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Abstract

The Le Page inequality in a Banach algebra is ‖xy‖ ≤ α ‖yx‖ , for every x, y ∈ A

and some constant α > 0. We examine inequalities of Le Page type in p-Banach

algebras with or without involution. As a consequences, some commutativity results

are obtained.
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1 Introduction.

Le Page ([5]) considered in a complex Banach algebra (A, ‖.‖) the following condition

(C) : ‖xy‖ ≤ α ‖yx‖ , for every x, y ∈ A, and some constant α > 0. In the unital case,

this condition ensures the commutativity of A. The principal ingredient in the proof is

Liouville’s theorem for holomorphic functions and the Hahn Banach theorem. This last

result is in general not valid in p-normed algebras. Here we consider the support pseudo-

norm introduced in [9] to examine inequalities of type (C) . We show that the condition

(C1) : ‖xy‖p ≤ α ‖yx‖p , for every x, y ∈ A and some constant α > 0, implies that

A/RadA is commutative. This makes it possible to obtain some commutativity results.

In the unital case with a generalized involution x �−→ x∗, we show that the condition

(C2) : ‖x∗y‖p ≤ α ‖yx‖p , for every x, y ∈ A and some constant α > 0, forces the algebra

to be a commutative C∗-algebra for a norm equivalent to ‖.‖p .

A vector involution x �−→ x∗ ([1]) on a complex algebra A is said to be an involutive

anti-morphism if (xy)∗ = x∗y∗, for every x, y ∈ A. A generalized involution is an algebra
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involution or an involutive anti-morphism. An element a of A is said to hermitian (resp.,

normal) if a = a∗ (resp., a∗a = aa∗). We designate by H(A) (resp., N(A)) the set of

hermitian (resp., normal) elements of A. In the unital case, we say that a is unitary if

a∗a = aa∗ = e, where e is the unit element. The set of all unitary elements of A will be

denoted U(A). A linear p-norm on A, 0 < p ≤ 1, is non-negative function x �−→ ‖x‖p such

that ‖x‖p = 0 if and only if x = 0, ‖x + y‖p ≤ ‖x‖p + ‖y‖p and ‖λx‖p = |λ|p ‖x‖p, for all

x, y ∈ A and λ ∈ C. By a p-normed algebra
(
A, ‖.‖p

)
, we mean an algebra A endowed

with a linear p-norm ‖.‖p such that ‖xy‖p ≤ ‖x‖p ‖y‖p , for all x, y ∈ A. In this paper, all

p-normed algebras are not necessarily assumed to be complete. This is different from [10]

and [11]. A complete p-normed algebra is called a p-Banach algebra. A p-Banach algebra(
A, ‖.‖p

)
with a generalized involution x �−→ x∗ is said to be hermitian if the spectrum

of every hermitian element is real. Throughout the paper, all algebras considered will be

associative and complex. We denote Pták’s function by |.| , that is |a|2 = ρ(a∗a), for every

a ∈ A, where ρ is the spectral radius i.e., ρ(a) = sup {|z| : z ∈ Spa} . The center of A will

be denoted C(A). For a, b ∈ A, we designate by [a, b] the commutator ab − ba.

2 Condition (C1)

Our first condition is the analog of Le Page’s inequality in p-normed Q-algebras

‖xy‖p ≤ α ‖yx‖p , for every x, y ∈ A and α > 0, (C1)

In this case, we can say the following

Theorem 2.1 Let (A, ‖.‖p), 0 < p ≤ 1, be a p-normed Q-algebra. If A satisfies (C1) ,

then A/RadA is commutative.

Proof. Without loss of generality, we may suppose A complete for the inequality (C1)

extends to the completion
∧
A and A ∩ Rad

∧
A⊂ RadA for A is a Q-algebra. Moreover,

considering A/RadA instead of A, we may suppose A semi-simple. For any x ∈ A, put

‖x‖ = inf
n∑

i=1

‖xi‖
1
p
p ,

where the infimum is taken over all decompositions of x =
∑n

i=1 xi, xi ∈ A. By [9], ‖.‖ is

a submultiplicative semi-norm on A. Moreover, we have

ρ(x) ≤ ‖x‖ ≤ ‖x‖
1
p
p , ∀x ∈ A. (1)

It follows from (C1), that

‖xy‖ ≤ α
1
p ‖yx‖

1
p
p , ∀x, y ∈ A. (2)
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Now if A is not unital, consider its unitization A1 = A ⊕ C. For a, b, c ∈ A, consider the

map f defined, on C, by

f(λ) = (exp(λa)) bc exp(−λa).

