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Abstract

We first investigate the following quasilinear parabolic equation of Barenblatt

type, 



f(·, ∂tu) − ∆pu − ǫ∆(∂tu) = g in Q = Ω×]0, T [

u = 0 on Γ = ∂Ω,

u(x, 0) = u0(x) in Ω

(Pt)

where Ω is a bounded domain with Lipschitz boundary, denoted by Γ in R
d with

d ≥ 1, 2d
d+2 < p < ∞, ǫ ≥ 0, 0 < T < +∞, u0 ∈ W

1,p
0 (Ω) and f is a Carathéodory

function which satisfies suitable growth conditions and g ∈ L2(Q). We prove the

existence of a weak solution (see definition 1.1) and give some related regularity

results. Next, we analyse further the case p = 2 with ǫ = 0. Precisely, we are

concerned by the study of a Barenblatt problem involving a stochastic perturbation:





f

(
∂t(u −

∫ t

0
hdw)

)
− ∆u = 0 in Q × Θ

u = 0 on ∂Ω,

u(x, 0) = u0(x) in Ω

(St)

where
∫ t
0 hdw denotes the Itô integral of h and f : R → R is an increasing bi-

Lipschitz continuous function. (Θ,F , P ) is the probability space. Under these

conditions, we prove the existence and the uniqueness of the weak solution (see

definition 1.4).
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Introduction

In this paper we first investigate the following quasilinear parabolic problem of the Barenblatt

type : 



f(·, ∂tu) − ∆pu − ǫ∆(∂tu) = g in Q =]0, T [×Ω

u = 0 on Γ = ∂Ω,

u(0, x) = u0(x) in Ω

(Pt)

where Ω is a bounded domain with Lipschitz boundary, denoted by Γ in R
d with d ≥ 1, 2d

d+2 <

p < ∞, ǫ ≥ 0, 0 < T < +∞, u0 ∈ W
1,p
0 (Ω) and f is a Carathéodory function which satisfies

f(x, 0) = 0 and suitable growth assumptions and g ∈ L2(Q). We stress that when ǫ = 0,

f satisfies additionnaly monotonicity assumptions. We look for weak solutions (solutions, for

short) of Problem (Pt), that is, for functions satisfying Definition 1.1 and we discuss the following

issues: uniqueness and regularity of solutions. Next, we focus on the nondegenerate case p = 2

and ǫ = 0. Precisely we are concerned with the following Barenblatt equation involving a

stochastic perturbation:





f

(
∂t(u −

∫ t

0
hdw)

)
− ∆u = 0 in Q × Θ

u = 0 on ∂Ω,

u(0, x) = u0(x) in Ω

(St)

where
∫ t
0 hdw denotes the Itô integral of h and f : R → R is an increasing Lipschitz function.

(Θ,F , P ) is the probability space. We are able to discuss the existence and the uniqueness of

weak solutions even in the case where h depends on u. The notion of weak solutions to (St) is

given in Definition 1.4.

These classes of Barenblatt equations were originally considered by G.I. Barenblatt in

[8]. In S. Kamin-L.A. Peletier-J.L. Vázquez [18], the authors establish the existence of

self-similar solutions of a Barenblatt equation arising in porous media models. The existence of

self-similar solutions for a class of quasilinear degenerate Barenblatt equations related to porous

media problems were further investigated in J. Hulshof-J.L. Vázquez [16] and in N. Igbida

[17]. Barenblatt type problems appear also in a wide variety of situations in Physics, Biology and

Engineering. In particular, in P. Colli-F. Luterotti-G. Schimperna-U. Stefanelli [9] a

pseudo-parabolic Barenblatt equation motivated by an irreversible phase change model is studied

and in M. Ptashnyk [21] the analysis of similar kind of equations is used for reaction-diffusion

with absorption problems in Biochemistry. In the context of constrained stratigraphic problems

in Geology, the study of Barenblatt equations were recently revisited by different authors. In this

regard, we can quote the contributions S.N. Antontsev-G. Gagneux-R. Luce-G. Vallet

[4], [5], [6], [7], G. Vallet [25] and for related problems with stochastic coefficients Adimurthi-

Seam Ngonn-G. Vallet [1]. Finally, in G. Diaz-J.I. Diaz [12] and in K.S. Ha [15] the

existence of solutions to a class of homogeneous quasilinear Barenblatt equations is established

by means of monotone methods for m-accretive operators. In the present work, we study

36



further the class of quasilinear and pseudo-parabolic Barenblatt equations involving a p-Laplace

operator. We stress that we obtain existence results for a larger class of functions f in respect

to the previous works. In particular, we do not require f to be nondecreasing.

This paper is organised as follows. The next section (Section 1) contains some classical

notations used throughout the paper and the statements of our main results on the solvability

of problems (Pt) and (St), Theorems 1.2 and 1.5. The proof of Theorem 1.2 is established in

Section 2 whereas in Section 3, Theorem 1.5 is proved.

1 Main Results

First, we introduce some notation which will be used throughout the paper. We denote by

X = W
1,max(2,p)
0 (Ω) and

ap : W
1,p
0 (Ω) × W

1,p
0 (Ω) → R, (u, v) →

∫

Ω
|∇u|p−2∇u.∇v dx.

the principal eigenvalue of −∆p in Ω is denoted by λ1(p,Ω).

For any N > 0, we set ∆t = T
N and tk = k∆t. Consequently for any sequence (vk)k∈N ⊂

W
1,p
0 (Ω), we define:

v∆t =

N−1∑

k=0

vk+11[tk ,tk+1[ and ṽ∆t =

N−1∑

k=0

[
vk+1 − vk

∆t
(t − tk) + vk

]
1[tk ,tk+1[.

Let E, F be separable Banach spaces with E →֒ F and 1 < p < +∞. We denote Lp(0, T ;E)

the space of E-valued measurable functions u such that t → ‖u(t)‖E belongs to Lp(0, T ). Fur-

thermore,

W 1,p1,p2(0, T ;E;F )
def
= {u ∈ Lp1(0, T ;E)|∂tu (in the sense of distributions) ∈ Lp2(0, T ;F )}

and H1(0, T ;E;F )
def
= W 1,2,2(0, T ;E;F ).

