Symbols of pseudodifferential operators associated to Gevrey kernel's type

Mohammed Hazi
École Normale Supérieure, 16050 - Kouba, Algiers, Algeria
e-mail: mohamedhazi@hotmail.com

Abstract

In this article, we aim at proving the correctness of the inverse theorem (1) mentioned in [5]. More precisely, we associated symbols of Gevrey type to pseudodifferential operators when the latter are given by their kernels.

Key words: symbols of Gevrey, kernels, pseudodifferential operators
A.M.S classification subject: 47 G 30 .

1 Introduction

In [4], we gave a description of pseudodifferential operators when defined by their Hörmander's symbols or their kernels (cfr. [2] and [3]); and this in the C^{∞}-case. It appeared that the two approches are equivalent. In [1], it is shown that this equivalence remains also true in the analytic case. This paper is a continuation of [5], where we obtained that the definition by symbols implies the one by kernels. Here, we deal with the converse. And this, in the more fine context of Gevrey classes.

We recall three definitions as they were given in [5].
Definition 1.1. Let n be a non zero positive integer, Ω an open subset of \mathbb{R}^{n} and s any real number larger or equal to 1. A real function φ in $C^{\infty}(\Omega)$ is said of Gevrey class with order s if, for any compact subset $K \subset \Omega$, there exists constant a $C>0$ such that

$$
\begin{equation*}
\forall \alpha \in \mathbb{N}^{n}\left\|D^{\alpha} f\right\| \leq C^{|\alpha|+1}(|\alpha|!)^{s} . \tag{1}
\end{equation*}
$$

Definition 1.2. Given $n \in \mathbb{N}^{*}, m \in \mathbb{R}, s \geq 1$ and Ω an open subset of \mathbb{R}^{n}. We say that a real function $a=a(z, x)$ in $C^{\infty}\left(\Omega \times \mathbb{R}^{n}\right)$, is a symbol (or amplitude) of Gevrey type with class s on Ω if, and only if, it satisfies that for any compact subset $K \subset \Omega$, there exist C_{0}, C_{1}, R positive constants such that

$$
\begin{equation*}
\left|D_{\xi}^{\alpha} D_{z}^{\beta} a(z, \xi)\right| \leq C_{0} C_{1}^{|\alpha+\beta|}(|\alpha|!)^{s}(|\beta|!)^{s}\left(1+|\xi|^{2}\right)^{m-|\alpha|} \tag{2}
\end{equation*}
$$

for any $z \in \mathbb{R}^{n}, \xi \in \mathbb{R}^{n}$ with $,|\xi| \geq R, \alpha$ and $\beta \in \mathbb{N}^{n}$.
We denote by $\mathcal{S}_{G^{s}}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$ the set of such symbols.
Notice that, in general, a is supposed analytic in z. (This is done by taking $s=1$ in the factor $(|\beta|!)^{s}$ corresponding to the variable z.)

Definition 1.3. We keep the notation of definition (2). Moreover, let U be an open neighborhood of o in \mathbb{R}^{n} and m a positive real number. We say that a distribution $T=$ $T(z, x)$, on $\Omega \times U$, is a Gevrey kernel of order m if, and only if, the following assertions are satisfied:
a) The restriction f of T to $(U \backslash\{0\})$ is Gevrey of order s such that, for every compact K of Ω, there is an open neighborhood V of $U \backslash\{0\}$ and a scalar $C>0$ such that

