOM ("accidents soma" o "cuerpo de accidentes") con el que poder prever situaciones futuras, basándonos en los datos de accidentes reales ocurridos.

### 2 Material y Métodos

Este estudio trata de relacionar "riesgos materializados" con lesiones materializadas, conceptos que caracterizan a los accidentes laborales ya ocurridos. No se trata pues de relacionar "riesgos potenciales" con "posibles lesiones". La diferencia como se puede deducir, estriba en la referencia temporal, en el pasado, en el caso del estudio que presentamos, o en el futuro, en el caso de la potencialidad de materialización de riesgos y lesiones, objeto este último de los estudios actuales de prevención denominados "evaluaciones de riesgos".

Partimos inicialmente de "tablas de contingencia" (matrices bidimensionales) que recogen las distribuciones de frecuencias riesgo-lesión; 11 tablas que representan los registros anuales de los periodos comprendidos entre los años 1990 y 2000, ambos incluidos. Estas tablas están deducidas de los registros individuales, en donde a cada individuo registrado (accidentado con "baja laboral") se le ha identificado un solo riesgo, el riesgo principal productor de la lesión observada y consecuentemente la lesión principal causante de la "baja laboral". Así es como se presentan los resúmenes oficiales de "accidentalidad laboral" en España, cuya elaboración se establece en base a los "partes de accidente de trabajo" (los modelos de "parte de accidente" a partir de los que se han elaborado las tablas resumen base para este estudio, son los definidos en la O.M. 16-12-87, MTSS), documento este último que sigue la filosofía antes indicada. En este sentido, cada individuo registrado estará caracterizado por un solo riesgo y una sola lesión, obteniéndose de esta manera una tabla formada por dos variables nominales con "categorías" mutuamente excluyentes y exhaustivas. Para el caso de que exista más de una lesión de gravedad suficiente como para considerarla también causa de la "baja laboral", existe la categoría denominada en este estudio  $L_{19}$  y definida como lesiones múltiples, que resuelve esta situación.

Consecuentemente pretendemos identificar las relaciones de máxima afinidad de riesgos y de lesiones, caracterizando parejas riesgo-lesión que nos ayuden a comprender la realidad física del accidente laboral; obviamente este modelo es una representación sencilla del modelo real que debería abarcar todas las relaciones individuo-entorno; pero, por lo menos se ha rebajado en su interpretación, la componente aleatoria asociada a la inicial interpretación teórica.

Para facilitar el análisis de los datos, definimos el "año medio" (tabla 1), como los valores medios de las frecuencias poblacionales obtenidas a partir de los registros de los periodos indicados. Estos valores medios son valores cuantitativos (se caracterizan individualmente por representar el valor medio de los registros que componen la serie temporal seleccionada para el estudio, y por establecer una desviación de cada periodo considerado con respecto a este valor medio). Los presentamos según una métrica discreta mediante el redondeo de los valores medios obtenidos en una métrica continua. Se ha verificado la representatividad e idoneidad del año medio como sustituto de la serie temporal inicial de 11 años, mediante el estudio de la estabilidad temporal de las frecuencias de registro(6). La estabilidad se ha confirmado mediante la aplicación del análisis de correspondencias al estudio de las relaciones de interdependencia riesgo-lesión para cada periodo considerado, obteniendo para cada uno de ellos modelos factoriales reducidos y puntuaciones factoriales casi idénticas.

Al representar las variables según una métrica cuantitativa, ya que el "año ficticio" no representa las variables nominales originales sino los valores numéricos medios obtenidos

a partir de ellas, se ha creído oportuno el verificar las hipótesis de normalidad, linealidad y homocedasticidad. Para ello se han analizado las distribuciones de riesgos y de lesiones respecto al "año medio". Estas distribuciones para cada riesgo y para cada lesión, características de la población de accidentes, presentan coeficientes de variación elevados, lo que plantea el alejamiento de la normalidad indicando además, que no se verifican las condiciones de linealidad y homocedasticidad; el incumplimiento de estas dos últimas condiciones se podría resolver adoptando una representación logarítmica de las variables(7).

No obstante, hemos preferido utilizar "métodos blandos" de análisis (métodos multivariantes aplicables a "conjuntos de datos" que incumplen las anteriores hipótesis(8)), para el estudio de las variables riesgo y lesión, ya que en este caso, no se exigen unas condiciones estrictas en cuanto a las condiciones de distribución los datos, incumplimiento que se traduce en una ligera disminución de las correlaciones observadas(9).

#### 2.1 Análisis de Componentes Principales

Como el objetivo de este estudio no es el obtener un modelo inicial y único riesgolesión a partir del análisis factorial, sino complementar el obtenido a partir del análisis de
correspondencias, se ha seleccionado el métodos de extracción de factores más coonvencional, el de componentes principales (el que por defecto aplica SPSS), y el procedimiento
ortogonal de rotación de ejes más utilizado, varimax, que trata de minimizar el númenro
de variables (categorías) que hay con los pesos oa saturaciones elevadas en cada factor.
Además, el modelo factorial obtenido mediante componentes principales presenta un 15%
(para los riesgos) y un 14% (para las lesiones) de los residuales calculados superiores a
0'05, lo que nos indica una buena representación factorial de las observaciones.

Utilizamos el análisis de componentes principales como un método exploratorio, al igual que se hizo previamente con el análisis de correspondencias. La finalidad no es el replicar de una forma exacta los resultados de correspondencias mediante componentes principales, sino el obterner a partir de este último método unos resultados, que junto con los obtenidos por análisis de correspondencias, permitan establecer con claridad cada grupo y justificarlo además desde el punto de vista físico-natural, llegando a representar mediante su uso conjunto las características generales del fenómeno en estudio.

Para valorar la idoneidad de aplicación del análisis factorial, se han aplicado dos de los cinco filtros clásicos(10): la matriz de correlación y el valor del determinante de la misma. El test de esfericidad de Barlett no se ha aplicado porque el objeto del mismo es averiguar que la matriz de correlaciones no es una matriz identidad. Como el determinante de la matriz de correlaciones es aproximadamente cero, se desestima que la matriz de correlaciones pueda ser una matriz identidad.

La prueba KMO y los valores MSA representados en la diagonal principal de la matriz antiimagen, están planteados para averiguar el grado de dependencia existente entre las diversas variables (categorías en nuestro caso) a analizar. Dado el carácter complementario de nuestro análisis y dados los valores obtenidos en la matriz de correlaciones y de su determinante que manifiestan claramente la dependencia existente entre las diversas categorías a analizar, no hemos considerado de interés la realización de las mismas. Además la aplicación informática utilizada (SPSS) para su realización tampoco las calcula, por las razones anteriormente indicadas.

Las variables que consideramos (Riesgo (R) y Lesión (L)) son las que aparecen detalladas en la página siguiente.

Como hemos aplicado el análisis de componentes principales de manera doble a riesgos y lesiones hemos denominado con 2 y 3 las matrices de correlación de Pearson, nomenclatura que hemos seguido a los largo del análisis.

Finalmente, las puntuaciones factoriales rotadas, se han proyectado en un gráfico de dispersión, utilizando para ello una hoja de cálculo (EXCEL). Se han contrastado todos los pares posibles de factores (ejes o dimensiones factoriales) correspondientes al modelo factorial reducido, habiendo seleccionado aquellas representaciones, para riesgos y para lesiones, que mayor dispersión presentaban para las categorías analizadas.

El número de factores lo tomamos igual a los que tengan valores propios mayor que 1 (tablas 4 y 6). Posteriormente, obtendremos la matriz de los nuevos factores con sus correspondientes pesos factoriales (tablas 5 y 7). La correlación obtenida entre los diversos factores y las categorías, puede ser utilizada para estimar la correlación entre las categorías. Estos coeficientes de correlación así estimados, son los que presentaremos en la parte inferior de correlaciones reproducidas (tablas 8 y 9). La diferencia entre estos coeficientes de correlación y los coeficientes de correlación observados, es la que aparece en la parte superior de la diagonal principal de la matriz reproducida (residuales).

## 2.2 Caso de las Variables Riesgo y Lesión

En la tabla 2 se observa la existencia de valores superiores a 0,3 (correlación mínima aceptable), excepto para  $R_{10}$  y  $R_{14}$ . Estas "categorías" estarán mal representadas por lo que tendremos que contrastar los resultados de las mismas con su realidad empírica. El valor del determinante de la matriz da un valor aproximadamente cero  $(-5, 6 \times 10^{-34})$ , lo que indica la viabilidad del análisis. La tabla 3 presenta valores superiores al antes indicado, excepto para  $L_{17}$  y  $L_{18}$ . Con las oportunas precauciones interpretativas el análisis es igualmente viable para este grupo. En este caso el determinante es  $3, 6 \times 10^{-23}$ , lo que indica también la viabilidad de su análisis.