Regarding Problem (Pt), we now describe the assumptions required about f :

(f1) f : (x, t) ∈ Ω × R → R is a Carathéodory function such that f(., 0) = 0;

(f2) ∃ c1 ∈ L2(Ω), c2 ≥ 0 such that |f(x, t)| ≤ c1(x) + c2|t|, x ∈ Ω a.e. and for any t ∈ R;

(f3) Aǫ : L2(Ω) → L2(Ω), u 7→ f(., u) − ǫ∆u is monotone ∗.

If ǫ > 0 we suppose in addition that

(f4) ∃Cǫ < ǫλ1(2,Ω) and C1 ∈ L2(Ω) such that f(x, t)sign(t) ≥ −Cǫ|t| − C1(x), ∀ t ∈ R and

x ∈ Ω a.e.

If ǫ = 0, we assume the following condition:

(f5) ∃C > 0 and C1 ∈ L2(Ω) such that f(x, t)sign(t) ≥ C|t| − C1(x), ∀ t ∈ R and x ∈ Ω a.e.†

∗Remark that t 7→ f(., t) has not to be a nondecreasing function when ǫ > 0.
†Note that (f5) corresponds to (f4) with Cǫ = C0 = −C < 0.
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First, we give the notion of weak solution of (Pt):

Definition 1.1. If ǫ > 0, a weak solution of (Pt) is any u ∈ W 1,p,2(0, T ;W 1,p
0 (Ω),H1

0 (Ω)) such

that u(0, .) = u0 and,

∀v ∈ X,

∫

Ω
f(., ∂tu)vdx + ap(u, v) + ǫa2(∂tu, v) =

∫

Ω
gv dx, t ∈]0, T [ a.e.

If ǫ = 0, a weak solution of (Pt) is any u ∈ W 1,p,2(0, T ;W 1,p
0 (Ω), L2(Ω)) such that u(0, .) = u0

and,

∀v ∈ X,

∫

Ω
f(., ∂tu)vdx + ap(u, v) =

∫

Ω
gv dx, t ∈]0, T [ a.e.

Our main existence result is stated in the following theorem:

Theorem 1.2. Assume that u0 ∈ W
1,p
0 (Ω), then there exists a weak solution u in the sense of

the definition (1.1). Moreover, u ∈ C([0, T ],W 1,p
0 (Ω)) and satifies the energy equality: for any

t > 0
∫

]0,t[×Ω
[f(∂tu)∂tu + ǫ|∇∂tu|2] dxds +

1

p
‖u(t)‖p

W 1,p
0 (Ω)

=

∫

]0,t[×Ω
g∂tudxds +

1

p
‖u0‖p

W 1,p
0 (Ω)

.

Remark 1.3. When ǫ > 0 and u0 ∈ X one has that u ∈ C([0, T ],X).

Next, we are interested in the case of a stochastic perturbation of the Barenblatt equation

in the Hilbert case: f(∂tu) − ∆u = 0. This equation is equivalent to ∂tu = f−1∆u and then,

the stochastic perturbation would be du = f−1∆udt + hdw. Then, following J.U. Kim [19] ,

B. Ewaldé, M. Petcu and R. Temam [14], G. Vallet [26] and G. Vallet, P. Wittbold

[27], the stochastic version of the equation can be interpreted in the following sense: ∂t[u −
∫ t
0 hdw(s)] ∈ f−1∆u, where

∫ t
0 hdw(s) denotes the Itô integration of h.

So, in Section 3, we consider Problem (St). (Θ,F , P ) is a probability space and w = {wt,Ft, 0 6

t 6 T} is a standard adapted one dimensional continuous Brownian motion defined on (Θ,F , P )

such that w0 = 0.

Regarding Problem (St), we require the following conditions on f :

(f6) f is an increasing function such that f and f−1 are Lipschitz-continuous and f(0) = 0.

Concerning the data u0 and h, we assume that

(H) u0 ∈ H1
0 (Ω), h ∈ N 2

w

(
0, T,H1

0 (Ω)
)

the space of predictable L2(]0, T [×Θ;H1
0 (Ω)) functions

(cf. [22] p.28).

We define the notion of weak solution to (St) as follows:

Definition 1.4. Any function u ∈ N 2
w

(
0, T,H1

0 (Ω)
)

such that ∂t[u −
∫ t
0 hdw] ∈ L2(Θ × Q) is a

solution to the stochastic problem (St) if u(0, .) = u0, and if for t almost everywhere in (0, T )

and any test function v of H1
0 (Ω) the following variational formulation holds:

∫

D
f

(
∂t[u −

∫ t

0
hdw]

)
vdx + a2(u, v) = 0.
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We now state the main result about the solvability of (St):

Theorem 1.5. Under the assumptions (f6) and (H), there exists a unique solution u in the

sense of the definition 1.4 to (St) .

Moreover, u is an H1
0 (Ω)-valued process adapted to the filtration (Ft)t.

We derive an application to the multiplicative case in Theorem 3.2.

2 Proof of Theroem 1.2

In this section, we prove Theorem 1.2:

Proof of Theorem 1.2. We prove first the existence of a weak solution, when u0 ∈ X if ǫ > 0

and in W
1,p
0 (Ω) else, by a time-discretization argument; then, in the general case.

Consider u0 a function in X (resp. W
1,p
0 (Ω)) if ǫ > 0 (resp. ǫ = 0) and set B

def
= B∆t,u0,ǫ the

operator

B : X → X ′, v 7→ f(.,
v − u0

∆t
) − ∆pv − ǫ∆

(
v − u0

∆t

)
.

From the variational structure of B, B is associated to the energy:

J : X → R, v 7→ ∆t

∫

Ω

∫ v−u0

∆t

0
f(., s)dsdx +

1

p

∫

Ω
|∇v|pdx + ∆t

ǫ

2

∫

Ω
|∇v − u0

∆t
|2dx.