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{z}^{\beta} T(z, x)\right| \leq C^{|\alpha+\beta|+1}(|\alpha|!)^{s}(|\beta|!)^{s}\left(1+|x|^{2}\right)^{-m-n-|\alpha|} \tag{3}
\end{equation*}
$$

for every (z, x) in $K \times V$.
b) The distribution T is of the form

$$
\begin{equation*}
T(z, .)=P_{f_{\theta}}(z, .)+\sum_{|\alpha| \leq m} C_{\alpha}(z) \delta^{(\alpha)} \tag{4}
\end{equation*}
$$

where $\left(C_{\alpha}\right)_{\alpha}$ is a family of Gevrey functions of order s in Ω and θ is a map of $C_{0}^{\infty}(U)$, verifying $\theta \equiv 1$ in a neighborhood of zero, while $P_{f_{\theta}}$ is a distribution given for any ψ in $C_{0}^{\infty}(U)$ by

$$
\begin{equation*}
<P_{f_{\theta}}, \psi>=\int f(x)\left(\psi(x)-\sum_{|\alpha| \leq m} \frac{D^{\alpha} \psi(0)}{\alpha!} x^{\alpha} \theta(x)\right) d x \tag{5}
\end{equation*}
$$

c) If m is a positive integer, then, for any compact K in Ω, there is a scalar $C>0$ such that, for every α in \mathbb{N}^{n} with $|\alpha|=m$ and any $\varepsilon>0$

$$
\begin{equation*}
\left|\int_{|x| \geq \varepsilon, x \in U} x^{\alpha} f(z, x) d x\right| \leq C \tag{6}
\end{equation*}
$$

and this, for every z in K.
The set of Gevrey kernels, thus defined, is designated by $\mathcal{K}_{G^{s}}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$.

2 The main result

We prove the following result:

Theorem 1 If T is in $\mathcal{K}_{G^{s}}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$, then there is a symbol f in $\mathcal{S}_{G^{s}}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$ such that $T=\mathcal{F}^{-1} f$ is of Gevrey type of order s on $\Omega \times U^{\prime}$, where U^{\prime} is an open 0 neighborhood in \mathbb{R}^{n}.

Proof. Recall first that $\mathcal{F}^{-1} f$ is the image of f by the inverse of Fourier transform.
We will need the following lemma which is an analogous of the one in [1].

Lemma 1 Let m be a positive real number, U and U^{\prime} open neighborhoods of zero, in \mathbb{R}^{n}, such that $U^{\prime} \subset U$.
i) Let T be a distribution on U, the restriction g of which, to $U \backslash\{0\}$, is C^{∞} and satisfies

$$
\begin{equation*}
\left|D_{x}^{\beta} g(x)\right| \leq C|x|^{m-n-|\beta|}, \quad|\beta| \leq m . \tag{7}
\end{equation*}
$$

ii) We suppose $x^{\alpha} T$ that is an integrable on U, for $|\alpha|<m$.
iii) If m is a positive integer, we suppose the existence of a map φ in $C_{0}^{\infty}(U)$, identically equal to 1 on U^{\prime} and such that, for $|\alpha|=m$,

$$
\begin{equation*}
\sup _{0<\varepsilon<1}\left|\left\langle x^{\alpha} T_{\varepsilon}(x), \varphi_{\varepsilon}(x)\right\rangle\right| \leq C, \tag{8}
\end{equation*}
$$

with $\varphi_{\varepsilon}(x)=\varphi\left(\frac{x}{\varepsilon}\right)$.
Then, for every ψ in $C_{0}^{\infty}(U)$, there exists a scalar $M>0$ such that

$$
\begin{equation*}
\left|D_{\xi}^{\alpha}(\psi T)(\xi)\right| \leq C M(1+|\xi|)^{m-|\alpha|}, \tag{9}
\end{equation*}
$$

and this for every α in \mathbb{N}^{n} and every ξ in \mathbb{R}^{n}.