- $R_1$  Caídas de Personas a Distinto Nivel
- $R_2$  Caídas de Personas al Mismo Nivel
- $R_3$  Caídas de Objetos por Desplome
- R<sub>4</sub> Caídas de Objetos en Manipulación
- $R_5$  Caídas de Objetos Desprendidos
- $R_6$  Pisar sobre Objetos
- $R_7$  Choques contra Objetos Inmóviles
- $R_8$  Choques contra Objetos Móviles
- $R_9$  Golpes, Cortes por Objetos o Herramientas
- $R_{10}$  Proyección de Fragmentos o Partículas
- $R_{11}$  Atrapamiento por o entre Objetos
- $R_{12}$  Acc. con Maquinaria Móvil y de Tráfico
- $R_{13}$  Sobreesfuerzos
- $R_{14}$  Exposición y/o Contactos Térmicos
- $R_{15}$  Contactos Eléctricos
- $R_{16}$  Interacción con Sustancias Agresivas
- $R_{17}$  Exposición a Radiaciones
- $R_{18}$  Explosiones e Incendios
- $R_{19}$  Acc. causados por Seres Vivos
- $L_1$  Fracturas
- $L_2$  Luxaciones
- $L_3$  Torceduras, Esquinces, Distensiones
- $L_4$  Lumbalgias
- $L_5$  Hernias Discales
- $L_6$  Conmociones y Traumatismos Internos
- $L_7$  Amputaciones y Pérdida Globo Ocular
- $L_8$  Otras Heridas
- $L_9$  Traumatismos Superficiales
- $L_{10}$  Contusiones y Aplastamientos
- $L_{11}$  Cuerpos Extraños en los Ojos
- $L_{12}$  Conjuntivitis
- $L_{13}$  Quemaduras
- $L_{14}$  Envenenamientos e Intoxicaciones
- $L_{15}$  Efectos Ambientales
- $L_{16}$  Asfixias
- $L_{17}$  Efectos Eléctricos
- $L_{18}$  Efectos por Radiaciones
- $L_{19}$  Lesiones Múltiples

| Total  | Lesión | L1    | L2       | L3     | L4    | T2  | PQ    | L7   | L8     | F3    | $\Gamma$ 10 | L11   | L12  | L13   | L14      | L15 | L16 | L17      | L18 | L19  |
|--------|--------|-------|----------|--------|-------|-----|-------|------|--------|-------|-------------|-------|------|-------|----------|-----|-----|----------|-----|------|
| Riesgo | 683615 | 88989 | 14766    | 184772 | 62701 | 995 | 10282 | 2569 | 118680 | 33253 | 127549      | 35781 | 5107 | 14591 | 1024     | 299 | 237 | 586      | 185 | 6550 |
| R1     | 59243  | 11496 | 2013     | 21362  | 1012  | 45  | 1518  | 44   | 3441   | 3114  | 13174       | 155   | 32   | 137   | 15       | 17  | 23  | $\infty$ | 2   | 1635 |
| R2     | 67195  | 9431  | 2207     | 29058  | 1184  | 46  | 1205  | 44   | 4524   | 3562  | 14937       | 126   | 27   | 204   | 10       | 21  | အ   | 2        | 2   | 599  |
| R3     | 9478   | 1612  | 197      | 1112   | 179   | 7   | 278   | 24   | 1614   | 069   | 3404        | 96    | 18   | 48    | 2        | 3   | 9   | П        | 0   | 187  |
| R4     | 44618  | 9018  | 819      | 4756   | 293   | 34  | 714   | 128  | 8968   | 3346  | 14908       | 488   | 95   | 804   | $\infty$ | 10  | အ   | 4        | 2   | 219  |
| R5     | 4863   | 724   | 83       | 200    | 41    | 2   | 129   | 12   | 944    | 418   | 1649        | 205   | 21   | 54    | П        | П   | П   | П        | 0   | 22   |
| R6     | 39361  | 2068  | 544      | 27370  | 320   | 13  | 268   | 28   | 5185   | 791   | 2505        | 65    | 15   | 86    | က        | 10  | Н   | 3        | П   | 73   |
| R7     | 28452  | 2407  | 999      | 4727   | 226   | 16  | 815   | 47   | 7499   | 2731  | 9898        | 325   | 62   | 66    | 9        | 10  | 2   | 2        | 3   | 124  |
| R8     | 16512  | 1468  | 349      | 2414   | 111   | 11  | 420   | 112  | 5378   | 1428  | 4289        | 209   | 38   | 88    | 2        | 9   | Н   | П        | П   | 185  |
| R9     | 131419 | _     | 1632     | 13566  | 693   | 99  | 1882  | 503  | 51294  | 10141 | 37011       | 1552  | 334  | 361   | 18       | 35  | က   | 10       | 9   | 475  |
| R10    | 42887  |       | 42       | 327    | 92    | 7   | 133   | 27   | 5357   | 229   | 268         | 31064 | 2549 | 1503  | 18       | 0   | 7   | 35       | 14  | 62   |
| R11    | 45490  |       | 561      | 3273   | 112   | 22  | 414   | 1510 | 13938  | 2582  | 14651       | 123   | 23   | 221   | 4        | 22  | 10  | 3        | 2   | 241  |
| R12    | 18776  | 2896  | 447      | 3889   | 287   | 16  | 657   | 89   | 1478   | 1352  | 5420        | 79    | 20   | 96    | П        | 11  | 4   | 2        | 3   | 2047 |
| R13    | 153039 | 2236  | 5097     | 71552  | 58099 | 902 | 1613  | 0    | 6286   | 2026  | 5075        | 0     | 0    | 0     | 0        | 50  | 12  | 0        | 0   | 287  |
| R14    | 2299   | 0     | 0        | 0      | 0     | 0   | 43    | 2    | 458    | 0     | 0           | 0     | 0    | 6064  | 0        | 75  | က   | 0        | 6   | 23   |
| R15    | 2181   | 16    | $\infty$ | 52     | 14    | П   | 7     | 3    | 84     | 12    | 32          | 102   | 380  | 935   | 4        | 2   | 2   | 502      | 12  | 13   |
| R16    | 7178   | 0     | 0        | 0      | 0     | 0   | 33    | 2    | 1074   | 78    | 0           | 1098  | 1054 | 2783  | 298      | 0   | 134 | 0        | 14  | 41   |
| R17    | 704    | 0     | 0        | 0      | 0     | 0   | 9     | П    | 84     | 10    | 0           | 0     | 402  | 82    | 1        | 33  | 0   | 0        | 112 | 3    |
| R18    | 1314   | 32    | 4        | 42     | 5     | 0   | 25    | 9    | 115    | 27    | 51          | 45    | 21   | 851   | 19       | 9   | 15  | 9        | П   | 43   |
| R19    | 4228   | 448   | 86       | 772    | 49    | က   | 122   | ∞    | 958    | 268   | 686         | 49    | 16   | 162   | 45       | 17  | 7   | 0        | П   | 216  |

Valor del Año Medio = 683612; Valor del Redondeo = 683615; Error de Redondeo = +3

Tabla 1.— Año Medio. Distribución Bidimensional de "Valores Medios"

