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Abstract

In this paper we study the distribution of the zeros of a particular family of

Sobolev-Gegenbauer polynomials. We show graphically that their behaviour is much

more complicated that in the standard case when the parameter λ of the Gegenbauer

family is changed.

1 Introduction

The zeros of orthogonal polynomials play an important role in interpolation theory,

quadrature formulas, spectral theory of some lineal operators, digital filter design, . . .

hence their study has a great interest. In this paper we analyse the distribution of the

zeros of a particular family of Sobolev-Gegenbauer polynomials when we change the pa-

rameter λ of this family.

First, let us introduce the usual inner product of polynomials. Given a positive and

finite Borel measure µ with support Sµ in R, the following formula

(p, q) =

∫

Sµ

p q dµ, p, q ∈ P ,

defines an inner product in the space of the polynomials with real coefficients (P), which

has an orthogonal polynomial sequence (unique up to a multiplicative factor) associated.

The zeros of classical orthogonal polynomials have good properties. They are placed

in the interior of the convex envelope of Sµ (hence they are reals), they are simple and

the zeros of two consecutive polynomials are interlaced [8].
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Our purpose is to describe the trajectories of the zeros of Sobolev orthogonal polyno-

mials corresponding to inner products defined by

(p, q)S =

∫

I

p q dµ +
m∑

i=0

Mi p
(i)(c) q(i)(c), (1)

where µ is a finite positive Borel measure supported in an interval I of R, c 6∈ I0 (the

interior of I), m ≥ 1, Mi ≥ 0 for i = 0, . . . , m− 1 and Mm > 0. Let us denote by Qn the

orthogonal polynomials with respect to the inner product (1).

Now, let us review several results about the distribution of the zeros of Qn (for more

details see [1, 2, 7]).

Theorem 1 The polynomials Qn have at least n − (m + 1) changes of sign or zeros

of odd multiplicity in I0 whenever n ≥ m + 1.

Theorem 2 The number of zeros of Qn in I0 does not depend on the order of the

differentials on the product (1), it depends on the terms of the discrete part of the scalar

product.

Now, let us consider the inner product (1), but with Mi ∈ R \ {0}. Let Z+ be the

set of the positive integers and let Qn be the n-th monic polynomial of less degree, not

equal to zero, such that (p, Qn)S = 0, ∀p ∈ Pn−1. For the polynomials Qn, which are

orthogonal with respect to the Sobolev inner product considered, we have the following

result about the zero location:

Theorem 3 For each n ∈ Z+, Qn has at least n − n sign changes in the interior of

the convex envelope of I, where n denotes the number of terms in the discrete part of the

considered product whose differential order is less than n.

As consequence of the last theorem and of the Theorem 4 in [7], we have that for n

sufficiently big and the measures µ for which exist the called relative asymptotic of the

(Qn) sequence, the orthogonal polynomials Qn with respect to (1) with Mi ∈ R \ {0},
i = 1, . . . , m, have exactly n −m simple zeros in the interior of I and the m remaining

zeros are attracted to the c point.

In this paper we study the pattern of the trajectories of the zeros of the orthogonal

polynomial of degree n = 8 corresponding to the following inner product:

(p, q) =

∫ 1

−1

p q dµ + p′(2) q′(2) (2)
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where dµ = (1− x2)λ− 1
2 dx. Note that although we have taken c = 2 any case c > 1 will

give similar results and the case c < −1 will give symmetric results. Let us denote by

C̃λ
n its corresponding Sobolev orthogonal polynomial of degree n. In addition to this, we

compare those trajectories with the trajectories of the zeros of the classical Gegenbauer

polynomial Cλ
8 of 8-degree, that is, the orthogonal polynomial of 8-degree with respect to

the inner product:

(p, q) =

∫ 1

−1

p(x) q(x) (1− x2)λ− 1
2 dx. (3)

When we want to evaluate a family of monic classical orthogonal polynomials we use

the third-order recurrence relation that they verify [8]:

p0(x) = 1, p1(x) = x− β0,

pn(x) + (βn−1 − x) pn−1(x) + γn−1 pn−2(x) = 0, n ≥ 2,

(4)

where βi, γi ∈ R. In the particular case of the Gegenbauer polynomials (with λ 6= 0) the

coefficients are given by βn = 0 and

γn =
n (n + 2λ− 1)

(2n + 2λ) (2n + 2λ− 2)
, n ≥ 1.