Then, we have the following result :

Lemma 2.1. For any g ∈ L2(Ω) and for any ǫ ≥ 0, there exists a unique w ∈ X such that

Bw = g in the sense: w ∈ X and,

∀v ∈ X,

∫

Ω
f(.,

w − u0

∆t
)vdx + ap(w, v) + ǫa2(

w − u0

∆t
, v) =

∫

Ω
gv dx.

Proof. From the assumptions (f1) and (f2), J is Gâteaux-differentiable on the whole space X.

Thanks to (f3) together with the strict monotonicity of p-laplace operator, J is strictly convex

and from (f4) ((f5), resp.), J is coercive (i.e. J(u) → +∞ as ‖u‖X → +∞). Again from (f4)

((f5), resp.) and Fatou’s Lemma, J is weakly lower semi-continuous in X. Therefore, there

exists a unique global minimizer to J , we denote by w and which satisfied J ′(w)(v) = 0 for any

v ∈ X.

Then, iterating the application of Lemma 2.1, it is immediate to derive the following result:

Lemma 2.2. Consider (gn) ⊂ L2(Ω). There exists a unique sequence (un) ∈ X such that

u0 = u0 and

∀v ∈ X,

∫

Ω
f(.,

un+1 − un

∆t
)vdx + ap(u

n+1, v) + ǫa2(
un+1 − un

∆t
, v) =

∫

Ω
gnv dx. (2.1)
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Setting v = un+1−un

∆t as a test function in (2.1), convexity arguments, assumptions (f4) (resp.

(f5) with C0 = −C < 0) and Young’s inequality (see P. Lindqvist [20] in the annexe) yield

−Cǫ||
un+1 − un

∆t
||2L2(Ω) +

1

p∆t

[
||∇un+1||pLp(Ω) − ||∇un||pLp(Ω) + c(p)||∇(un+1 − un)||pLp(Ω)

]

+ǫ||∇un+1 − un

∆t
||2L2(Ω) ≤ C(b2)||gn||2L2(Ω) +

b2

2
||u

n+1 − un

∆t
||2L2(Ω) + b1,

where b1 > 0 is large enough (depending only on b2 and ‖C1‖L2(Ω)) and c(p) > 0 if p ≥ 2, and 0

otherwise.

If ǫ > 0, there exists δ > 0 such that λ1(2,Ω)ǫ − Cǫ ≥ δǫ and one claims b2 = δǫ. Else, if ǫ = 0,

one claims b2 = −C0 = C. Then, setting such b2 in the above expression, we obtain

Lemma 2.3.

If ǫ > 0 : ∆t

k=n∑

k=0

[
c(p)||∇uk+1 − uk

p
√

∆t
||pLp(Ω) + ǫ

δ

2λ1(2,Ω)
||∇uk+1 − uk

∆t
||2L2(Ω)

]
+

1

p
||∇un+1||pLp

≤ ∆tC(b2)

k=n∑

k=0

||gn||2L2(Ω) +
1

p
||∇u0||pLp + Tb1,

If ǫ = 0 : ∆t

k=n∑

k=0

[
c(p)||∇uk+1 − uk

p
√

∆t
||pLp(Ω) +

C

2
||u

k+1 − uk

∆t
||2L2(Ω)

]
+

1

p
||∇un+1||pLp

≤ ∆tC(b2)

k=n∑

k=0

||gn||2L2(Ω) +
1

p
||∇u0||pLp + Tb1.

Setting gk = 1
∆t

∫ tk+1

tk
g(t, ·)dt, we derive from the above lemma the following result:

Lemma 2.4. There exists a positive constant C = C(||g||L2(Q), ||∇u0||Lp , f), independent of ǫ,

such that

1. If ǫ > 0:
√

ǫ||∂tũ
∆t||L2(0,T,H1

0 (Ω)) ≤ C, if ǫ = 0: ||∂tũ
∆t||L2(Q) ≤ C.

2. ||u∆t||L∞(0,T ;W 1,p
0 (Ω)) + ||ũ∆t||L∞(0,T ;W 1,p

0 (Ω)) ≤ C.

3.
√

ǫ|| eu∆t−u∆t

∆t ||L2(0,T ;H1
0 (Ω)) +

√
c(p)|| eu∆t−u∆t

p
√

∆t
||

Lp(0,T ;W 1,p
0 (Ω))

≤ C.

In particular, if ǫ > 0, ||ũ∆t − u∆t||Lp(0,T ;X) goes to 0 as ∆t → 0+.

4. (f(., ∂tũ
∆t)) and ( eu∆t−u∆t

∆t ) are bounded in L2(Q), independently of ∆t.

To pass to the limit, we distinguish the following two cases : the case ǫ > 0 and the case

ǫ = 0.

Let us start with the case ǫ > 0.

In particular, u0 ∈ X and up to a subsequence, denoted in the same way:

(i) there exists uǫ in L∞(0, T,W
1,p
0 (Ω))∩H1(0, T ;H1

0 (Ω)) such that: ∂tũ
∆t converges weakly

to ∂tuǫ in L2(0, T,H1
0 (Ω)), ũ∆t and u∆t converge *-weakly to uǫ in L∞(0, T,W

1,p
0 (Ω)),

ũ∆t(t) converges weakly to uǫ(t) in X for any t > 0.
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(ii) Note that, since u0 ∈ X, one gets that uǫ ∈ L∞(0, T,X) and uǫ ∈ C0,1/2([0, T ],H1
0 (Ω)) ∩

Cw([0, T ],X).

(iii) ũ∆t − u∆t converges to 0 in Lp(0, T,W
1,p
0 (Ω)) and L2(0, T,H1

0 (Ω)) as ∆t → 0+.

(iv) there exists χ in L2(Q), weak limit of f(., ∂tũ
∆t) as ∆t → 0+.

For any v ∈ X,
∫

Ω
f(., ∂tũ

∆t)vdx + ap(ũ
∆t, v) + ǫa2(∂tũ

∆t, v) =

∫

Ω
g∆tv dx + ap(ũ

∆t, v) − ap(u
∆t, v).