|     | R1     | R2     | R3     | R4     | R5      | R6     | R7     | R8     | R9     | R10    | R11    | R12    | R13    | R14    | R15    | R16   | R17    | R18   | R19   |
|-----|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|-------|-------|
| R1  | 1,000  |        |        |        |         |        |        |        |        |        |        |        |        |        |        |       |        |       |       |
| R2  | ,9829  | 1,000  |        |        |         |        |        |        |        |        |        |        |        |        |        |       |        |       |       |
| R3  | ,7221  | ,6537  | 1,000  |        |         |        |        |        |        |        |        |        |        |        |        |       |        |       |       |
| R4  | ,7015  | ,6252  | 9880,  | 1,000  |         |        |        |        |        |        |        |        |        |        |        |       |        |       |       |
| R5  | ,6752  | ,6137  | 2066,  | 6986,  | 1,000   |        |        |        |        |        |        |        |        |        |        |       |        |       |       |
| R6  | ,8250  | ,9003  | ,3205  | ,3046  | ,2979   | 1,000  |        |        |        |        |        |        |        |        |        |       |        |       |       |
| R7  | ,6923  | ,6777  | ,9286  | ,9269  | ,9493   | ,4657  | 1,000  |        |        |        |        |        |        |        |        |       |        |       |       |
| R8  | ,6041  | ,5910  | 6998,  | 8869   | ,9019   | ,4286  | ,9793  | 1,000  |        |        |        |        |        |        |        |       |        |       |       |
| R9  | ,4909  | ,4723  | ,8360  | ,8651  | ,8794   | ,3117  | ,9495  | 7886,  | 1,000  |        |        |        |        |        |        |       |        |       |       |
| R10 | -,1183 | -,1042 | -,0513 | -,0348 | ,0448   |        | -,0085 | ,0188  | ,0394  | 1,000  |        |        |        |        |        |       |        |       |       |
| R11 | ,5583  | ,4975  | ,9320  | ,9588  | ,9517   | ,2371  | ,9396  | ,9483  | ,9559  | -,0133 | 1,000  |        |        |        |        |       |        |       |       |
| R12 | 9288,  | ,8328  | ,8994  | ,8612  | ,8624   |        | ,8165  | ,7228  | ,6414  | -,1240 | ,7399  | 1,000  |        |        |        |       |        |       |       |
| R13 | ,5872  | ,6590  | ,1482  | ,1065  | ,1038   | ,7518  | ,2378  | ,1953  | ,1022  | -,1074 | ,0373  | ,3430  | 1,000  |        |        |       |        |       |       |
| R14 | -,1260 | -,1109 | -,1038 | -,0637 | -,0868  | -,0693 | -,0896 | -,0716 | -,0583 | -,0197 | -,0716 | -,1359 | -,1006 | 1,000  |        |       |        |       |       |
| R15 | -,1799 | -,1543 |        | -,1434 | -,1598  | -,0891 | -,1635 | -,1502 | -,1303 | ,0372  | -,1510 | -,2152 | -,1395 | ,8224  | 1,000  |       |        |       |       |
| R16 | -,2357 | -,2059 |        | -,0748 | -,0685  |        | -,0510 | ,0094  | ,0518  | ,3335  | -,0203 | -,2454 | -,1944 | ,8280  | ,7671  | 1,000 |        |       |       |
| R17 | -,1849 | -,1633 | -,1298 | -,1059 | -,11117 | -,0934 | -,0793 | -,0452 | -,0117 | ,0015  | -,0581 | -,2007 | -,1479 | ,1223  | ,3826  | ,3912 | 1,000  |       |       |
| R18 | -,0716 | -,0594 | -,0385 | ,0018  | -,0169  | -,0306 | -,0200 | -,0020 | 6200,  | ,0190  | -,0071 | -,0685 | -,0876 | ,9954  | ,8156  | ,8455 | ,1221  | 1,000 |       |
| R19 | ,7714  | ,7520  | ,9025  | ,9085  | ,9139   | ,5715  | ,9713  | ,9598  | ,9172  | -,0304 | ,9093  | ,8605  | ,3136  | -,0065 | -,1091 | ,0063 | -,0933 | ,0680 | 1,000 |

Tabla 2.— Matriz de Correlaciones, Variable Riesgo

|     | L1     | L2     | L3     | L4     | L5     | FQ     | L7     | L8     | F3     | L10    | L11    | L12    | L13    | L14    | L15    | L16    | L17    | L18    | L19   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| L1  | 1,000  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |
| L2  | ,4420  | 1,000  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |
| L3  | ,2795  | ,9460  | 1,000  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |
| L4  | -,0429 | ,8494  | ,8576  | 1,000  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |
| L5  | ,0494  | ,8900  | ,8824  | ,9952  | 1,000  |        |        |        |        |        |        |        |        |        |        |        |        |        |       |
| PQ  | ,7818  | ,8164  | ,6714  | ,4521  | ,5320  | 1,000  |        |        |        |        |        |        |        |        |        |        |        |        |       |
| L7  | ,4411  | ,0108  | -,0787 | -,0924 | -,0553 | ,1429  | 1,000  |        |        |        |        |        |        |        |        |        |        |        |       |
| L8  | ,6204  | ,2570  | ,1324  | 6600,  | ,0880  | ,6227  | ,4624  | 1,000  |        |        |        |        |        |        |        |        |        |        |       |
| F3  | ,8241  | ,4272  | ,2612  | ,0443  | ,1368  | ,8207  | ,3759  | ,9275  | 1,000  |        |        |        |        |        |        |        |        |        |       |
| L10 | ,8886  | ,3821  | ,2071  | -,0263 | ,0681  | ,7859  | ,4831  | ,8964  | ,9835  | 1,000  |        |        |        |        |        |        |        |        |       |
| L11 | -,1578 | -,1411 | -,1342 | -,0674 | -,0744 | -,1438 | -,0648 | ,0240  | -,0704 | -,1204 | 1,000  |        |        |        |        |        |        |        |       |
| L12 | -,2297 | -,2202 | -,2133 | -,1120 | -,1251 | -,2285 | -,1013 | ,0185  | -,1100 | -,1630 | ,9202  | 1,000  |        |        |        |        |        |        |       |
| L13 | -,2790 | -,2728 | -,2568 | -,1352 | -,1615 | -,3349 | -,1352 | -,1485 | -,2481 | -,2529 | ,1268  | ,2180  | 1,000  |        |        |        |        |        |       |
| L14 | -,1871 | -,1559 | -,1415 | -,0706 | -,0892 | -,2032 | -,0943 | -,1003 | -,1623 | -,1699 | -,0149 | ,3219  | ,3290  | 1,000  |        |        |        |        |       |
| L15 | ,1904  | ,4664  | ,4296  | ,4351  | ,4549  | ,3802  | ,1307  | ,2570  | ,2628  | ,2443  | -,1991 | -,2962 | ,5377  | -,2026 | 1,000  |        |        |        |       |
| L16 | -,1316 | -,0751 | -,0742 | -,0069 | -,0233 | -,1387 | -,0665 | -,1220 | -,1607 | -,1611 | -,0175 | ,3020  | ,3130  | ,9830  | -,1717 | 1,000  |        |        |       |
| L17 | -,1850 | -,1535 | -,1390 | -,0694 | -,0862 | -,2112 | -,0903 | -,1157 | -,1658 | -,1679 | ,0038  | ,1014  | ,0293  | -,0699 | -,1860 | -,0917 | 1,000  |        |       |
| L18 | -,2360 | -,2074 | -,1917 | -,0992 | -,1212 | -,2657 | -,1094 | -,1231 | -,1953 | -,2023 | ,0360  | ,1918  | -,0006 | ,0318  | -,1631 | -,0106 | ,0181  | 1,000  |       |
| L19 | ,4699  | ,2598  | ,1635  | -,0109 | ,0283  | ,4866  | ,0058  | ,0454  | ,2612  | ,2895  | -,1256 | -,2031 | -,2484 | -,1322 | ,0400  | -,0544 | -,1397 | -,1844 | 1,000 |

Tabla 3.— Matriz de Correlaciones, Variable Lesión

| Variable-R   | Comur    | nalidad   | Factor | Valor Propio | Proporción     | Proporción     |
|--------------|----------|-----------|--------|--------------|----------------|----------------|
| (Categorías) | (VAR. Co | ndensada) | (Eje)  | (Eigenvalue) | VAR. Explicada | VAR. Acumulada |
| $R_1$        | 1,00000  | 0,93281   | 1      | 9,76389      | 51,4           | 51,4           |
| $R_2$        | 1,00000  | 0,96671   | 2      | 3,67739      | $19,\!4$       | 70,7           |
| $R_3$        | 1,00000  | 0,95379   | 3      | 2,30273      | $12,\!1$       | 82,9           |
| $R_4$        | 1,00000  | 0,96300   | 4      | 1,08837      | 5,7            | 88,6           |
| $R_5$        | 1,00000  | 0,96997   | 5      | 0,99195      | 5,2            | 93,8           |
| $R_6$        | 1,00000  | 0,92372   | 6      | 0,56009      | 2,9            | 96,8           |
| $R_7$        | 1,00000  | 0,96851   | 7      | $0,\!26749$  | 1,4            | 98,2           |
| $R_8$        | 1,00000  | 0,92743   | 8      | 0,18612      | 1,0            | 99,1           |
| $R_9$        | 1,00000  | 0,90405   | 9      | 0,07070      | $0,\!4$        | $99,\!5$       |
| $R_{10}$     | 1,00000  | 0,83144   | 10     | 0,04720      | $0,\!2$        | 99,8           |
| $R_{11}$     | 1,00000  | 0,97499   | 11     | 0,03524      | $0,\!2$        | 100,0          |
| $R_{12}$     | 1,00000  | 0,87208   | 12     | 0,00611      | 0,0            | 100,0          |
| $R_{13}$     | 1,00000  | 0,77141   | 13     | 0,00134      | 0,0            | 100,0          |
| $R_{14}$     | 1,00000  | 0,95075   | 14     | 0,00088      | 0,0            | 100,0          |
| $R_{15}$     | 1,00000  | 0,83936   | 15     | 0,00039      | 0,0            | 100,0          |
| $R_{16}$     | 1,00000  | 0,94683   | 16     | 0,00009      | 0,0            | 100,0          |
| $R_{17}$     | 1,00000  | 0,21114   | 17     | 0,00001      | 0,0            | 100,0          |
| $R_{18}$     | 1,00000  | 0,94949   | 18     | 0,00000      | 0,0            | 100,0          |
| $R_{19}$     | 1,00000  | 0,97491   | 19     | 0,00000      | 0,0            | 100,0          |

Tabla 4.— Obtención del Modelo Factorial Reducido, "Categorías-R"

#### 3 Resultados

#### 3.1 Variable Riesgo

La tabla 4 muestra que el número de factores a extraer son cuatro. Estos cuatro factores explican el 88,6% de la varianza total de las categorías, valor muy aceptable. La tabla 6 representa la matriz de los cuatro factores, aproximando la agrupación de categorías que realiza. Queda por debajo de 0,5 la categoría  $R_{17}$  correspondiente al factor de menor comunalidad de la tabla 4.