One cheks that, for any ϕ in the topological dual of (A, ‖.‖), ϕ ◦ f is holomorphic. It

is also bounded by (2). By Liouville’s theorem ϕ ◦ f is constant, and so the coefficient

of λ in the power series expansion of ϕ ◦ f is zero, i.e., ϕ ([a, bc]) = 0. By Hahn-Banach

theorem, we obtain ‖[a, bc]‖=0. It follows from (1) that ρ ([a, bc] y) = 0, for every y ∈
A. Whence [a, bc] ∈ RadA since RadA = {x ∈ A/ρ(xy) = 0,∀y ∈ A} . This shows that

A2 = {xy/x, y ∈ A} is contained in the centre of A. Thus, for any integer n > 0 and all

x, y ∈ A, we obtain (xy)n = xnyn. Using the fact that ρ(x)p = lim
n

‖xn‖
1
n
p , we deduce that

the spectral radius is submultiplicative on A and hence the set of quasi-nilpotent elements

of A coincides with the radical of A. Now, for every x and y in A, we have (xy−yx)2 = 0.

Whence xy − yx ∈ RadA = {0} and so A is commutative.

Let us notice that if ‖x‖p ≤ αρ(x)p, for every x ∈ A, then C1 is verified. Whence the

following classical result.

Corollary 2.1 Let (A, ‖.‖p), 0 < p ≤ 1, be a p -normed Q-algebra such that ‖x‖p ≤
αρ(x)p, for every x ∈ A and some α > 0. Then A/RadA is commutative.

The analog of a G. Niestegge’s result obtained in [7] is the following

Corollary 2.2 Let (A, ‖.‖p), 0 < p ≤ 1, be a p-normed Q-algebra such that ‖xy + y‖p ≤
α ‖yx + y‖p , for every x, y ∈ A and some α > 0. Then A/RadA is commutative.

Proof. The inequality in hypotheses is equivalent to ‖xy‖p ≤ α ‖yx‖p , for every x ∈
A1 = A ⊕ C and y ∈ A.

Let (A, ‖.‖p), 0 < p ≤ 1, be a p-normed Q-algebra satisfying (C1) . Then we have

Theorem 2.1 with Ker ‖.‖ in place of RadA, where Ker ‖.‖ = {x ∈ A : ‖x‖ = 0} . If

moreover the topological dual of (A, ‖.‖) separates points on A, then Ker ‖.‖ = {0} and

therefore (C1) ensures the commutativity of A.

3 Condition (C2)

In this section, we look at the condition

‖x∗y‖p ≤ α ‖yx‖p , for every x, y ∈ A and α > 0 (C2)

In a unital Banach algebra, we obtained in [2] that the condition (C2) forces the algebra

to be a C∗-algebra. In the non unital case, it implies that the algebra is hermitian. In the
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p-Banach algebras with a generalized involution condition (C2) appears also to be strong

as the following result shows.

Theorem 3.1 Let (A, ‖.‖p), 0 < p ≤ 1, be a unital p-Banach algebra with a generalized

involution x �−→ x∗. If A satisfies (C2) , then

1) There exists a positive constant M such that

∥∥∥h2
∥∥∥

p
≤ Mρ(h2)p, for every h ∈ H(A).

2) A is a commutative C∗-algebra for a norm equivalent to ‖.‖p .

Proof. 1) Let h ∈ H(A) such that ρ(h) < 1. Then ρ(h2) < 1. By an analog result of

Ford’s square root lemma, there is k ∈ H(A) such that k2 = e−h2 and hk = kh, where e

is the unit element. Put u = h + ik. It is easy to show that u ∈ U(A) and u2 = e + 2iku.

We have

‖ku‖p =
1

2p

∥∥∥u2 − e
∥∥∥

p
≤ α + 1

2p
‖e‖p

Therefore

∥∥∥h2
∥∥∥

p
=

∥∥∥e − k2
∥∥∥

p
≤ ‖e‖p + ‖(ku)(u∗k)‖p ≤ ‖e‖p + α ‖ku‖2

p ≤ M

where

M = ‖e‖p

[
1 +

α (α + 1)2

22p
‖e‖p

]
.

Hence for an arbitrary h ∈ H(A), we have ‖h2‖p ≤ Mρ(h2)p.

2) It follows from condition (C2) that ‖u2‖p ≤ α ‖e‖p , for every u ∈ U(A). We obtain

ρ(u) =
√

ρ(u2) ≤
∥∥∥u2

∥∥∥
1
2p

p
≤

(
α ‖e‖p

) 1
2p .

