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Abstract

Let E be a locally convex space and Λ a perfect sequence space. Denote by

Λ (E)r the space of all Λ-summable sequences from E which are the limit of their

finite sections. In this note we characterize the continuous linear functionals on

Λ (E)r in terms of strongly Λ∗-summable sequences in the dual E′ of E.
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1 Introduction

For a perfect sequence space Λ and a locally convex space E, A. Pietsch [14] introduced

the space Λ[E] of all weakly Λ-summable sequences in E and the space Λ(E) of all Λ-

summable sequences in E. He then characterized the nuclearity of E in terms of the

summability of its sequences. Since then, several authors have been interested in vector-

valued sequence spaces [1], [3, 4, 5], [9, 10, 11, 12] and [15]. For instance, different aspects

of the space Λ[E], particularly when Λ = �p, were studied in [3] and in [5]. Whenever Λ

is endowed with the Köthe normal topology, properties of Λ(E) were studied in [8], such

as the description of the continuous dual in terms of prenuclear sequences in E ′. More

general cases were considered by M. Florencio and P. J. Paúl in [10] and [11].
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In this paper, we consider on Λ an arbitrary locally convex polar topology with respect

to the Köthe duality and deal with the following problem: Characterize the E ′-valued se-

quences determining continuous functionals on Λ(E)r, the space of Λ-summable sequences

which are the limit of their finite sections. To this end, we extend to any perfect Λ the

notion of strongly p-summable sequences introduced by H. Apiola [1]. We then make use

of such sequences to characterize the continuous dual of Λ(E)r.

We refer the reader to Section 30 of [8] and Chapter 2 of [16] for the concepts and

Köthe theory of sequence spaces and to [7] for the terminology and notations concerning

the general theory of locally convex spaces.

Most of our results remain true when Λ is only normal and E not necessarily sequen-

tially complete. However, for the comfort of the reader, we assume these hypotheses all

over the paper unless the contrary is clearly expressed.

2 Preliminaries

Let E be a sequentially complete locally convex space over the field K of real or complex

numbers and E ′ its continuous dual. Denote by M the family of all equicontinuous subsets

of E ′ which are absolutely convex and σ(E ′, E)-closed. If M ∈ M, let E ′
M denote the

linear subspace of E ′ spanned by M , furnished with the Minkowski functional ‖ ‖M of M

as a norm. Consider on E the seminorm PM defined by

PM(x) = sup{|g(x)| : g ∈ M}
and put E/M⊥ to denote the quotient of E by the kernel M⊥ of PM . Equip it with the

quotient norm induced by PM . It is easily seen that the Banach space (E/M⊥)′ and E ′
M

are isometrically isomorphic (compare with Proposition 8.7.7 of [7]).

Now, let Λ be a perfect sequence K-space and Λ∗ its Köthe dual. We will write en

to designate the sequence whose only non zero term is the nth one, which is equal to

1. A sequence (xn)n ⊂ E is said to be Λ-summable if the series
∑

αnxn converges in E

for every (αn)n ∈ Λ∗. It is weakly Λ-summable if (a(xn))n ∈ Λ for every a ∈ E ′. We

denote by Λ(E) the space of all Λ-summable sequences in E and by Λ[E] that of weakly

Λ-summable ones. We will say that a sequence (xn)n ⊂ E is strongly Λ-summable if, for

every M ∈ M, the series
∑

n fn(xn) converges absolutely for all (fn)n ∈ Λ∗[E ′
M ]. The

space of all such sequences will be denoted by Λ〈E〉.
In the sequel we will assume that Λ is equipped with a locally convex polar topology

defined by a family S of closed absolutely convex normal and σ(Λ∗, Λ)-bounded subsets

of Λ∗ such that S is closed under finite unions and scalar multiples and S covers Λ∗. Such

a topology is generated by the seminorms PS, S ∈ S, where

PS(α) = sup

{ ∞∑

n=1

|αnβn| : (βn)n ∈ S

}

, α = (αn)n ∈ Λ.

80



As shown in Proposition 1 of [10], a natural locally convex topology can be defined on

Λ(E) by means of the S-topology on Λ and the topology of E. This topology is generated

by the family (εS,M)S∈S, M∈M of seminorms, where

εS,M(x) = sup

{ ∞∑

n=1

|αna(xn)| : (αn)n ∈ S, a ∈ M

}

, x = (xn)n ∈ Λ(E).