Thus, for v = ũ∆t − uǫ and any positive t, we get

∫ t

0

∫

Ω
f(., ∂tũ

∆t)(ũ∆t − uǫ)dxds +

∫ t

0
ap(ũ

∆t, ũ∆t − uǫ)ds + ǫ

∫ t

0
a2(∂tũ

∆t, ũ∆t − uǫ)ds

=

∫ t

0

∫

Ω
g∆t(ũ∆t − uǫ) dxds +

∫ t

0
ap(ũ

∆t, ũ∆t − uǫ)ds −
∫ t

0
ap(u

∆t, ũ∆t − uǫ)ds.

ũ∆t is bounded in L∞(0, T,W
1,p
0 (Ω)) and ∂tũ

∆t is bounded in L2(0, T,H1
0 (Ω)) with W

1,p
0 (Ω) →֒

→ L2(Ω) since p > 2d
d+1 . Then, the theorem of Simon (Cf. Th. 4.1 in the Annexes) asserts that

ũ∆t − uǫ converges to 0 in C0([0, T ], L2(Ω)) as ∆t → 0+

∫ t

0

∫

Ω
f(., ∂tũ

∆t)(ũ∆t − uǫ)dxds → 0 and

∫ t

0

∫

Ω
g∆t(ũ∆t − uǫ)dxds → 0. (2.2)

Then, setting q = p
p−1 and from J. Simon [23] (2.11), we obtain that

∫ t

0
ap(ũ

∆t, ũ∆t − uǫ)ds −
∫ t

0
ap(u

∆t, ũ∆t − uǫ)ds

=

∫ t

0

∫

Ω

[
|∇ũ∆t|p−2∇ũ∆t − |∇u∆t|p−2∇u∆t

]
∇(ũ∆t − uǫ)ds

≤ C

∫ t

0
||∇ũ∆t|p−2∇ũ∆t − |∇u∆t|p−2∇u∆t||Lq(Ω)||ũ∆t − uǫ||W 1,p

0
(Ω)ds

≤ C

∫ t

0
||∇ũ∆t|p−2∇ũ∆t − |∇u∆t|p−2∇u∆t||Lq(Ω)ds

≤ C





∫ t
0 max(||ũ∆t||p−2

W 1,p
0 (Ω)

, ||u∆t||p−2

W 1,p
0 (Ω)

)||ũ∆t − u∆t||
W 1,p

0 (Ω)
ds if p ≥ 2

∫ t
0 ||ũ∆t − u∆t||p−1

W 1,p
0 (Ω)

ds if p ≤ 2

≤ C||ũ∆t − u∆t||
Lp(0,T,W 1,p

0 (Ω))
→ 0 thanks to (3) in lemma 2.4.

Moreover,

∫ t

0
a2(∂tũ

∆t, ũ∆t − uǫ)ds =

∫ t

0
a2(∂tũ

∆t − ∂tuǫ, ũ
∆t − uǫ)ds +

∫ t

0
a2(∂tuǫ, ũ

∆t − uǫ)ds

=
1

2
a2(ũ

∆t − uǫ, ũ
∆t − uǫ) +

∫ t

0
a2(∂tuǫ, ũ

∆t − uǫ)ds,

where
∫ t
0 a2(∂tuǫ, ũ

∆t − uǫ)ds converges to 0 as ∆t → 0+. Therefore, we obtain that

lim sup
∆t→0

∫ t

0
ap(ũ

∆t, ũ∆t − uǫ)ds ≤ 0,
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and from the S+ property satisfied by −∆p, ũ∆t and consequently u∆t, converge both to uǫ in

Lp(0, T,W
1,p
0 (Ω)) (see for instance Dinca-Jebelean-Mawhin [13] Th.10) .

Remark that, for any t ∈]tn, tn+1[
∫

Ω
f(., ∂tũ

∆t)∂tũ
∆t dx +

1

p∆t
||un+1||p

W 1,p
0 (Ω)

+ ǫ||∂tũ
∆t||2H1

0 (Ω) ≤
∫

Ω
g∆t∂tũ

∆t dx +
1

p∆t
||un||p

W 1,p
0 (Ω)

.

Then, summing over n, we get

∫ T

0
(Aǫ∂tũ

∆t, ∂tũ
∆t) dt +

1

p
||ũ∆t(T )||p

W 1,p
0 (Ω)

≤
∫

Q
g∆t∂tũ

∆t dx +
1

p
||u0||p

W 1,p
0 (Ω)

,

and passing to the limit as ∆t → 0+,

lim sup
∆t→0+

∫ T

0
(Aǫ∂tũ

∆t, ∂tũ
∆t) dt +

1

p
||uǫ(T )||p

W 1,p
0 (Ω)

≤
∫

Q
g∂tuǫ dx +

1

p
||u0||p

W 1,p
0 (Ω)

.

Moreover, at the limit, one has, for any v ∈ X,
∫

Ω
χv dx + ap(uǫ, v) + ǫa2(∂tuǫ, v) =

∫

Ω
gv dx.

For any δ > 0, denote by vδ the solution of the following mean value problem: δv′δ + vδ = uǫ

when t ≥ s and vδ(s) = uǫ(s).

Since uǫ ∈ H1(s, T,H1
0 (Ω)) ∩ Cw([s, T ],W 1,p

0 (Ω)), as δ goes to 0+, vδ converges weakly to uǫ in

H1(s, T ;H1
0 (Ω)) and vδ(t) converges weakly to uǫ(t) in W

1,p
0 (Ω) for any t ≥ 0.

Then, using the test-function uǫ − vδ and the monotonicity of ap yield
∫

Ω
χv′δ dx +

1

p

d

dt
||vδ||pW 1,p

0 (Ω)
+ ǫa2(∂tuǫ, v

′
δ) ≤

∫

Ω
gv′δ dx.