If we attempt to compute Sobolev orthogonal polynomials (for λ > −1/2) with the

classical Gram-Schmidt algorithm then we will only be able to obtain the orthogonal

polynomials of low degree (till 3 or 4) due to the great difficulty in performing in an

accurate way the quadratures of the inner product. Instead of, Barrio et al. proposed in

[3] an alternative way that do not involve the use of such a quadrature:

Proposition 4 Let {q0(x), q1(x), . . .} be the sequence of monic Sobolev-Gegenbauer or-

thogonal polynomials with respect to the scalar product

〈 p, q 〉W =

∫

I

p(x) q(x) (1− x2)λ− 1
2 dx + p′(c) q′(c), λ > −1

2
, λ 6= 0

and {p0(x), p1(x), . . .} the classical monic Gegenbauer orthogonal polynomials (with the

same parameter λ), then

ql(x) = pl(x)−
l−1∑
s=0

Als qs(x), (5)

where

Als =
p′l(c) q′s(c)∏s

i=0 γi + p′s(c) q′s(c)
(6)

being γ0 =
√

π Γ(1
2

+ λ)/Γ(1 + λ) and γn = n (n + 2λ− 1)/ ((2n + 2λ) (2n + 2λ− 2)).

Note that the above result holds for λ > −1/2 and λ 6= 0 but formulas (5) and (6)

may also be used, although in this case the inner product is not well defined, in the case
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λ < −1/2 with λ 6= −n/2, (n ∈ N) if we use in the generation of the classical Gegenbauer

polynomials the third-order recurrence relation (4). Therefore, we use the proposition

above in order to extend the Gegenbauer-Sobolev orthogonal polynomials to the case

λ < −1/2.

2 Zeros of the polynomials C̃λ
8

It is known [8] that, for λ > −1/2, all the zeros of Cλ
n lie on (−1, 1). In a series of papers

[4, 5], Driver and Duren show that for λ < 1− n all the zeros of Cλ
n lie on the imaginary

axis. Moreover, for arbitrary real λ the zeros of Cλ
n are symmetric with respect to both

the real and imaginary axis. Besides, in [6] they analyse with detail the trajectories of

zeros of Cλ
8 when λ ∈ (1− n, −1/2).

In this section we study and compare numerically the trajectories, depending on the

value of the parameter λ, of the zeros of the orthogonal polynomials Cλ
8 and C̃λ

8 corre-

sponding to the inner products (3) and (2), respectively, when λ > −1/2 and using the

recurrence relations (4) and (5) for λ < −1/2. Besides, we compare the numerical results

with the theoretical theorems presented in the previous section. You can see the evolution

of the roots of the polynomials Cλ
8 and C̃λ

8 in the Figures 1, 2 and 3. See [6] for more

information about the zeros of Cλ
8 .

For λ > −1/2 each zero of Cλ
8 is real and each one belongs to the interval (−1, 1)

as we can see in the graphic corresponding to Gegenbauer for −1/2 < λ < 17/2. On

the other hand, for λ > −1/2, each zero of the polynomial C̃λ
8 is real and all of them

belong to the interval (−1, 1) except one that is placed to the right of that interval and

is attracted by the mass point c = 2. This situation can be seen in the graphic corre-

sponding to Sobolev-Gegenbauer for −1/2 < λ < 17/2 of Figure 1. Note that this zero

distribution is deduced theoretically from Theorems 1, 2 and 3. Besides, when the degree

n increases, the zero placed to the right of the interval (−1, 1) will tend to the point c = 2.

As soon as λ starts to decrease from −1/2 the zeros of Cλ
8 and C̃λ

8 start to spread

from the interval (−1, 1) onto the real axis. When λ decreases from −1/2 to −3/2 for

both Cλ
8 and C̃λ

8 , two zeros emerge from the interval (−1, 1), one from each opposite end

of the interval, but keeping in both cases (Cλ
8 and C̃λ

8 ) the two zeros on the real axis (see

Gegenbauer and Sobolev-Gegenbauer for −3/2 < λ < −1/2 in Figure 1). Hence, in the

Gegenbauer case Cλ
8 , for −3/2 < λ−1/2, we have that its eight zeros are on the real axis,

six of them belonging to the interval (−1, 1) and the other two depart from each one of

the opposite ends of that interval. In the Sobolev case, C̃λ
8 , for −3/2 < λ < −1/2 we also

have that its eight roots are on the real axis, five of them are placed on the interval (−1, 1),
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another one is localised on the right of the mass point c = 2 and the two remaining zeros

emerge from each opposite end of the interval.