Note that, with a similar proof as in [10], we can regard the εS,M ’s as seminorms on Λ[E].

In all what follows, Λ(E) as well as Λ[E] will be equipped with the topology given by

these seminorms.

The following proposition will be needed in the sequel. Since we have not been able

to locate any reference (which may exist) for it, we include a proof for the sake of com-

pleteness.

Proposition 1 (i) For every n ∈ N, the projection In : Λ[E] −→ E, In(x) = xn is a

continuous linear map.

(ii) Λ[E] is (sequentially) complete if, and only if, Λ and E are (sequentially) complete.

(iii) Λ(E) is a closed subspace of Λ[E].

(iv) Λ(E)r is a closed subspace of Λ(E).

Proof: (i) is a consequence of the very definition of the εS,M ’s.

(ii): The necessity is also a consequence of the definition. For the sufficiency, let (xi)i

be a Cauchy net in Λ[E]. The continuity of In implies that (xi
n)i is a Cauchy net in E for

all n. Hence it must converge to some xn ∈ E. Let us prove that x = (xn)n ∈ Λ[E]. If

a ∈ E ′, then (a(xi
n))n is a Cauchy net in Λ. Indeed, for all S ∈ S and M ∈ M such that

a ∈ M , we have

PS((a(xi
n))n − (a(xj

n))n) ≤ εS,M(xi − xj), for all i, j.

Let α = (αn(a))n be the limit of (a(xi
n))i. The continuity of In gives a(xn) = αn(a). Thus

(a(xn))n ∈ Λ and x = (xn)n ∈ Λ[E]. Moreover, for ε > 0, there exists k such that for all

i, j > k, εS,M(xi − xj) < ε. This leads to εS,M(xi − x) ≤ ε for all i > k, which proves the

convergence of (xi)i to x. The same proof holds for the sequential completeness too.

(iii) Let x = (xn)n ∈ Λ(E), ε > 0, α ∈ Λ∗, M ∈ M and S ∈ S be given with α ∈ S.

There exists y = (yn)n ∈ Λ(E) such that εS,M(x − y) ≤ ε. Let k ∈ N be so that, for all

i ≥ j ≥ k, PM(
∑i

j αnyn) ≤ ε. Then,

PM(
i∑

j

αnxn) ≤ PM(
i∑

j

αnyn) + εS,M(x − y) ≤ 2ε,

so that x ∈ Λ(E). Therefore, Λ(E) is closed in Λ[E].

(iv) Let x = (xn)n ∈ Λ(E)r, ε > 0, M ∈ M and S ∈ S be given. There exists y = (yn)n ∈
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Λ(E)r such that εS,M(x − y) ≤ ε. Set z〈j〉 = (0, 0, . . . , 0, zj+1, zj+1, . . .) and let k ∈ N be

so that εS,M(y〈j〉) ≤ ε, for all j ≥ k. Then,

εS,M(x〈j〉) ≤ εS,M(x〈j〉 − y〈j〉) + εS,M(y〈j〉)

= εS,M((x − y)〈j〉) + εS,M(y〈j〉)

≤ εS,M(x − y) + ε

≤ 2ε. Q.E.D.

Remarks: 1. In the statement of (ii), we need not require Λ to be perfect.

2. If Λ is not perfect, Λ(E) need not be a subspace of Λ[E]. This is the case if E = �1,

Λ = c0. Actually, x = (en)n belongs to Λ(E) but not to Λ[E]. However, with a similar

proof as above, if Λ happens to be only normal, then Λ(E) = Λ∗∗(E) and Λ(E) is a closed

subspace of Λ∗∗[E].

3. In general, whenever Λ is perfect, Λ(E) is a proper subspace of Λ[E]. Conditions under

which the equalities Λ(E)r = Λ(E) or Λ(E) = Λ[E] hold can be found in [11], [13] and

[5].

We also need the following proposition.

Proposition 2 If E ′
β denotes the strong dual of E, the following equality holds

Λ[E ′
β] = {(an)n ⊂ E ′ : (an(x))n ∈ Λ, x ∈ E}.