Integrating in time and passing to the limit as δ → 0+, we get

∫ t

s

∫

Ω
χ∂tuǫ dxdσ +

1

p
lim sup
δ→0+

||vδ(t)||pW 1,p
0 (Ω)

+ ǫ

∫ t

s
a2(∂tuǫ, ∂tuǫ)dσ

≤
∫ t

s

∫

Ω
g∂tuǫ dxdσ +

1

p
||uǫ(s)||p

W 1,p
0 (Ω)

,

and, thanks to the weak convergence,

∫ t

s

∫

Ω
χ∂tuǫ dxdσ +

1

p
||uǫ(t)||p

W 1,p
0 (Ω)

+ ǫ

∫ t

s
a2(∂tuǫ, ∂tuǫ)dσ ≤

∫ t

s

∫

Ω
g∂tuǫ dxdσ +

1

p
||uǫ(s)||p

W 1,p
0 (Ω)

.(2.3)

Thus, we get that lim sup
t→s+

||uǫ(t)||W 1,p
0 (Ω) ≤ ||uǫ(s)||W 1,p

0 (Ω) and that t 7→ uǫ(t) is right-continuous

in W
1,p
0 (Ω) since it is Cw([0, T ],W 1,p

0 (Ω)).

Then, for any h and t such that 0 ≤ t < t + h ≤ T ,
∫

Ω
χ

uǫ(t+h)−uǫ(t)
h dx + ap(uǫ(t),

uǫ(t+h)−uǫ(t)
h ) + ǫa2(∂tuǫ(t),

uǫ(t+h)−uǫ(t)
h ) =

∫

Ω
g(t)uǫ(t+h)−uǫ(t)

h dx,

and, integrating in time from 0 to t, we get

∫ t

0

∫

Ω
g(s)uǫ(s+h)−uǫ(s)

h dxds ≤
∫ t

0
[

∫

Ω
χ

uǫ(s+h)−uǫ(s)
h dx + ǫa2(∂tuǫ(s),

uǫ(s+h)−uǫ(s)
h )]ds

+
1

hp

[∫ t+h

t
||uǫ(s)||p

W 1,p
0 (Ω)

ds −
∫ h

0
||uǫ(s)||p

W 1,p
0 (Ω)

ds

]
.
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uǫ(.+h)−uǫ

h converges to ∂tuǫ in L2(0, T,H1
0 (Ω)) and uǫ is right-continuous in W

1,p
0 (Ω), then one

gets that
∫

]0,t[×Ω
g∂tuǫ dxdt ≤

∫

]0,t[×Ω
χ∂tuǫ + ǫ|∇∂tuǫ(t)|2 dxdt +

1

p
[||uǫ(t)||p

W 1,p
0 (Ω)

− ||u0||p
W 1,p

0 (Ω)
]. (2.4)

Since t and T are arbitrary, we can assume that it is true for t = T and

lim sup
∆t→0+

∫ T

0
(Aǫ∂tũ

∆t, ∂tũ
∆t) dt ≤

∫ T

0
[

∫

Ω
χ∂tuǫ dx + ǫa2(∂tuǫ, ∂tuǫ)]dt.

Then, Aǫ∂tuǫ = χ − ǫ∆∂tuǫ, i.e. f(., ∂tuǫ) = χ thanks to a monotonicity argument from which

it follows that uǫ is a weak solution to (Pt).

Then, (2.3) with s = 0 and (2.4) yield the energy equality and the continuity of t 7→ ‖uǫ‖W 1,p
0

(Ω).

Since uǫ ∈ Cw([0, T ],W 1,p
0 (Ω)), one gets that uǫ ∈ C([0, T ],W 1,p

0 (Ω)). This achieves the proof

in case where ǫ > 0 and u0 ∈ X, i.e. the general case for ǫ > 0 when p ≥ 2.

Let us now consider the case : 2d
d+2 < p < 2, ǫ > 0 and u0 ∈ W

1,p
0 (Ω).

Denote by (un
0 ) ⊂ X a sequence that converges to u0 in W

1,p
0 (Ω). Thanks to Theorem 1.2, there

exists a sequence (un) ⊂ C([0, T ],X), of solutions of (Pt) in the sense of Definition 1.1, for the

initial condition un
0 .

Since p < 2, ∂tu
n is a test-function and one gets that (un) is bounded in W 1,∞,2(0, T,W

1,p
0 (Ω),H1

0 (Ω))

and (f(., ∂tu
n) is bounded in L2(Q). Denote by u a limit-point of (un) for the weak (weak-*)

convergence in W 1,∞,2(0, T,W
1,p
0 (Ω),H1

0 (Ω)), vn(., t) = un
0 +

∫ t
0 ∂tu(., s)ds and χ a limit-point

of (f(., ∂tu
n) for the weak convergence in L2(Q).

By construction, vn ∈ H1(0, T,H1
0 (Ω)) and ‖u − vn‖

L∞(0,T,W 1,p
0 (Ω))

= ‖u0 − un
0‖W 1,p

0 (Ω)
goes to

0 as n goes to +∞. Moreover, ‖un − vn‖L∞(0,T,H1
0 (Ω)) ≤

∫ T
0 ‖∂t(u

n − u)‖H1
0 (Ω)dt. Thus, un − vn

converges weakly to 0 in L2(0, T,H1
0 (Ω))

Thus, taking v = un − vn as a test-function, and for any t > 0, we get

∫ t

0
[

∫

Ω
f(., ∂tu

n)(un − vn)dxds + ap(u
n, un − vn) + ǫa2(∂tu

n, un − vn)]ds =

∫ t

0

∫

Ω
g(un − vn) dxds.

Ascoli’s theorem asserts that un − u converges to 0 in C([0, T ], L2(Ω)). Thus un − vn converges

to 0 in L∞(0, T, L2(Ω)) and

∫ t

0

∫

Ω
f(., ∂tu

n)(un − vn)dxds → 0 and

∫ t

0

∫

Ω
g(un − vn)dxds → 0. (2.5)

Moreover,

∫ t

0
a2(∂tu

n, un − vn)ds =

∫ t

0
a2(∂t(u

n − vn), un − vn)ds +

∫ t

0
a2(∂tv

n, un − vn)ds

=
1

2
a2(u

n − vn, un − vn) +

∫ t

0
a2(∂tu, un − vn)ds,

and lim sup
n→∞

∫ t

0
ap(u

n, un − vn)ds ≤ 0.