Proof of lemma 1.- Since α is in \mathbb{N}^{n}, we have, for $|\xi| \geq 1$,

$$
\begin{aligned}
D_{\xi}^{\alpha}(\widehat{\psi T})(\xi) & \left.=(-1)^{|\alpha|} \widehat{\left(x^{\alpha} \psi T\right.}\right)(\xi)=(-1)^{|\alpha|}\left\langle x^{\alpha} \psi T, e^{i x \xi}\right\rangle \\
& =(-1)^{|\alpha|}\left(I_{1}+I_{2}+I_{3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1}=\left\langle x^{\alpha} T, \varphi_{\varepsilon} \psi\right\rangle, \\
& I_{2}=\left\langle x^{\alpha} T, \varphi_{\varepsilon} \psi\left(e^{-i x \xi}-1\right)\right\rangle, \\
& \left.I_{3}=\left\langle x^{\alpha} T,\left(1-\varphi_{\varepsilon}\right) \psi e^{-i x \xi}\right\rangle=x^{\alpha} T \widehat{\left(1-\varphi_{\varepsilon}\right.}\right) \psi .
\end{aligned}
$$

Let us examine these expressions one by one. First, fix

$$
\begin{equation*}
\varepsilon=\frac{1}{|\xi|} . \tag{10}
\end{equation*}
$$

Using (7) and (8) and (10), we get

$$
\left|I_{1}\right| \leq C M_{1}|\xi|^{m-|\alpha|}
$$

with a constant $M_{1}>0$.
Concerning the estimation of I_{2}, the definition of φ assures that

$$
\left|e^{-i x \xi}-1\right| \leq|\xi||x| .
$$

This inequality and (7) yield to

$$
\left|I_{2}\right| \leq C M_{2}|\xi|^{m-|\alpha|},
$$

with a constant $M_{2}>0$.
With respect to I_{3}, we can write

$$
\xi_{j} I_{3}=-1\left\langle D_{x_{j}}\left(x^{\alpha}\left(1-\varphi_{\varepsilon}\right) \psi T, e^{-i x \xi}\right)\right\rangle, \quad \forall j=1, \ldots, n .
$$

Since the support of $1-\varphi_{\varepsilon}$ is contained in $U \backslash U^{\prime}$, we can find a scalar $\mu>0$ such that

$$
0<\mu \leq|\xi| \quad|x|
$$

which permits to have

$$
\left|\xi_{j} I_{3}\right| \leq C M_{3}|\xi|^{m-|\alpha|+1}
$$

where M_{3} is a strictly positive scalar.
With these three estimations we obtain (9) in the case $|\xi| \geq 1$ considered.
As (9) obviously remains true when $|\xi|<1$, the proof is finished.
In order to finish the proof of theorem, we will also need the following proposition.
Proposition 1 Let U be an open 0-neighborhood in \mathbb{R}^{n}, a given α in \mathbb{N}^{n} and T an element of $\mathcal{K}_{G^{s}}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$ such that its restriction f to $U \backslash\{0\}$, satisfies

$$
\begin{equation*}
\left|\partial^{\alpha} f(x)\right| \leq C^{|\alpha|+1}(|\alpha|!)|x|^{-m-n-|\alpha|} \tag{11}
\end{equation*}
$$

For any map φ in $C_{0}^{\infty}(U)$ which is identically equal to 1 on an open 0-neighborhood $U^{\prime} \subset U$, we get

$$
\begin{equation*}
\left|D^{\alpha}(\widehat{\varphi T})(\xi)\right| \leq C^{|\alpha|+1}(|\alpha|!)^{s}(1+|\xi|)^{m-|\alpha|} . \tag{12}
\end{equation*}
$$

Proof of Proposition 1.- We define a function ψ on $C_{0}^{\infty}(U)$ as follows

$$
\psi(x)=\left\{\begin{array}{lll}
1 & \text { for } & |x| \leq 1 \tag{13}\\
0 & \text { for } & |x| \geq 3
\end{array}\right.
$$