Moreover, the topology of Λ[E ′
β] is given by the seminorms

εS,B(a) = sup

{ ∞∑

n=1

|αnan(x)| : (αn)n ∈ S, x ∈ B

}

,

where S runs over S and B over the set of all absolutely convex closed and bounded subsets

of E.

Proof: Let a = (an)n ∈ Λ[E ′
β]. Since E can be seen as a subspace of (E ′

β)prime, (an(x))n ∈
Λ for all x ∈ E. Conversely, assume that for all x ∈ E, (an(x))n ∈ Λ and let f ∈

(
E ′

β

)′

and (βn)n ∈ Λ∗ be given. We must show that the series
∑ |βnf(an)| is convergent. Choose

(εn)n so that εnf(βnan) = |f(βnan)| for all n and set A =

{ p∑

n=1

εnβnan, p ∈ N

}

. For all

p ∈ N, one has
p∑

n=1

|εnβnan(x)| ≤
∞∑

n=1

|βnan(x))|

which is finite since (an(x))n ∈ Λ. So A is σ(E ′, E)-bounded. Since E is sequentially

complete, A is bounded in E ′
β. Hence we can find Kf > 0 such that

∑p
n=1 εnβnf(an) ≤ Kf ,

for all p ∈ N. This proves that the series
∑ |βnf(an)| is convergent and that (f(an))n ∈ Λ.
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Now, if M is an equicontinuous absolutely convex and closed subset of (E ′
β)′, then the

polar U = M◦ of M with respect to the duality 〈E ′
β, (E ′

β)′〉 is a 0-neighbourhood in E ′
β.

There exists a closed absolutely convex and bounded subset B of E such that U = B◦

with respect to the duality 〈E, E ′〉. If PU is the gauge of U , for all (αn)n ∈ S and p ∈ N,

we have:

PU(
p∑

n=1

αnan) = PM(
p∑

n=1

αnan)

= PB(
p∑

n=1

αnan)

Therefore,

sup{|
p∑

n=1

αnf(an)|: (αn)n ∈ S, f ∈ M} = sup{|
p∑

n=1

αnan(t)|: (αn)n ∈ S, t ∈ B}.

Since S is normal,

sup{
p∑

n=1

|αnf(an)| : (αn)n ∈ S, f ∈ M} = sup{
p∑

n=1

|αnan(t)| : (αn)n ∈ S, t ∈ B}.

Thus εS,M(a) = εS,B(a). Q.E.D.

Remark: Proposition 2 remains true whenever the weakly bounded sets of E ′ are strongly

bounded. This holds in particular if E is locally barrelled.

3 Dual space of Λ(E)

For S ∈ S, let Λ∗
S denote the vector space spanned by S and (Λ∗

S)∗ its Köthe dual.

We start with the following lemma:

Lemma 3 1. Let S ∈ S and α ∈ (Λ∗
S)∗. Then

PS(α) := sup

{ ∞∑

n=1

|αnβn| : (βn)n ∈ S

}

< ∞.

Moreover, PS defines a seminorm on (Λ∗
S)∗.

2. The space

λ := {α ∈ (Λ∗
S)∗ : αn = 0 whenever en /∈ Λ∗

S}

is a normal sequence space and (λ, PS) is a Banach space.

Proof: 1. We only have to prove that sup

{ ∞∑

n=1

|αnβn| : (βn)n ∈ S

}

is finite. Since S is

absolutely convex, closed and σ(Λ∗, Λ)-bounded, it is also so with respect to the Köthe

normal topology. The latter being complete on Λ∗, Λ∗
S is a Banach space when it is

equipped with the gauge of S as a norm. For (αn)n ∈ (Λ∗
S)∗, consider the linear mapping
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Tα: Λ∗
S → �1 defined by Tα((βn)n) = (αnβn)n. Then Tα is continuous by the closed graph

theorem. Hence it is bounded on S.