Thus, lim supn→∞
∫ t
0 ap(u

n, un − u)ds ≤ 0 and un converges to u in Lp(0, T,W
1,p
0 (Ω)).
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Since,

∫

Q
f(., ∂tu

n)∂tu
n dxdt +

1

p
||un(T )||p

W 1,p
0 (Ω)

+ ǫ

∫ T

0
||∂tu

n||2H1
0
(Ω)ds =

∫

Q
g∂tu

n dxdt +
1

p
||un

0 ||pW 1,p
0 (Ω)

,

then,

∫ T

0
(Aǫ∂tu

n, ∂tu
n) dt +

1

p
||un(T )||p

W 1,p
0 (Ω)

≤
∫

Q
g∂tu

n dx +
1

p
||un

0 ||pW 1,p
0 (Ω)

,

and passing to the limit as n → ∞,

lim sup
n→∞

∫ T

0
(Aǫ∂tu

n, ∂tu
n) dt +

1

p
||u(T )||p

W 1,p
0

(Ω)
≤

∫

Q
g∂tudx +

1

p
||u0||pW 1,p

0
(Ω)

.

Moreover, at the limit, one has, for any v ∈ H1
0 (Ω),

∫

Ω
χv dx + ap(u, v) + ǫa2(∂tu, v) =

∫

Ω
gv dx.

Set v = ∂tu
n above. Since, ∂tu

n converges weakly to ∂tu in L2(0, T,H1
0 (Ω)), one gets that

∫

Ω
χ∂tudx + ap(u, ∂tu) + ǫa2(∂tu, ∂tu) =

∫

Ω
g∂tudx.

Integrating in time‡, we get

∫

Q
χ∂tudxdσ +

1

p
||u(T )||p

W 1,p
0

(Ω)
+ ǫ

∫ T

0
a2(∂tu, ∂tu)dσ =

∫

Q
g∂tudxdσ +

1

p
||u0||pW 1,p

0
(Ω)

. (2.6)

Thus,

lim sup
∆t→0+

∫ T

0
(Aǫ∂tũ

∆t, ∂tũ
∆t) dt ≤

∫ T

0
[

∫

Ω
χ∂tudx + ǫa2(∂tu, ∂tu)]dt,

and achieves the proof in case where ǫ > 0 since u ∈ W 1,p,2(0, T,W
1,p
0 (Ω),H1

0 (Ω)) yields the

regularity and the energy property.

Let us now consider the case ǫ = 0. There, u0 is in W
1,p
0 (Ω) and using similar arguments as

in the previous case, we get

(ibis) there exists u in L∞(0, T,W
1,p
0 (Ω)) ∩ H1(0, T ;L2(Ω)) such that: ∂tũ

∆t converges weakly

to ∂tu in L2(0, T, L2(Ω)), ũ∆t and u∆t converge *-weakly to u in L∞(0, T,W
1,p
0 (Ω)), ũ∆t(t)

converges weakly to u(t) in W
1,p
0 (Ω) for any t.

(iibis) ũ∆t − u∆t converges to 0 in L2(Q).

(iiibis) there exists χ in L2(Q), weak limit in the same space of f(., ∂tũ
∆t).

Multiplying the equation by v = u∆t − u gives, for any positive t,

∫ t

0

∫

Ω
f(., ∂tũ

∆t)(u∆t − u)dxds +

∫ t

0
ap(u

∆t, u∆t − u)ds =

∫ t

0

∫

Ω
g∆t(u∆t − u) dxds.

‡This is possible since u ∈ W 1,p(0, T, W
1,p

0
(Ω)).
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ũ∆t is bounded in L∞(0, T,W
1,p
0 (Ω)), ∂tũ

∆t bounded in L2(0, T, L2(Ω)) and W
1,p
0 (Ω) →֒→

L2(Ω) (p > 2d
d+2 ), then Simon’s theorem (Cf. Th. 4.1 in the Annexes) implies that ũ∆t − u

converges to 0 in C0([0, T ], L2(Ω)).

Then, since ũ∆t − u∆t converges to 0 in L2(Q),

∫ t

0

∫

Ω
f(., ∂tũ

∆t)(u∆t − u)dxds → 0 and

∫ t

0

∫

Ω
g∆t(u∆t − u)dxds → 0. (2.7)

Therefore, one gets that

lim sup
∆t→0

∫ t

0
ap(u

∆t, u∆t − u)ds ≤ 0,

and u∆t converges to u in Lp(0, T,W
1,p
0 (Ω)).

Following the proof of the previous case when ǫ > 0, we have that

∫

Q
f(., ∂tũ

∆t)∂tũ
∆t dxdt +

1

p
||ũ∆t(T )||p

W 1,p
0 (Ω)

≤
∫

Q
g∆∂tũ

∆t dx +
1

p
||u0||p

W 1,p
0 (Ω)

,

and at the limit,

lim sup
∆t

∫

Q
f(., ∂tũ

∆t)∂tũ
∆t dxdt +

1

p
||u(T )||p

W 1,p
0

(Ω
≤

∫

Q
g∂tudx +

1

p
||u0||p

W 1,p
0

(Ω)
,

Moreover, at the limit, one has, for any v ∈ X,

∫

Ω
χv dx + ap(u, v) =

∫

Ω
gv dx.

For any δ > 0, denote by vδ the solution of the mean value problem : δv′δ + vδ = u when

t ≥ s and vδ(s) = u(s).

Since u ∈ H1(s, T, L2(Ω))∩Cw([s, T ],W 1,p
0 (Ω)), as δ → 0+, vδ converges to u in H1(s, T ;L2(Ω))

and vδ(t) converges weakly to u(t) in W
1,p
0 (Ω) for any t > 0.

Then, the test-function u − vδ and the monotonicity of ap yield
∫
Ω χv′δ dx + 1

p
d
dt ||vδ ||pW 1,p

0 (Ω)
=

∫
Ω gv′δ dx. Then, as above, one can prove that lim sup

t→s+

||u(t)||W 1,p(Ω) ≤ ||u(s)||
W 1,p

0 (Ω)
and that u

is right-continuous in W
1,p
0 (Ω).

Then, similarly as in the case ǫ > 0, one has that

∫

Q
g∂tudxdt ≤

∫

Q
χ∂tu +

1

p
[||u(T )||p

W 1,p
0 (Ω)

− ||u0||p
W 1,p

0 (Ω)
].