En la tabla 8, parte superior de la diagonal principal, contabilizamos 26 residuales superiores a 0,05 lo que representa el 15% de todos los residuales calculados, situación que indica un buen ajuste del modelo resumido a los datos de partida. Se advierte, que la categoría  $R_{17}$  tiene un valor de comunalidad muy bajo, aspecto que nos indica su independencia con respecto al resto de las categorías; está por lo tanto mal representada por este modelo.

Como la interpretación del significado de los factores en la matriz de pesos factoriales anteriormente obtenida no está clara (tabla 5), para interpretarla obtenemos la matriz de factores rotados (tabla 10). Así, el primer factor agrupa los riesgos  $R_{11}$ ,  $R_5$ ,  $R_4$ ,  $R_3$ ,  $R_7$ ,

| Categorías- $R$ | Factor-1 | Factor-2    | Factor-3    | Factor-4 |
|-----------------|----------|-------------|-------------|----------|
| $R_{19}$        | 0,97362  | 0,16216     | 0,00552     | 0,02561  |
| $R_7$           | 0,96698  | $0,\!11467$ | -0,13713    | 0,03890  |
| $R_3$           | 0,94825  | 0,07328     | -0,19651    | -0,10312 |
| $R_5$           | 0,94378  | 0,12212     | -0,25326    | -0,01407 |
| $R_4$           | 0,94194  | $0,\!12837$ | -0,22654    | -0,08917 |
| $R_8$           | 0,92602  | $0,\!15572$ | -0,19641    | 0,08424  |
| $R_{12}$        | 0,91342  | -0,06309    | 0,12894     | -0,13090 |
| $R_{11}$        | 0,90620  | $0,\!16522$ | -0,35380    | -0,03628 |
| $R_9$           | 0,87285  | $0,\!19525$ | -0,31061    | 0,08712  |
| $R_1$           | 0,83467  | -0,12469    | $0,\!46952$ | -0,01174 |
| $R_2$           | 0,80270  | -0,11959    | 0,55298     | 0,04790  |
| $R_{16}$        | -0,16443 | 0,92586     | 0,05281     | 0,24453  |
| $R_{18}$        | -0,08288 | 0,92472     | 0,24205     | -0,17008 |
| $R_{14}$        | -0,15277 | 0,90631     | 0,24993     | -0,20869 |
| $R_{15}$        | -0,23511 | 0,85380     | $0,\!22501$ | -0,06695 |
| $R_{17}$        | -0,15493 | 0,34899     | -0,07363    | 0,24478  |
| $R_{13}$        | 0,34877  | -0,23582    | 0,75703     | 0,14517  |
| $R_6$           | 0,57172  | -0,11991    | 0,73628     | 0,20090  |
| $R_{10}$        | -0,05324 | 0,15241     | -0,17790    | 0,87962  |

Tabla 5.— Matriz de Factores, "Categorías-R"

 $R_9$ ,  $R_8$ ,  $R_{19}$ ,  $R_{12}$ ; el segundo factor agrupa a  $R_{18}$ ,  $R_{14}$ ,  $R_{15}$ ,  $R_{16}$ ; el tercer factor a  $R_6$ ,  $R_{13}$ ,  $R_2$ ,  $R_1$ ; finalmente el cuarto factor agrupa  $R_{10}$ ,  $R_{17}$ .

#### 3.2 Variable Lesión

En la tabla 6 vemos que el número de factores a extraer son seis, que explican el 84,7% de la varianza total de las "categorías". La tabla 7 nos representa la matriz con los seis factores, quedando por debajo de 0,5 las "categorías"  $L_7$ ,  $L_{17}$  y  $L_{18}$ , factores de menor comunalidad (tabla 6).

En la tabla 9 y en la parte superior de la diagonal principal contabilizamos 25 residuales superiores a 0,05 lo que representa el 14% de todos los residuales calculados, planteando esta situación un buen ajuste del modelo resumido a los datos de partida. Se advierte, que las "categorías"  $L_{17}$  y  $L_{18}$  tienen valores de comunalidad muy bajos, aspecto que nos indica su independencia con respecto al resto, estando por lo tanto mal representadas por este modelo.

Para interpretar la matriz de pesos factoriales (tabla 7) rotamos los factores (tabla 11). Así, el primer factor agrupa las lesiones  $L_2$ ,  $L_3$ ,  $L_4$ ,  $L_5$ ; el segundo factor  $L_1$ ,  $L_6$ ,  $L_7$ ,  $L_8$ ,  $L_9$ ,  $L_{10}$ ; el tercer factor  $L_{14}$ ,  $L_{16}$ ; el cuarto factor  $L_{11}$ ,  $L_{12}$ ; el quinto factor  $L_{17}$ ,  $L_{18}$ ,  $L_{19}$ ; finalmente el sexto factor  $L_{13}$ ,  $L_{15}$ .

| Variable-L   | Comur    | nalidad     | Factor | Valor Propio | Proporción     | Proporción     |
|--------------|----------|-------------|--------|--------------|----------------|----------------|
| (Categorías) | (VAR. Co | ndensada)   | (Eje)  | (Eigenvalue) | VAR. Explicada | VAR. Acumulada |
| $L_1$        | 1,00000  | 0,86577     | 1      | 6,13595      | 32,3           | 32,3           |
| $L_2$        | 1,00000  | 0,98101     | 2      | 3,31724      | 17,5           | 49,8           |
| $L_3$        | 1,00000  | 0,92409     | 3      | 2,22169      | 11,7           | 61,4           |
| $L_4$        | 1,00000  | 0,96689     | 4      | 1,77156      | 9,3            | 70,8           |
| $L_5$        | 1,00000  | 0,97146     | 5      | 1,53722      | 8,1            | 78,9           |
| $L_6$        | 1,00000  | 0,95693     | 6      | 1,10388      | 5,8            | 84,7           |
| $L_7$        | 1,00000  | $0,\!48732$ | 7      | 0,97913      | 5,2            | 89,8           |
| $L_8$        | 1,00000  | 0,89580     | 8      | 0,84922      | 4,5            | 94,3           |
| $L_9$        | 1,00000  | 0,94866     | 9      | 0,63779      | $3,\!4$        | 97,7           |
| $L_{10}$     | 1,00000  | 0,98432     | 10     | 0,28909      | 1,5            | 99,2           |
| $L_{11}$     | 1,00000  | 0,97726     | 11     | 0,09004      | 0,5            | 99,6           |
| $L_{12}$     | 1,00000  | 0,99183     | 12     | 0,03419      | $0,\!2$        | 99,8           |
| $L_{13}$     | 1,00000  | 0,94482     | 13     | 0,01548      | $0,\!1$        | 99,9           |
| $L_{14}$     | 1,00000  | 0,99058     | 14     | 0,01327      | $0,\!1$        | 100,0          |
| $L_{15}$     | 1,00000  | 0,96295     | 15     | 0,00301      | 0,0            | 100,0          |
| $L_{16}$     | 1,00000  | 0,98928     | 16     | 0,00097      | 0,0            | 100,0          |
| $L_{17}$     | 1,00000  | 0,17996     | 17     | 0,00024      | 0,0            | 100,0          |
| $L_{18}$     | 1,00000  | 0,30051     | 18     | 0,00001      | 0,0            | 100,0          |
| $L_{19}$     | 1,00000  | 0,76900     | 19     | 0,00000      | 0,0            | 100,0          |

Tabla 6.— Obtención del Modelo Factorial Reducido, "Categorías-L"