2. In order to prove that (λ, PS) is a Banach space, it is enough to show that it is

isometrically isomorphic to a closed subspace of the dual space (Λ∗
S)′ of Λ∗

S. Actually, if µ

is the functional defined on �1 by µ ((βn)n) =
∑

n βn, then the linear map ϕ : α 
→ µ ◦ Tα

maps isometrically λ into (Λ∗
S)′. Moreover, for T ∈ ϕ(λ) and ε > 0, there exists α ∈ λ

such that ‖T − Tα‖ < ε. Put δn = T (en) if en ∈ Λ∗
S and δn = 0 otherwise. Then

δ = (δn)n belongs to λ. Indeed, for every β ∈ S and k ∈ N, if β(k) =
∑k

1 βnen, then

T (β(k)) = Tδ(β
(k)) and

∣
∣
∣T (β) − Tδ(β

(k))
∣
∣
∣ ≤ |T (β) − Tα(β)| +

∣
∣
∣Tα(β) − Tα(β(k))

∣
∣
∣ +

∣
∣
∣Tα(β(k)) − T (β(k))

∣
∣
∣

≤ 2‖T − Tα‖ +
∣
∣
∣Tα(β) − Tα(β(k))

∣
∣
∣

≤ 2ε +

∣
∣
∣
∣
∣
∣

∞∑

n=k+1

αnβn

∣
∣
∣
∣
∣
∣
.

Since

∣
∣
∣
∣
∣
∣

∞∑

n=k+1

αnβn

∣
∣
∣
∣
∣
∣
tends to 0,

T (β) = lim
k→∞

T (β(k)) = lim
k→∞

k∑

n=1

δnβn =
∞∑

n=1

δnβn.

It follows at once that δ belongs to (Λ∗
S)∗, then also to λ, and that T = Tδ. Consequently,

ϕ(λ) is closed. Q.E.D.

The following theorem extends to the general case of locally convex spaces a result of

Q. Bu and J. Diestel given in [2] for Λ = �p, 1 < p < ∞ and E a Banach space.

Theorem 4 Let F be a continuous linear functional on Λ(E) and, for every n ∈ N and

t ∈ E, an(t) = F (ten). Then there exists M ∈ M and S ∈ S such that the sequence (an)n

is strongly Λ∗
S-summable in E ′

M .

Proof: Since F is continuous, there exist S ∈ S and M ∈ M such that

|F (x)| ≤ εS,M(x), ∀x = (xn)n ∈ Λ(E).

Fix n ∈ N and t ∈ E. We have

|an(t)| = |F (ten)| ≤ εS,M(ten) = PS(en)PM(t),

which shows that (an)n ⊂ E ′
M .

It remains to show that (an)n ∈ Λ∗
S〈E ′

M〉. To this end, let (fn)n ∈ (Λ∗
S)∗[(E ′

M)′], k ∈ N and

δ > 0 be given. Consider the completion ˜E/M⊥ of E/M⊥. It is known that ( ˜E/M⊥)′ =

(E/M⊥)′ is isometrically isomorphic to E ′
M . Then, due to the the principle of local
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reflexivity (cf. [6]), there exists a continuous operator uk: span{f1, f2, . . . , fk} → ˜E/M⊥

such that ‖uk‖ ≤ 1 + δ and an(ukfn) = fn(an) for all n ∈ {1, 2, . . . , k}. Since every an is

continuous and E/M⊥ is dense in ˜E/M⊥, there exist 0 < δn ≤ δ

k(1 + pS(en))
and xn ∈ E

such that ‖x̂n − ukfn‖ ≤ δn and |an(x̂n − ukfn)| ≤ δ

k
, x̂n being xn + M⊥. Now,

∣
∣
∣
∣
∣

k∑

n=1

fn(an)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

k∑

n=1

an(ukfn)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

k∑

n=1

an(x̂n − ukfn)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

k∑

n=1

an(xn)

∣
∣
∣
∣
∣

≤
k∑

n=1

|an(x̂n − ukfn)| +
∣
∣
∣
∣
∣
F (

k∑

n=1

xnen)

∣
∣
∣
∣
∣

≤ δ + εS,M(
k∑

n=1

xnen)

= δ + sup

{∣
∣
∣
∣
∣

k∑

n=1

αna(xn)

∣
∣
∣
∣
∣
: (αn)n ∈ S, a ∈ M

}

.