Therefore, lim sup∆t

∫
Q f(., ∂tũ

∆t)∂tũ
∆t dxdt ≤

∫
Q χ∂tuǫ dxdt and f(., ∂tuǫ) = χ since, when

ǫ = 0, f is nondecreasing.

Finally, we get in this case the energy equality and the continuity of u in W
1,p
0 (Ω) as in the

previous case. The proof of Theorem 1.2 is now complete
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3 Proof of Theorem 1.5

We first assume that h ∈ N 2
w

(
0, T,H1

0 (Ω) ∩ H2(Ω)
)
. Then, [22]-Lemma 2.4.1 p. 35, yields

∆

∫ t

0
hdw(s) =

∫ t

0
∆hdw(s) a.s. in Θ as an element of N 2

w

(
0, T, L2(Ω)

)
.

Hence, the stochastic perturbation of the Barenblatt equation would be: U(0, .) = u0 and

f (∂tU) − ∆U =

∫ t

0
∆hdw(s) = g where U = u −

∫ t

0
hdw(s). (3.1)

Remarking that U is the solution to ∂tU − ∆U = g + ∂tU − f (∂tU) ∈ L2(Q) with u0 ∈ H1
0 (Ω),

thanks to the regularity of the solution of the heat equation (Cf. lemma 4.2), we get that U is

unique and that it is an element of H1(Q) ∩ C([0, T ],H1
0 (Ω)). Moreover, using (4.1), if U and

Û are the corresponding solutions to g and ĝ with the same initial condition, for any t ∈]0, T [

one has that

∫

]0,t[×Ω
[f(∂tU) − f(∂tÛ)]∂t[U − Û ] dxds +

1

2
‖U − Û‖2

H1
0 (Ω)(t) ≤

∫

]0,t[×Ω
[g − ĝ]∂t[U − Û ] dxds.(3.2)

Since f is a bi-Lipschitz continuous function, the application Ψ : g ∈ L2(0, T, L2(Ω)) 7→ U(t) ∈
H1

0 (Ω) is Lipschitz continuous.

Thus, since g =
∫ t
0 ∆hdw(s) is Ft-measurable, we get that U(t) is Ft-measurable, i.e. U is

adapted to the filtration. Finally, since a.s. U ∈ C([0, T ],H1
0 (Ω)), it is predictible and U ∈

N 2
w

(
0, T,H1

0 (Ω)
)

(See G. Da Prato, J. Zaczyk [10] Prop. 3.6 (i) p. 76 for adapted processes

in Cw([0, T ],H1
0 (Ω)))

We conclude the proof in the case where h ∈ N 2
w

(
0, T,H1

0 (Ω) ∩ H2(Ω)
)

by remarking that it is

the same for u = U +
∫ t
0 hdw(s).

Remark 3.1. Since
∫ t
0 ∆hdw is a square integrable continuous martingale ([10] Th. 4.12 p. 101),

we get that ([10] Th. 3.8 (ii) p. 78)

E

[
supt∈(0,T ) ‖

∫ t
0 ∆hdw‖2

L2(Ω)

]
≤ 4E‖

∫ T
0 ∆hdw‖2

L2(Ω).

Moreover, almost surely U ∈ C([0, T ],H1
0 (Ω)) and, thanks to (4.1) applied to Problem ∂tU −

∆U = g − f(∂tU) + ∂tU , we get that ‖U(t)‖2
H1

0 (Ω)
≤ ‖u0‖2

H1
0 (Ω)

+ c
∫
Q |

∫ t
0 ∆hdw|2dxdt ≤ c +

c supt∈(0,T ) ‖
∫ t
0 ∆hdw‖2

L2(Ω).

Then, Lebesgue theorem asserts that t 7→ E‖U(t)‖2
H1

0 (Ω)
is a continuous function.

Before dealing with the general case, we prove the following stability result :

Proposition 3.1. Consider h and ĥ in N 2
w(H1

0 (Ω) ∩ H2(Ω)), u0, û0 ∈ H1
0 (Ω) and u, û the

associated solutions with U = u −
∫ t
0 hdw, Û = û −

∫ t
0 ĥ dw. Then, for any t,

E
∫
]0,t[×Ω(∂t(U − Û))2dxds + 1

2E||∇(u − û)(t)||2 ≤

≤ 1

2
E||∇(u0 − û0)||2 + E

∫

]0,t[×Ω
|∇(h − ĥ)|2dxds.

(3.3)
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Proof. For all v in H1
0 (Ω),

∫

D
[f(∂tU) − f(∂tÛ)]vdx + a(u − û, v) = 0.

Then, by taking the test function v = (U−Û)(t)−(U−Û )(t−∆t)
∆t , one gets

∫

Ω
[f(∂tU) − f(∂tÛ)]

(U − Û)(t) − (U − Û)(t − ∆t)

∆t
dx − 1

∆t
a(u(t) − û(t),

∫ t

t−∆t
(h − ĥ)dw)

+
1

∆t
a(u(t) − û(t), u(t) − û(t) − u(t − ∆t) − û(t − δt)) = 0.

Then, by noticing that

a(u − û, u − û − (u − û)(t − ∆t))

=
1

2∆t

[
‖∇(u − û)‖2 − ‖∇(u − û)(t − ∆t)‖2 + ‖∇ [(u − û) − (u − û)(t − ∆t)] ‖2

]
,

we obtain

0 =

∫

Ω
[f(∂tU) − f(∂tÛ)]

(U − Û)(t) − (U − Û)(t − ∆t)

∆t
dx

+
1

2∆t

[
||∇(u − û)(t)||2 − ||∇(u − û)(t − ∆t)||2 + ||∇[(u − û)(t) − (u − û)(t − ∆t)]||2

]

− 1

∆t
a

(
(u − û)(t) − (u − û)(t − ∆t),

∫ t

t−∆t
(h − ĥ)dw

)

− 1

∆t
a

(
(u − û)(t − ∆t),

∫ t

t−∆t
(h − ĥ)dw

)
.