By standard arguments ([8]), one shows that the algebra is hermitian. Let h ∈ H(A) such

that ρ(h) < 1. There is k ∈ H(A) such that k2 = e − h and hk = kh. Then, by 1) there

exists a constant M > 0 such that ‖k2‖p ≤ Mρ(k2)p. Whence

‖h‖p =
∥∥∥e − k2

∥∥∥
p
≤ ‖e‖p + Mρ(e − h)p ≤ ‖e‖p + 2pM

Now for an arbitrary h ∈ H(A), we have ‖h‖p ≤ cρ(h)p, where c = ‖e‖p + 2pM. Given

x ∈ RadA, we have h = 1
2
(x + x∗) ∈ RadA and k = 1

2i
(x− x∗) ∈ RadA. This implies that

A is semi-simple. We consider first the case where x �−→ x∗ is an algebra involution. Since

A is hermitian and semi-simple, we show as in the Banach case ([8]) that Pták’s function

|.| is an algebra norm. The inequality ‖h‖p ≤ cρ(h)p, for every h ∈ H(A), implies that,

for x = h + ik ∈ A, where h, k ∈ H(A), we have

‖x‖p ≤ c (|h|p + |k|p) ≤ 2c |x|p .
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Moreover

|x|2p ≤ ‖x∗x‖p ≤ α2 ‖x‖2
p .

Hence |.| is equivalent to ‖.‖p and (A, |.|) is a C∗-algebra. To see that A is commuta-

tive, observe that |a|2 ≤ µ |a2| , for some µ > 0 and every a ∈ A. Then, by induction∣∣∣a2n
∣∣∣ ≥

(
1
µ

)2n−1 |a|2n

. Whence ρ(a) ≥ 1
µ
|a| which implies commutativity by Corollary

2.2. Suppose now that x �−→ x∗ is an involutive anti-morphism.We will show that the

algebra A is commutative. In this case, H(A) is a real p-Banach algebra. Moreover

Rad (H(A)) = {0} , since ‖h‖p ≤ cρ(h)p, for every h ∈ H(A). Hence H(A) is a real

semi-simple p-Banach algebra in which every square is quasi-invertible for A is hermitian.

By an analog result, in p-Banach algebra, of theorem 4.8 of Kaplansky ([4]), the algebra

H(A) is commutative. This completes the proof.

The trivial case of any Banach space with the product zero and any generalized invo-

lution shows that the existence of a unit is essential in thorem 3.1 ([2]). In the case A is

not unital, we have the following

Theorem 3.2 Let (A, ‖.‖p), 0 < p ≤ 1, be a non unital p-Banach algebra with a gener-

alized involution x �−→ x∗ satisfying (C2) . Then

1) A is hermitian.

2) If x �−→ x∗ is an algebra involution, then A/RadA is commutative.

Proof. 1) For every normal element a ∈ A, condition (C2) implies ρ(a)2p ≤ α
1

2n

(
‖aa∗‖p

) 1
2n−1

.

We obtain ρ(a) ≤ |a|. As in [8], one shows that A is hermitian. To see 2), observe that

(C2) implies ‖xy‖p ≤ M ‖yx‖p , for a M > 0. Whence the conclusion by Theorem 2.1.

4 Condition (C3)

Our last condition is

‖x∗y∗‖p ≤ α ‖yx‖p , for every x, y ∈ A and α > 0. (C3)

If x �−→ x∗ is a continuous algebra involutive, then the condition (C3) is satisfied.

If x �−→ x∗ is a continuous involutive anti-morphism, (C3) implies Le Page condition

‖xy‖p ≤ α2 ‖yx‖p . If x �−→ x∗ is only a linear involution, we have the following

Theorem 4.1 Let (A, ‖.‖p), 0 < p ≤ 1, be a unital p-Banach algebra and x �−→ x∗ be

a continuous linear involution such that e∗ = e. If A satisfies (C3) ,then (ab)∗ = b∗a∗ in

A/RadA.
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Proof. For a, b ∈ A and c ∈ A, consider the map f defined, on C and with values in A,

by

f(λ) = ((exp(λa)) c)∗ (b exp(−λa))∗ .

For any ϕ in the topological dual of (A, ‖.‖), ϕ◦f is harmonic. It is also bounded by (C3) .

By Liouville’s theorem ϕ ◦ f is constant. Differentiating relative to the real part (or the

imaginary part) of λ, we have ϕ ((ac)∗b∗ − c∗(ba)∗) = 0. Whence (ac)∗b∗−c∗(ba)∗ ∈ RadA

by Hahn-Banach theorem and (1), which proves the result.

Remark Under the condition ‖x∗y∗‖p ≤ α ‖xy‖p , for every x, y ∈ A and some constant

α > 0, we obtain (ca)∗b∗ − c∗(ab)∗ ∈ RadA, for every a, b, c ∈ A. Then (ab)∗ = a∗b∗ in

A/RadA.

Indeed, for a, b, c ∈ A, consider the map g defined, on C, by

g(λ) = (c exp(λa))∗ ((exp(−λa)) b)∗ and proceed as for theorem 4.1.
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