But, for (αn)n ∈ S and a ∈ M ,

∣
∣
∣
∣
∣

k∑

n=1

αna(xn)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

k∑

n=1

αna(x̂n − ukfn)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

k∑

n=1

αna(ukfn)

∣
∣
∣
∣
∣

≤
k∑

n=1

|αn| |a(x̂n − ukfn)| +
∣
∣
∣
∣
∣
〈a ◦ uk,

k∑

n=1

αnfn〉
∣
∣
∣
∣
∣

(since ||a||M ≤ 1) ≤
k∑

n=1

|αn| δn + (1 + δ)

∥
∥
∥
∥
∥

k∑

n=1

αnfn

∥
∥
∥
∥
∥

≤
k∑

n=1

PS(en)δn + (1 + δ) sup

{∣
∣
∣
∣
∣

k∑

n=1

βnfn(x′)

∣
∣
∣
∣
∣
: (βn)n ∈ S, x′ ∈ M

}

≤ δ + (1 + δ)εS,M((fn)n).

Hence
∣
∣
∣
∣
∣

k∑

n=1

fn(an)

∣
∣
∣
∣
∣
≤ 2δ + (1 + δ)εS,M((fn)n), (fn)n ∈ Λ[(E ′

M)′] and k ∈ N.

Further, let (εn)n be such that |fn(an)| = εnfn(an), n ∈ N. Then (εnfn)n ∈ (Λ∗
S)∗[(E ′

M)′]

and
k∑

n=1

|fn(an)| =
k∑

n=1

εnfn(an) ≤ 2δ + (1 + δ)εS,M((εnfn)n).

It follows that the series
∑

fn(an) converges absolutely, for εS,M is finite on (Λ∗
S)∗[(E ′

M)′].

Q.E.D.

Remark: From the preceding proof, since δ is arbitrary, one has

∞∑

n=1

|fn (an)| ≤ εS,M ((fn)n) , (fn)n ∈ (Λ∗
S)∗[(E ′

M)′].
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To establish the converse of Theorem 4, we need the following lemma:

Lemma 5 For all (an)n ∈ Λ∗
S〈E ′

M〉, (‖an‖M)n ∈ Λ∗
S.

Proof: Given (αn)n ∈ Λ and ε > 0. By the definition of || ||M , for every n ∈ N, there

exists tn ∈ M◦ ⊂ E, such that

‖αnan‖M ≤ ε

2n
+ |αnan(tn)|. (1)

For every a ∈ E ′
M and n ∈ N, put fn(a) = αna(tn). Then |fn(a)| ≤ ‖a‖M |αn| and the

normality of Λ gives (fn(a))n ∈ Λ ⊂ (Λ∗
S)∗. By Proposition 2, (fn)n ∈ (Λ∗

S)∗[(E ′
M)′].

Thus the series
∑

αnan(tn) =
∑

fn(an) converges absolutely. Consequently,
∑ ‖αnan‖M

converges by (1), whereby (‖an‖M)n ∈ Λ∗. Now, if (αn)n ∈ S◦ ⊂ Λ, by the preceding

remark, we get
∞∑

n=1

|αnan(tn)| =
∞∑

n=1

|fn(an)| ≤ εS,M ((fn)n) ≤ 1.

Hence
∑∞

n=1 ‖αnan‖M ≤ ε + 1. This is (‖an‖M)n ∈ (1 + ε)S◦◦ = (1 + ε)S which shows

that (‖an‖M)n belongs to Λ∗
S. Q.E.D.

Proposition 6 For every S ∈ S, M ∈ M and a = (an)n ∈ ∪S,MΛ∗
S〈E ′

M〉, the mapping

fa : x 
→
∞∑

n=1

an(xn)

defines a continuous linear functional on Λ(E).

Proof: Choose M ∈ M, S ∈ S and a = (an)n ∈ Λ∗
S〈E ′

M〉. For every x = (xn)n ∈ Λ(E),

we have (δn)n ⊂ (E ′
M)′, where δn is the evaluation u 
→ u(xn) at xn. Thanks to Proposition

1, (δn(u))n ∈ Λ ⊂ (Λ∗
S)∗. By Proposition 2, (δn)n ∈ (Λ∗

S)∗[(E ′
M)′]. Hence

∑ |δn(an)|
converges and that fa is well defined.

Next, consider the map ϕa defined from λ[(E ′
M)′] into �1 by ϕa((fn)n) = (fn (an))n, where

λ is the sequence space defined in Lemma 3. Then ϕa is well defined. Moreover, suppose

that (f i)
i∈N

∈ λ[(E ′
M)′] converges to f := (fn)n and (ϕa(f

i))i converges in �1 to (αn)n.