#### 4 Discusión

#### 4.1 Análisis de los Riesgos

Como se observa en la gráfica 1, se distinguen tres grupos de riesgos. Un primer grupo próximo al origen del mapa perceptual (triángulos), que proyecta un conjunto de riesgos de valores bajos, como puede comprobarse en la tabla 1. Estos riesgos son  $R_{14}$  (exposición y/o contactos térmicos),  $R_{15}$  (contactos eléctricos),  $R_{16}$  (interacción con sustancias agresivas) y  $R_{17}$  (exposición a radiaciones). Representan los procesos de interacción ambiental "población-entorno". Estos entornos presentan anomalías energéticas o materiales positivas, con carácter puntual (puntos de emisión de calor, conductores eléctricos, recipientes con productos químicos agresivos y fuentes puntuales de emisión de radiación no ionizante o ionizante) o disperso (campos de radiación infrarroja, campos electromagnéticos intensos, dispersiones coloidales agresivas y radiación de fondo ultravioleta o ionizante). Configuran puntos, áreas o espacios inhóspitos por exceso de concentración algún agente físico y/o químico, capaces de producir una lesión a un individuo en un breve espacio de tiempo. Aunque la accidentalidad asociada a estas exposiciones es baja, la gravedad de las lesiones resultantes de las mismas suele ser elevada. En este grupo distinguimos unos

| ${\it Categor\'{a}s-}L$ | Factor-1 | Factor-2 | Factor-3    | Factor-4 | Factor-5 | Factor-6 |
|-------------------------|----------|----------|-------------|----------|----------|----------|
| $L_6$                   | 0,95094  | -0,03273 | 0,12309     | 0,03687  | -0,14095 | -0,12327 |
| $L_2$                   | 0,83597  | 0,50603  | 0,09784     | 0,07256  | -0,10162 | 0,00509  |
| $L_9$                   | 0,80183  | -0,50352 | 0,20273     | 0,05999  | 0,05085  | 0,07017  |
| $L_{10}$                | 0,78781  | -0,57435 | 0,16060     | -0,00390 | 0,04387  | 0,07793  |
| $L_1$                   | 0,76395  | -0,49465 | 0,07037     | -0,07943 | -0,11855 | -0,11033 |
| $L_3$                   | 0,71760  | 0,62373  | 0,05202     | 0,08185  | -0,10055 | 0,02433  |
| $L_8$                   | 0,64973  | -0,52598 | $0,\!28565$ | 0,12227  | 0,21025  | 0,23716  |
| $L_4$                   | 0,52509  | 0,80166  | 0,09652     | 0,12518  | 0,01461  | 0,15268  |
| $L_5$                   | 0,60179  | 0,74798  | 0,11050     | 0,12785  | 0,00974  | 0,14551  |
| $L_7$                   | 0,31017  | -0,46631 | 0,05825     | -0,06771 | 0,20351  | 0,35252  |
| $L_{16}$                | -0,25954 | 0,12416  | 0,77229     | -0,45394 | -0,31047 | 0,08736  |
| $L_{14}$                | -0,32032 | 0,08119  | 0,76745     | -0,44273 | -0,27765 | 0,13898  |
| $L_{12}$                | -0,36672 | -0,05882 | 0,65834     | 0,63938  | -0,00285 | -0,10805 |
| $L_{11}$                | -0,24093 | -0,06045 | 0,44058     | 0,79323  | 0,09564  | -0,28825 |
| $L_{15}$                | 0,48769  | 0,28482  | 0,05455     | -0,26061 | 0,73339  | -0,18771 |
| $L_{13}$                | -0,34790 | 0,11607  | 0,38975     | -0,31034 | 0,69531  | -0,28043 |
| $L_{19}$                | 0,38772  | -0,14990 | -0,12593    | -0,13829 | -0,43329 | -0,61113 |
| $L_{18}$                | -0,29998 | 0,01308  | -0,03836    | 0,18850  | -0,01155 | 0,41619  |
| $L_{17}$                | -0,22972 | 0,01945  | -0,17544    | 0,19442  | 0,02455  | 0,24006  |

Tabla 7.— Matriz de Factores, "Categorías-L"

máximos en los valores medios de distribución de las lesiones, y que son para cada riesgo indicado las siguientes: quemaduras para  $R_{14}$ , quemaduras y efectos eléctricos para  $R_{15}$ , quemaduras y heridas para  $R_{16}$ , y conjuntivitis para  $R_{17}$ .

También dentro de este grupo-1 hemos incluido los riesgos  $R_{10}$  (proyección de fragmentos o partículas) y  $R_{18}$  (explosiones e incendios). El hecho de incluirlos en el mismo se justifica porque si en vez de tomar un hiperplano 4-dimensional para representar la estructura latente de las categorías asociadas a la variable riesgo, tomamos un hiperplano 3-dimensional, obtenemos también un grado de explicación de la varianza del conjunto de las categorías riesgo muy aceptable (82,9 % de la varianza total). En este modelo de representación más reducido, estas dos categorías comentadas se asocian a los anteriores riesgos, por lo que hemos optado por incluirlas en este grupo al ser el más afín a las mismas. En este caso los valores medios pertenecientes a cada categoría riesgo son mayores y están más distribuidos con respecto a las lesiones que producen, aunque por otro lado tienen un máximo muy bien definido,  $R_{10}$  con cuerpos extraños en los ojos y  $R_{18}$  con quemaduras.

Los valores medios asociados a las categorías riesgo consideradas en este grupo son bajos, con un máximo que se asocia al menos, a una "categoría" lesión, siendo esta la que concentra la principal masa de toda la distribución. Las lesiones comunes mayoritaria-

|     | R2     | R3     | R4     | R5     | R6     | R7     | R8     | R9     | R10    | R11    | R12    | R13    | R14    | R15    | R16    | R17     | R18    | R19    |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|
| 90, | 6880,  | ,0308  | 9980,  | ,0214  | -,0104 | -,0356 | -,0561 | -,0663 | 6880,  | -,0117 | ,0552  | -,0869 | -,0053 | ,0162  | -,0049 | ,0253   | -,0027 | -,0233 |
| 0,0 | 1,9667 | ,0149  | ,0140  | ,0115  | ,0102  | -,0107 | -,0290 | -,0373 | ,0129  | -,0127 | ,0270  | -,0746 | -,0081 | ,0152  | -,0041 | ,0317   | -,0080 | -,0143 |
| ð,  | ,6387  | 0,9537 | ,0327  | ,0356  | -,0473 | -,0196 | -,0525 | -,0580 | ,0437  | -,0125 | ,0497  | -,0014 | ,0022  | ,0192  | -,0094 | ,0023   | ,0023  | -,0288 |
| Ŏ,  | 3112   | ,9563  | 0.9630 | ,0236  | -,0337 | -,0261 | -,0423 | -,0446 | ,0338  | ,0006  | ,0265  | -,0072 | ,0018  | ,0134  | -,0050 | ,0003   | ,0008  | -,0258 |
|     | 3022   | ,9551  | ,9632  | 0,9699 | -,0376 | -,0114 | -,0396 | -,0456 | ,0437  | -,0138 | ,0389  | -,0027 | 6900,  | ,0138  | -,0096 | -,0233  | ,0072  | -,0229 |
| ,   | 8900   | ,3679  | ,3384  | ,3356  | 0,9237 | ,0198  | ,0455  | ,0472  | -,0556 | ,0066  | -,0462 | -,0623 | -,0154 | -,0045 | ,0075  | ,0420   | -,0164 | ,0251  |
| ·   | 6885   | ,9482  | ,9531  | 8096,  | ,4459  | 0,9685 | ,0357  | ,0371  | -,0331 | -,0026 | -,0367 | ,0257  | -,0035 | -,0006 | -,0005 | ,0108   | -,0061 | ,0110  |
|     | ,6201  | ,9194  | ,9292  | ,9415  | ,3830  | ,9435  | 0,9274 | ,0817  | -,0646 | ,0170  | -,0768 | ,0455  | -,0046 | -,0156 | ,0073  | ,0088   | -,0073 | ,0318  |
|     | ,5097  | ,8940  | 8606,  | ,9250  | ,2644  | ,9123  | ,9070  | 0,9040 | -,0757 | ,0259  | -,0921 | ,0663  | -,0061 | -,0160 | 7600,  | ,01111  | -,0102 | ,0352  |
| '   | ,1172  | -,0950 | -,0687 | ,0010  | -,0029 | ,0246  | ,0834  | ,1151  | 0,8314 | -,0213 | ,0723  | -,0459 | ,0620  | -,0065 | -,0219 | -,2883  | ,0664  | -,0248 |
|     | ,5102  | ,9446  | ,9581  | ,9655  | ,2305  | ,9423  | ,9313  | ,9299  | 6200,  | 0,9749 | -,0364 | ,0333  | -,0021 | -,0019 | ,0032  | ,0074   | -,0053 | ,0031  |
|     | ,8057  | ,8496  | ,8347  | ,8235  | ,5984  | ,8532  | ,7996  | ,7335  | -,1963 | ,7764  | 0,8720 | -,0690 | ,0012  | ,0155  | -,0116 | ,0042   | ,0120  | -,0158 |
|     | ,7337  | ,1497  | ,1138  | ,1066  | ,8142  | ,2120  | ,1497  | ,0358  | -,0614 | ,0039  | ,4120  | 0,7714 | ,0074  | -,0167 | ,0057  | ,0085   | ,0007  | ,0043  |
| '   | .,1028 | -,1060 | -,0655 | -,0938 | -,0539 | -,0861 | -,0670 | -,0522 | -,0817 | -,0695 | -,1371 | -,1081 | 0,9507 | -,0574 | ,0016  | -,1481  | ,0487  | -,0007 |
|     | -,1696 | -,1976 | -,1568 | -,1736 | -,0845 | -,1629 | -,1346 | -,1142 | ,0437  | -,1491 | -,2308 | -,1227 | 8799   | 0,8393 | -,0574 | ,0811   | -,0592 | -,0182 |
| •   | -,2017 | -,1236 | -,0698 | -,0589 | -,1170 | -,0505 | ,0021  | ,0421  | ,3555  | -,0235 | -,2338 | -,2002 | ,8264  | ,8246  | 0,9468 | -,0133  | ,0045  | 2600,  |
|     | -,1950 | -,1321 | -,1062 | -,0884 | -,1354 | -,0901 | -,0540 | -,0228 | ,2898  | -,0655 | -,2050 | -,1565 | ,2704  | ,3014  | ,4045  | 0,21111 | -,1539 | -,0050 |
| •   | -,0514 | -,0408 | 6000,  | -,0242 | -,0142 | -,0139 | 0053   | ,0182  | -,0473 | -,0017 | -,0805 | -,0884 | ,9467  | ,8748  | ,8409  | ,2761   | 0,9494 | ,0018  |
|     | ,7664  | ,9313  | ,9343  | ,9369  | ,5464  | ,9603  | ,9279  | ,8819  | -,0055 | ,9062  | ,8764  | ,3092  | -,0057 | -,0909 | -,0034 | -,0883  | ,0662  | 0,9749 |