When λ decreases from −3/2 to −5/2, in both cases, Cλ
8 and C̃λ

8 , two zeros emerge

from each opposite end of the interval (−1, 1), into the upper and lower vertical directions

±i, in paths symmetric with respect to the real axis, and in the case of Cλ
8 the paths are

also symmetric with respect to the imaginary axis. In the case of C̃λ
8 the symmetry

with respect to the imaginary axis is broken due to the non-symmetric discrete part of

its corresponding inner product. The remaining four zeros of Cλ
8 are on the real axis,

specifically they are placed on the interval (−1, 1), while the remaining four zeros of C̃λ
8

are on the real axis, three of them are in the interval (−1, 1) and the remaining zero is

localised on the right of the mass point c = 2. This phenomena can be seen in the graphics

corresponding to Gegenbauer and Sobolev-Gegenbauer for −5/2 < λ < −3/2 of Figure

1. Note that we also present a magnification of a small interval around −1 in order to

see with more detail the bifurcation of the complex roots (that we have called “the ear

bifurcation”).

When −7/2 < λ < −5/2 the trajectories of the zeros of Cλ
8 and C̃λ

8 change. In the

case of Cλ
8 , when λ decreases from −5/2 to −7/2, two zeros depart from each opposite

end of the interval (−1, 1) into the vertical directions ±i and as soon as λ tend to −7/2

that zeros return to the same endpoints performing loops. The four remaining zeros of

Cλ
8 are on the real axis, two of them are placed in the interval (−1, 1) while the other

two zeros emerge onto the real axis, one from each end of the interval (−1, 1). That

evolution of the trajectories of the zeros of Cλ
8 can be seen in the Gegenbauer graphic for

−7/2 < λ < −5/2 of Figure 1. In the case of C̃λ
8 , when λ start decreasing from −5/2,

two zeros depart from each end of the interval (−1, 1) into the vertical directions ±i but,

in contrast to Cλ
8 , these zeros do not return to the same endpoints when λ tends to −7/2.

The four remaining zeros are on the real axis, one of them belongs to the interval (−1, 1),

another one is localised to the right of the mass point c = 2 and the other two zeros

emerge from the opposite ends of that interval onto the real axis. While λ decreases

from −5/2 to a certain value λ0 ∈ (−7/2,−5/2) the zero that departs from the interval

(−1, 1) by its right end tends to 2, and the zero that is placed on the right of that interval

decreases to 2. And eventually, when λ0 both zeros coincide. When λ decreases from λ0

to −7/2 both zeros depart from the real axis (in x = 2) in opposite vertical directions

±i. That evolution of the zeros of C̃λ
8 can be seen in the Sobolev-Gegenbauer graphics

for λ0 < λ < −5/2 and −7/2 < λ < λ0 of Figure 1.

As we can see in Figure 2 the trajectories of the zeros of C̃λ
8 when −8 < λ < −7/2 have

a highly complicated behaviour in contrast with the non-Sobolev case (on the left). In
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Figure 1: Behaviour of the zeros of classical Gegenbauer and Sobolev-Gegenbauer for

λ ∈ (−7/2, 17/2).
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Figure 2: Behaviour of the zeros of classical Gegenbauer and Sobolev-Gegenbauer for

λ ∈ (−8, −7/2).

the classical Gegenbauer polynomials we can observe several patterns on the trajectories

of the zeros, making possible a detailed analysis of them (see [6]). Therefore, we note

that the discrete part of the inner product in the Sobolev case makes the behaviour of

the zeros of the orthogonal polynomials much more complicated.
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Figure 3: Asymptotic behaviour of classical Gegenbauer and Sobolev-Gegenbauer orthog-

onal polynomials.

However, this unstable behaviour is not indefinitely hold, when λ continues decreasing

that behaviour changes into a stable one, again analogously to the case of the Gegenbauer

polynomial Cλ
8 when λ decreases from −7 to −∞. In the case of the polynomial C̃λ

8 two

zeros are real and the rest of zeros are complex, one of the real zeros is placed on the

right the mass point c = 2 while the another real zero tends to 0 when λ tends to −∞,

and the six complex zeros also tend to 0 when λ tends to −∞. In the case of Cλ
8 its eight

zeros lie on the imaginary axis tending to 0 when λ tends to −∞. Those behaviours can

be seen in Figure 3.
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