By the continuity of the projections, (f i
n)

i∈N
converges to fn for every n ∈ N and then

(f i
n (an))

i∈N
converges to fn(an) as well. It follows that (fn(an))n = (αn)n showing that

the graph of ϕa is closed and then that ϕa is continuous, since λ[(E ′
M)′] is a Banach space

(Proposition 1). Let K > 0 be so that

∞∑

n=1

|fnan| ≤ KεS,M((fn)n), (fn)n ∈ λ[(E ′
M)′]

and define gn = δn if en ∈ Λ∗
S and gn = 0 otherwise. Then (gn)n ∈ λ[(E ′

M)′]. In view of

Lemma 5, an = 0 whenever en /∈ Λ∗
S. So we have
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|fa(x)| =

∣
∣
∣
∣
∣

∞∑

n=1

an(xn)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

en∈Λ∗
S

an(xn)

∣
∣
∣
∣
∣
∣
≤

∞∑

n=1

|gn(an)| ≤ KεS,M((gn)n) ≤ KεS,M(x).

This shows that fa is continuous on Λ(E). Q.E.D.

We now obtain the promised characterization of continuous linear forms on Λ(E)r.

Theorem 7 The following equality holds algebraically

(Λ(E)r)
′ =

⋃
{Λ∗

S〈E ′
M〉, S ∈ S,M ∈ M}.

Proof: By (6), the map a 
→ fa from
⋃
{Λ∗

S〈E ′
M〉, S ∈ S,M ∈ M} into (Λ (E)r)

′ is well

defined, linear and one to one. It is onto by (6) and the definition of Λ(E)r. Q.E.D.

The following result describes a fundamental base of equicontinuous subsets of (Λ (E)r)
′.

In order to establish it, let us introduce the following notation. For S ∈ S and M ∈ M,

we set

KS,M := {(fn)n ∈ Λ[(E ′
M)′],∀a ∈ M, (fn(an))n ∈ S◦} .

Note that KS,M is nothing but the closed unit ball of λ[(E ′
M)′]. We then have:

Theorem 8 The sets of the form

S〈M〉 =

{

(an)n ∈ Λ∗
S〈E ′

M〉 : ∀(fn)n ∈ KS,M ,
∞∑

n=1

|fn(an)| ≤ 1

}

yield a fundamental system of equicontinuous subsets of (Λ(E)r)
′, S running over S and

M over M.

Proof: Let us prove that S〈M〉 is equicontinuous. If x = (xn)n ∈ Λ (E) satisfies

εS,M (x) ≤ 1, as shown in the proof of (6), (δn)n ∈ KS,M . Moreover, if a = (an)n ∈ S〈M〉,
then

∑∞
n=1 |δn (an)| =

∑∞
n=1 |an (xn)| ≤ 1. So S〈M〉 is equicontinuous.

Conversely, if H ⊂ (Λ(E)r)
′ is equicontinuous, there exists S ∈ S and M ∈ M, such that

∀x = (xn)n ∈ Λ(E)r,∀a = (an)n ∈ H, |〈a, x)〉| =

∣
∣
∣
∣
∣

∞∑

n=1

an (xn)

∣
∣
∣
∣
∣
≤ εS,M (x) .

Let (fn)n ∈ KS,M , then εS,M ((fn)n) ≤ 1. By the remark following the proof of Proposition

2,
∑∞

n=1 |fn (an)| ≤ εS,M ((fn)n) ≤ 1. Hence, H ⊂ S〈M〉. Q.E.D.

Combining Proposition 2 of [11], Theorem 7 and Theorem 8, we get the following

result. At this point, let us recall that Λ is said to verify the AK property if every α ∈ Λ

is the limit of its finite sections.

Corollary 9 If E is a complete locally convex space and Λ satisfies the AK property,

then the dual space of Λ⊗̃εE is given by
⋃{Λ∗

S〈E ′
M〉, S ∈ S,M ∈ M}. Moreover, the sets

of the form S〈M〉 yield a basis of equicontinuous subsets of (Λ⊗̃εE)′.

87



Acknowledgements

This work was done while the second named author was visiting Rabat supported by

AUF. He would like to thank AUF for the support. The authors thank Professor Pedro
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