Tabla 8.— Matriz de Correlaciones Reproducidas, "Categorías-R"

| L19 | -,0213 | -,0069 | -,0319 | ,0347  | ,0319  | -,0027 | ,1172   | ,0036  | -,0263 | -,0157 | -,0107 | ,0343  | ,0399  | ,0041  | ,0675  | ,0181  | ,1143  | ,2044  | 0,7690 |
|-----|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| L18 | ,0618  | ,0235  | -,0093 | -,0355 | -,0307 | ,0673  | -,1397  | -,0297 | ,0196  | ,0164  | -,0469 | ,0323  | ,0916  | -,0134 | ,1172  | -,0148 | -,1940 | 0,3005 | -,3888 |
| L17 | ,0573  | ,0329  | ,0035  | -,0088 | -,0032 | ,0553  | -,0762  | 6200,  | ,0339  | ,0333  | -,0603 | ,0355  | ,1261  | ,0490  | ,0077  | ,0566  | 0,1799 | ,2121  | -,2541 |
| L16 | ,0104  | ,0043  | -,0018 | ,0032  | ,0029  | ,0008  | ,0285   | -,0086 | -,0098 | -,0043 | ,0020  | ,0045  | ,0068  | -,0021 | ,0031  | 0,9892 | -,1483 | ,0042  | -,0725 |
| L15 | ,0004  | ,0036  | -,0011 | -,0039 | -,0041 | 6800,  | ,0084   | -,0034 | -,0043 | -,0035 | -,0059 | ,0119  | 9600,  | ,0029  | 0,9629 | -,1748 | -,1937 | -,2803 | -,0274 |
| L14 | -,0090 | -,0011 | ,0027  | -,0033 | -,0029 | ,0038  | -,0242  | ,0108  | ,0106  | ,0053  | -,0075 | ,0012  | ,0037  | 0,9905 | -,2055 | ,9852  | -,1190 | ,0453  | -,1364 |
| L13 | ,0435  | ,0157  | ,0022  | -,0116 | -,0083 | ,0266  | -,0595  | -,0144 | ,0131  | ,0153  | -,0228 | ,0108  | 0,9448 | ,3253  | ,5281  | ,3062  | -,0967 | -,0923 | -,2883 |
| L12 | ,0135  | ,0055  | ,0022  | ,0006  | ,0007  | -,0000 | ,0285   | -,0141 | -,0097 | -,0026 | ,0002  | 0,9918 | ,2072  | ,3206  | -,3081 | ,2975  | ,0659  | ,1595  | -,2374 |
| L11 | ,0078  | ,0013  | ,0051  | ,0083  | ,0067  | -,0222 | ,0919   | -,0257 | -,0292 | -,0147 | 0,9772 | ,9200  | ,1496  | -,0074 | -,1931 | -,0196 | ,0642  | ,0830  | -,1148 |
| L10 | ,0048  | ,0027  | -,0055 | -,0071 | -,0053 | ,0141  | -,0750  | ,0093  | ,0226  | 0,9843 | -,1057 | -,1604 | -,2682 | -,1753 | ,2479  | -,1567 | -,2012 | -,2188 | ,3052  |
| F3  | -,0331 | -,0076 | -,0121 | -,0115 | -,0098 | ,0304  | -,1504  | ,0491  | 0,9486 | 6096,  | -,0412 | -,1003 | -,2613 | -,1730 | ,2671  | -,1509 | -,1998 | -,2149 | ,2876  |
| L8  | -,0954 | -,0366 | -,0152 | ,0082  | ,0066  | 6900'  | -,11191 | 0,8958 | ,8783  | ,8870  | ,0498  | ,0326  | -,1340 | -,1111 | ,2604  | -,1134 | -,1237 | -,0934 | ,0418  |
| L7  | ,0271  | ,0055  | ,0039  | ,0646  | ,0556  | -,0998 | 0,4873  | ,5815  | ,5263  | ,5582  | -,1567 | -,1299 | -,0756 | -,0700 | ,1223  | -,0950 | -,0140 | ,0302  | -,1114 |
| PP  | ,0031  | 9600'  | -,0111 | -,0165 | -,0147 | 0,9569 | ,2427   | ,6158  | ,7903  | ,7718  | -,1216 | -,2284 | -,3615 | -,2071 | ,3713  | -,1395 | -,2665 | -,3331 | ,4894  |
| T2  | -,0207 | -,0113 | -,0347 | ,0306  | 0,9714 | ,5467  | -,11110 | ,0813  | ,1466  | ,0735  | -,0811 | -,1259 | -,1531 | -,0863 | ,4590  | -,0263 | -,0830 | -,0904 | -,0035 |
| L4  | -,0258 | -,0129 | -,0366 | 0,9668 | ,9646  | ,4687  | -,1570  | ,0016  | ,0559  | -,0192 | -,0757 | -,1126 | -,1235 | -,0673 | ,4391  | -,0102 | -,0606 | -,0637 | -,0456 |
| L3  | ,0334  | ,0091  | 0,9240 | ,8943  | ,9171  | ,6825  | -,0826  | ,1476  | ,2733  | ,2126  | -,1393 | -,2156 | -,2591 | -,1442 | ,4308  | -,0724 | -,1425 | -,1823 | ,1955  |
| L2  | ,0410  | 0,9801 | ,9368  | ,8624  | ,9014  | 8908,  | ,0052   | ,2936  | ,4348  | ,3793  | -,1425 |        | -,2885 |        | ,4627  | -,0795 | -,1865 | -,2309 | ,2668  |
| L1  | 0,8657 | ,4009  | ,2460  | -,0171 | ,0701  | ,7787  | ,4140   | ,7158  | ,8573  | ,8837  | -,1657 |        |        | -,1781 | ,1899  | -,1421 | -,2422 | -,2978 | ,4912  |
|     | L1     | L2     | L3     | L4     | L5     | 9T     | L7      | F8     | F3     | L10    | L11    | L12    | L13    | L14    | L15    | L16    | L17    | L18    | L19    |