For any β in \mathbb{N}^{n} such that $|\beta|=|\alpha|$ we get

$$
\left|\xi^{\alpha} D^{\alpha}(\widehat{\varphi T})(\xi)\right| \leq\left|I_{1}\right|+\left|I_{2}\right|,
$$

where

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\int D_{x}^{\alpha}\left(x^{\alpha} \varphi T\right)[1-\psi(|\xi| x)] e^{-i x \xi} d x\right| \\
\left|I_{2}\right| & =\left|\int D_{x}^{\alpha}\left(x^{\alpha} \varphi T\right) \psi(|\xi| x) e^{-i x \xi} d x\right|
\end{aligned}
$$

Let us estimate these expressions. We have

$$
\begin{equation*}
\left|I_{2}\right| \leq \int_{|x|<\frac{3}{|\xi|}}\left|D_{x}^{\alpha}\left(x^{\alpha} \varphi T\right)\right| d x \tag{14}
\end{equation*}
$$

The Leibniz formula and (11) permits to get

$$
\begin{aligned}
\left|I_{2}\right| & \leq \int_{\left.|x|<\frac{3}{|\xi|} \right\rvert\,}\left|\sum_{v \leq \beta}() \beta v \partial^{\beta-v} T \partial^{v}\left(x^{\alpha} \varphi\right)\right| d x \\
& \leq \int_{|x|<\frac{3}{|\xi|}} \sum_{v \leq \beta}() \beta v\left|\partial^{v}\left(x^{\alpha} \varphi\right)\right| C^{|\beta-v|+1}(|\beta-v|!)^{s}|x|^{-n-m-|\beta-\nu|} d x .
\end{aligned}
$$

Whence

$$
\begin{equation*}
\left|I_{2}\right| \leq \int_{|x|<\frac{3}{|\xi|}} A_{2} C^{|\beta|+1}(|\beta|!)^{s}|x|^{-n-m} d x \leq B_{2} C^{|\beta|+1}(|\beta|!)^{s}(1+|\xi|)^{m} \tag{15}
\end{equation*}
$$

By proceeding in the same way for $\left|I_{1}\right|$, we obtain

$$
\begin{equation*}
\left|I_{1}\right| \leq \int_{\frac{1}{|\xi|<|x|<\frac{3}{|\xi|}}} A_{1} C^{|\beta|+1}(|\beta|!)^{s}|x|^{-n-m} d x \leq B_{1} C^{|\beta|+1}(|\beta|!)^{s}(1+|\xi|)^{m} . \tag{16}
\end{equation*}
$$

Notice that the scalars A_{1} and A_{2} depend on β while B_{1} and B_{2} depend on β, m and n. The constant C does not depend on β, nor n, nor m.

On the other hand, using (14) and (15), we easily obtain

$$
\begin{equation*}
\left|D^{\alpha}(\widehat{\varphi T})(\xi)\right| \leq A C^{|\alpha|+1}(|\alpha|!)^{s}(1+|\xi|)^{m-|\alpha|} . \tag{17}
\end{equation*}
$$

This inequality complets the proof of the relation (12) and thus, the theorem is proved.

References

[1] Baouendi, M.S. and Goulaouic, C. and Métivier, G.: "Kernels and symbols of analytic pseudodifferential operators", J. Differ. Equations, 48 (1983), pp. 227-240.
[2] Boutet De Monvel, L. and Krée, P.: "Pseudodifferential operators and Gevrey classes", Ann. Inst. de Fourier, Grenoble, 17, (1967), p. 295-323.
[3] Boutet De Monvel, L.: "Opérateurs pseudodifférentiels analytiques et opérateurs d'ordre infini", Ann. Inst. de Fourier, Grenoble, 22, (1972), p. 229-268.
[4] Hazi, M.: "Noyaux et symboles des opérateurs pseudodifférentiels en C^{∞} " Mémoire de D.E.A, École Polytechnique, Paris. (1982)
[5] Hazi, M.: "Kernels of pseudodifferential operators associated to Hörmander symbols of Gevrey type", Arab Gulf Journal of Scientific Research, 19, (2001), Manama, pp. 52-58.