Tabla 9.— Matriz de Correlaciones Reproducidas, "Categorías-L"

| Categorías- $R$ | Factor-1 | Factor-2 | Factor-3    | Factor-4    |
|-----------------|----------|----------|-------------|-------------|
| $R_{11}$        | 0,98682  | -0,03224 | 0,00944     | -0,00722    |
| $R_5$           | 0,97538  | -0,05492 | 0,12439     | -0,01073    |
| $R_4$           | 0,96798  | -0,03369 | 0,13142     | -0,08715    |
| $R_3$           | 0,95232  | -0,07790 | 0,16661     | -0,11423    |
| $R_7$           | 0,95133  | -0,04139 | $0,\!24777$ | 0,01934     |
| $R_9$           | 0,94261  | -0,00254 | 0,05400     | 0,11230     |
| $R_8$           | 0,94205  | -0,01740 | 0,18161     | 0,08173     |
| $R_{19}$        | 0,91605  | 0,04051  | 0,36607     | -0,01026    |
| $R_{12}$        | 0,77700  | -0,11912 | $0,\!45706$ | -0,21273    |
| $R_{18}$        | 0,02951  | 0,97196  | -0,00220    | -0,06244    |
| $R_{14}$        | -0,03930 | 0,96875  | -0,02733    | -0,09985    |
| $R_{15}$        | -0,12084 | 0,90618  | -0,04519    | 0,03931     |
| $R_{16}$        | 0,00904  | 0,88892  | -0,11971    | $0,\!37716$ |
| $R_6$           | 0,22423  | -0,01785 | 0,93413     | 0,02293     |
| $R_{13}$        | -0,00757 | -0,09125 | $0,\!87266$ | -0,03860    |
| $R_2$           | 0,50592  | -0,07342 | $0,\!83265$ | -0,10983    |
| $R_1$           | 0,56614  | -0,09636 | 0,76052     | -0,15691    |
| $R_{10}$        | 0,01532  | 0,00932  | -0,02905    | 0,91120     |
| $R_{17}$        | -0,05290 | 0,30538  | -0,13412    | 0,31159     |

Tabla 10.— Matriz de Factores Rotados, "Categorías-R"

mente producidas por los riesgos asociados al grupo son dos: quemaduras  $(R_{14}, R_{15}, R_{16}, R_{18})$  y lesiones oculares  $(R_{17}, R_{10})$ .

El segundo grupo, distinguido en la matriz rotada de puntuaciones factoriales, está gráficamente próximo al factor-3 (cuadrados). Representa unos riesgos de valores elevados pero con una distribución de frecuencias muy heterogénea (asimetría). Los riesgos que componen este grupo son:  $R_1$  (caídas de personas a distinto nivel),  $R_2$  (caídas de personas al mismo nivel),  $R_6$  (pisar sobre objetos) y  $R_{13}$  (sobreesfuerzos). Representan aquellos riesgos en los que el individuo es el elemento principal y la parte dinámica de la interacción. Los máximos en las frecuencias de registro de distribución de las lesiones, corresponden con los siguientes riesgos: torcerduras, contusiones y fracturas para  $R_1$ , torcerduras, contusiones y fracturas para  $R_2$ , torcerduras, heridas y contusiones para  $R_6$ , y torceduras y lumbalgias para  $R_{13}$ . Las lesiones comunes a este grupo y que mayoritariamente producen los riesgos componentes del mismo son dos: torceduras ( $R_1$ ,  $R_2$ ,  $R_6$ ,  $R_{13}$ ) y lumbalgias ( $R_{13}$ ).

El tercer grupo está máss próximo del factor-1 (círculos). Es un grupo que también presenta valores elevados, pero en este caso están más homogéneamente distribuidas. Los riesgos de este grupo son:  $R_{11}$  (atrapamientos),  $R_{12}$  (accidentes con maquinaria móvil y de tráfico),  $R_{19}$  (accidentes causados por seres vivos),  $R_3$  (caídas de objetos por desplome),  $R_4$ 

| ${\it Categorias-} L$ | Factor-1 | Factor-2    | Factor-3 | Factor-4    | Factor-5    | Factor-6 |
|-----------------------|----------|-------------|----------|-------------|-------------|----------|
| $L_5$                 | 0,98308  | 0,00078     | -0,01126 | -0,02666    | -0,01289    | 0,06340  |
| $L_4$                 | 0,97516  | -0,08407    | -0,00176 | -0,02694    | -0,05282    | 0,07321  |
| $L_3$                 | 0,93430  | 0,08630     | -0,05318 | -0,07822    | 0,11846     | -0,02672 |
| $L_2$                 | 0,91960  | 0,24323     | -0,04919 | -0,07081    | $0,\!25875$ | -0,03001 |
| $L_{10}$              | 0,07811  | 0,94780     | -0,07370 | -0,04950    | 0,26484     | -0,04341 |
| $L_8$                 | 0,07992  | 0,93487     | -0,03179 | 0,09895     | 0,00102     | 0,06809  |
| $L_9$                 | 0,15368  | 0,92418     | -0,07280 | 0,01898     | 0,25321     | -0,03417 |
| $L_1$                 | 0,08140  | 0,77655     | -0,07812 | -0,10927    | $0,\!47055$ | -0,12911 |
| $L_7$                 | -0,12359 | 0,64352     | -0,02082 | -0,14521    | -0,18283    | 0,05464  |
| $L_6$                 | 0,56641  | 0,61893     | -0,08860 | -0,04417    | $0,\!48252$ | -0,10203 |
| $L_{16}$              | -0,01569 | -0,09555    | 0,98628  | 0,05927     | 0,04641     | 0,03849  |
| $L_{14}$              | -0,07801 | -0,08893    | 0,98465  | 0,06496     | -0,02717    | 0,04577  |
| $L_{11}$              | -0,05842 | -0,04941    | -0,08321 | 0,98105     | -0,04239    | 0,01499  |
| $L_{12}$              | -0,10084 | -0,04648    | 0,24736  | 0,94343     | -0,16724    | -0,01662 |
| $L_{19}$              | 0,02066  | 0,06639     | -0,09076 | -0,08051    | 0,82608     | -0,25892 |
| $L_{18}$              | -0,08617 | -0,08546    | 0,02134  | 0,05770     | -0,50510    | -0,16391 |
| $L_{17}$              | -0,08180 | -0,12391    | -0,14426 | 0,02902     | -0,34759    | -0,12426 |
| $L_{13}$              | -0,20639 | -0,19638    | 0,24583  | $0,\!13727$ | -0,01014    | 0,88560  |
| $L_{15}$              | 0,40927  | $0,\!19732$ | -0,17995 | -0,18345    | 0,15863     | 0,81567  |

Tabla 11.— Matriz de Factores Rotados, "Categorías-L"

(caídas de objetos en manipulación),  $R_5$  (caídas de objetos desprendidos),  $R_7$  (choques contra objetos inmóviles),  $R_8$  (choque contra objetos móviles),  $R_9$  (golpes, cortes con objetos o herramientas). En este caso se observa que el factor principal en la producción de la lesión es compartido, ya que influye tanto el individuo como el entorno. Este grupo se caracteriza por los efectos mecánicos como factor principal de producción de lesiones.

Distinguimos los valores máximos de las categorías lesión, asociadas a los siguientes riesgos: contusiones, heridas y fracturas con  $R_{11}$ , contusiones y torcerduras y fracturas con  $R_{12}$ , contusiones, heridas y torceduras con  $R_{19}$ , contusiones, heridas y fracturas con  $R_{3}$ , contusiones, fracturas y heridas con  $R_{4}$ , contusiones, heridas y fracturas con  $R_{5}$ , contusiones, heridas y torceduras con  $R_{7}$ , heridas, contusiones y torceduras con  $R_{8}$ , y heridas, contusiones y torceduras con  $R_{9}$ . Las lesiones comunes al grupo son: contusiones (heridas y torceduras) para  $R_{11}$ ,  $R_{12}$ ,  $R_{19}$ , heridas (contusiones y torceduras) para  $R_{7}$ ,  $R_{8}$ ,  $R_{9}$ , y contusiones (heridas y fracturas) para  $R_{3}$ ,  $R_{4}$ ,  $R_{5}$ .

#### 4.2 Análisis de las Lesiones

Como se observa en la gráfica 2, se distinguen tres grupos de lesiones. Un primer grupo, que gráficamente comparte los factores-1 y 2 (triángulos), y que proyecta un conjunto de lesiones de valores bajos, como puede comprobarse en la tabla 1. Estas lesiones

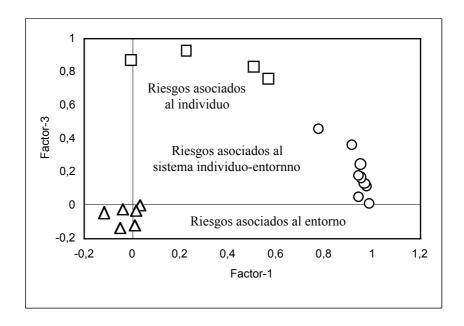



Figura 1.— Distribución de las "Categorías" Riesgo

son:  $L_{11}$  (cuerpos extraños en los ojos),  $L_{12}$  (conjuntivitis),  $L_{13}$  (quemaduras),  $L_{14}$  (envenenamientos e intoxicaciones),  $L_{15}$  (efectos ambientales),  $L_{16}$  (asfixias),  $L_{17}$  (efectos eléctricos),  $L_{18}$  (efectos por radiaciones). Representan los resultados de la interacción ambiental "población-entorno". Este grupo-1 de lesiones se relaciona con el grupo-1 de los riesgos antes indicado. Distinguimos para el grupo unos valores máximos de registro en la distribución de los riesgos, y que son para cada lesión indicada las siguientes: proyección de fragmentos o partículas para  $L_{11}$ , proyección de fragmentos o partículas e interacción con sustancias agresivas para  $L_{12}$ , exposición y/o contactos térmicos e interacción con sustancias agresivas para  $L_{13}$ , interacción con sustancias agresivas para  $L_{14}$ , exposición y/o contactos térmicos para  $L_{15}$ , interacción con sustancias agresivas para  $L_{16}$ , contactos eléctricos para  $L_{17}$ , exposición a radiaciones para  $L_{18}$ .

Los valores asociados a las categorías lesión consideradas en este grupo es baja, con un máximo que se asocia al menos, a una categoría riesgo, siendo esta la que concentra la principal masa o frecuencia de toda la distribución. Los riesgos comunes y de los que proceden mayoritariamente las lesiones asociadas al grupo son: proyección de fragmentos o partículas  $(L_{11}, L_{12})$ , exposición y/o contactos térmicos  $(L_{13}, L_{15})$ , interacción con sustancias agresivas  $(L_{14}, L_{16})$ , contactos eléctricos  $(L_{17})$  y exposición a radiaciones  $(L_{18})$ .

El segundo grupo, está gráficamente próximo al factor-1 (cuadrados). Representa unas lesiones de valores elevados y con una distribución respecto a los riesgos, muy heterogénea (asimetría). Las lesiones que componen este grupo son:  $L_2$  (luxaciones),  $L_3$  (torceduras, esguinces y distensiones),  $L_4$  (lumbalgias),  $L_5$  (hernias discales),  $L_6$  (conmociones y trau-

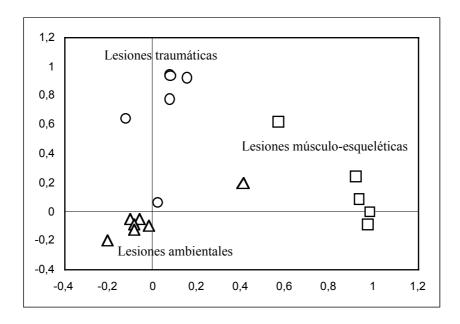



Figura 2.— Distribución de las "Categorías" Lesión

matismos internos). Representan principalmente aquellas lesiones asociadas a alteraciones de tipo músculo-esquelético. Los máximos en los valores de registro de distribución de los riesgos, corresponden con las siguientes lesiones: sobreesfuerzos y caídas de personas para  $L_2$ , sobreesfuerzos, caídas de personas y pisar sobre objetos para  $L_3$ , sobreesfuerzos y caídas de personas para  $L_4$ , sobreesfuerzos para  $L_5$ , y sobreesfuerzos, caídas de personas y golpes-cortes con objetos o herramientas para  $L_6$ .

El grupo-3 se localiza gráficamente junto al factor-2 (círculos). Este grupo también presenta valores elevados, pero están más homogéneamente distribuidas. Las lesiones asociadas al grupo son:  $L_1$  (fracturas),  $L_7$  (amputaciones y pérdida del globo ocular),  $L_8$  (otras heridas),  $L_9$  (traumatismos superficiales),  $L_{10}$  (contusiones y aplastamientos),  $L_{19}$  (lesiones múltiples). Representan principalmente aquellas lesiones asociadas a alteraciones de tipo traumático. Los máximos en los valores de registro de los riesgos corresponden a las siguientes lesiones: caídas de personas y golpes-cortes por objetos o herramientas para  $L_1$ , atrapamiento por o entre objetos para  $L_7$ , golpes-cortes por objetos o herramientas y atrapamiento por o entre objetos para  $L_8$ , golpes-cortes por objetos o herramientas y caídas de personas para  $L_9$ , golpes-cortes por objetos o herramientas y caídas de personas para  $L_{10}$ , accidentes con maquinaria móvil y de tráfico para  $L_{19}$ .

## 5 Conclusiones

El estudio mediante análisis factorial de la distribución bidimensional media (año medio) de categorías riesgo-lesión para España, nos ha permitido verificar e identificar los resultados obtenidos anteriormente para los mismos mediante análisis de correspon-

dencias. Los tres grupos de riesgos y tres grupos de lesiones obtenidos, complementados con los distinguidos por el análisis de correspondencias, definen perfectgamente las categorías asociadas a cada uno de los mismos, permitiendo establecer de una forma clara y contrastada la relación categoría-riesgo.

Para la variable riesgo distinguimos: un grupo-1, en el que el riesgo se localiza principalmente en el entorno y están representados por los factores 2 y 4; un grupo-2, en el que los riesgos se localizan principalmente en el individuo y están representados por el factor 3; un grupo-3, en el que los riesgos se comparten por los dos componentes del sistema, individuo y entorno, estando representados por el factor 1. Las principales lesiones que se asocian a estos grupos son: quemaduras y lesiones oculares para el grupo-1; torceduras y lumbalgias para el grupo-2; contusiones y heridas para el grupo-3.

Para la variable lesión, distinguimos: un grupo-1 de lesiones asociadas a efectos ambientales y que están representadas por los factores 3, 4, 5, 6; un grupo-2 de lesiones de tipo músculo-esquelético, que están representadas por el factor 1; un grupo-3 de lesiones de tipo traumático, que están representadas por el factor 2. Los principales riesgos que se asocian a estos grupos son: exposición a atmósferas "anómalas" y a campos de energía para el grupo-1; sobreesfuerzos y caídas de personas para el grupo-2; choques-golpes-cortes-atrapamientos para el grupo-3.

## Agradecimientos

Queremos agradecer al Dr. Eladio Liñán Guijarro sus sugerencias así como los comentarios y subsecuentes discusiones con un *referee* anónimo, que han contribuido a mejorar la versión final de este artículo.

#### Referencias

- [1] Fine, W. (1973).- Mathematical Evaluations for Controlling Hazards. Ed. Academic Press. Col. Selected Reading in Safety. Georgia. 26pp.
- [2] Conte Solano, J.C.; Domínguez Gracia, A.I.; García Felipe, A.I.; Rubio García, B. (en prensa).- Interpretaciones Fenomenológicas Clásicas del Accidente Laboral: Planteamiento de una Orientación Alternativa. Arch. Fac. Med. Facultad de Medicina. Universidad de Zaragoza.
- [3] Conte Solano, J.C.; Rubio Calvo, E. (enviado, SEEIIO).- Estudio de la Asociación Riesgo-Lesión en Poblaciones Laborales mediante Análisis de Correspondencias. Madrid.
- [4] Conte Solano, J.C.; Rubio Calvo, E. (enviado, SEEIIO).- Estudio de las Características Intrínsecas del Accidente en Poblaciones Laborales por Iteración del Análisis de Correspondencias sobre el Conjunto Cúmulo-Centroide. Madrid.

- [5] Conte, J.C. (2004).- Teoría del Accidente en Poblaciones Laborales. Bases Matemáticas. Tesis Doctoral. Univ. de Zaragoza. 230pp. Inédita.
- [6] Conte Solano, J.C.; Bascuas Hernández, J.; Domínguez Gracia, A.I.; Rubio García, B. (en prensa).- Viabilidad de Sustitución de una Serie de Tiempo de Accidentalidad Laboral por un Periodo Medio. Rev. MAPFRE-Seguridad. Fundación MAPFRE. Madrid.
- [7] Rubio Calvo, E.; Rubio Aranda, E.; Martínez Terrer, T.; García Felipe, A.I.; Sánchez Oriz, E.; Salvador Oliván, J.A. (1995).- Regresión, Correlación y Series Temporales. Cuad. Bioest. Aplic. Infor., Col. Monografías Didácticas, No. 5, 408pp. Univ. de Zaragoza.
- [8] González López-Valcarcel, B. (1991).- Análisis Multivariante. Aplicación al Ámbito Sanitario. Ed. SG Editores. 247pp.
- [9] Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. (1999).- Análisis Multivariante. Ed. Prentice Hall. 799pp.
- [10] Visauta Binacua, B. (1998).- Análisis Estadístico con SPSS para Windows. Mc Graw Hill. Vol. II Estadística Multivariante. 358pp.