And,

0 =

∫

Ω
[f(∂tU) − f(∂tÛ)]

(U − Û)(t) − (U − Û)(t − ∆t)

∆t
dx

+
1

2∆t

[
||∇(u − û)(t)||2 − ||∇(u − û)(t − ∆t)||2

]

1

4∆t

[
||∇[(u − û)(t) − (u − û)(t − ∆t)]||2 − 4||∇

∫ t

t−∆t
(h − ĥ)dw||2

+||∇[(u − û)(t) − (u − û)(t − ∆t) − 2

∫ t

t−∆t
(h − ĥ)dw]||2

]

− 1

∆t
a

(
(u − û)(t − ∆t),

∫ t

t−∆t
(h − ĥ)dw

)

Then, by taking the expectation and the integral from ∆t to T , and using the properties of the

brownian motion, one gets

∫ T

∆t
E

∫

Ω
[f(∂tU) − f(∂tÛ)]

(U − Û)(t) − (U − Û)(t − ∆t)

∆t
dxdt

+
1

2∆t

∫ T

∆t
E

[
||∇(u − û)(t)||2 − ||∇(u − û)(t − ∆t)||2

]
dt

≤
∫ T

∆t
E

1

∆t
||∇

∫ t

t−∆t
(h − ĥ)dw||2dt =

∫ T

∆t
E

1

∆t

∫ t

t−∆t
||∇(h − ĥ)||2dsdt.

i.e.

E

∫ T

∆t

∫

Ω
[f(∂tU) − f(∂tÛ)]

(U − Û)(t) − (U − Û)(t − ∆t)

∆t
dxdt +

1

2∆t
E

∫ T

T−∆t
||∇(u − û)(t)||2dt

≤ 1

2∆t
E

∫ ∆t

0
||∇(u − û)(t)||2dt +

1

∆t
E

∫ T

∆t

∫ t

t−∆t
||∇(h − ĥ)||2dsdt.
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And, by passing to the limit on ∆t,

E

∫

Q
[f(∂tU) − f(∂tÛ)]∂t(U − Û)dxdt +

1

2
E||∇(u − û)(T )||2 ≤

≤ 1

2
||∇(u0 − û0)||2 + E

∫

Q
|∇(h − ĥ)|2dxdt.

Since f is bi-Lipschitz and T is arbitrary, (3.3) holds and the proof of Proposition 3.1 is now

complete.

Now we prove Theorem 1.5 in the case where h ∈ N 2
w

(
0, T,H1

0 (Ω)
)
. Let us prove first

the uniqueness of the solution: denote by u and û two possible solutions, for the same initial

condition u0 and the same right-hand side term h. Then, one has, for any v ∈ H1
0 (Ω) and a.s.,

that
∫

Q
[f(∂tU) − f(∂tÛ)]v + ∇[u − û]∇v dxdt = 0, i.e.

∫

Q
[f(∂tU) − f(∂tÛ)]v + ∇[U − Û ]∇v dxdt = 0.

This means that W := U − Û is the solution of the heat equation

∂tW − ∆W = ∂t(U − Û) − f(∂tU) + f(∂tÛ) ∈ L2(Q), W (0, .). = 0.

Thanks to (4.1) and to the monotonicity of f , the uniqueness of the solution follows. Now we

show the existence of a solution: let us denote by (hn)n ⊂ N 2
w

(
0, T,H1

0 (Ω) ∩ H2(Ω)
)

a sequence

that converges to h in N 2
w

(
0, T,H1

0 (Ω)
)
. From the first step of the proof, there exists (un) a

sequence of solution of our problem in the sense of the definition 1.4.

Since (hn)n is a Cauchy sequence in N 2
w

(
0, T,H1

0 (Ω)
)
, thanks to (3.3), (un) is a Cauchy sequence

in N 2
w

(
0, T,H1

0 (Ω)
)

as well as (∂t[un −
∫ t
0 hndw]) in L2(Ω × Q)).

Moreover, for any t, (un(t)) is a Cauchy sequence in L2(Θ,H1
0 (Ω)).

Thus, the limit u is a solution in the sense of Definition 1.4 and u is a H1
0 (Ω)-valued process,

adapted to the filtration and (3.3) still holds.

3.1 The multiplicative case

Assume in this section that H : H1
0 (Ω) → H1

0 (Ω) is a Lipschitz-continuous mapping. Then

H(h) ∈ N 2
w

(
0, T,H1

0 (Ω)
)

is h ∈ N 2
w

(
0, T,H1

0 (Ω)
)

([22] lemma 2.41 p.35), and the result of this

section is

Theorem 3.2. There exists a unique solution of Problem f
(
∂t[u−

∫ t
0 H(u)dw]

)
−∆u = 0 in Ω×

(0, T ) × Θ, u(0, .) = u0 in the sense of Definition 1.4.

Denote by Φ : N 2
w

(
0, T,H1

0 (Ω)
)
→ N 2

w

(
0, T,H1

0 (Ω)
)

the map defined for any h ∈ N 2
w

(
0, T,H1

0 (Ω)
)

by Φ(h) = u where u is the solution of the Barenblatt’s problem f
(
∂t[u−

∫ t
0 H(h)dw]

)
−∆u =

0 in Ω × (0, T ) × Θ, u(0, .) = u0 in the sense of Definition 1.4.

Then, for any positive α, (3.3) yields
∫ T

0
e−αt

E‖[Ψ(h) − Ψ(ĥ)](t)‖2
H1

0 (Ω)dt ≤ 2

∫ T

0
e−αt

∫ t

0
E‖[H(h) − H(ĥ)](s)‖2

H1
0 (Ω)dsdt

≤ C

α

∫ T

0
e−αs

E‖[h − ĥ](s)‖2
H1

0 (Ω)ds.
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Since the exponential weight in time provides an equivalent norm in N 2
w

(
0, T,H1

0 (Ω)
)
, if α > C,

Ψ is a contractive mapping, it has un unique fixed-point and the result holds.

4 Annexe

4.1 Simon’s theorem

Theorem 4.1. [24] Let 1 < p ≤ +∞, 1 ≤ q ≤ +∞ and V,E and F three Banach’s spaces such

that V →֒→ E →֒ F . Then, if A is a bounded subset of W 1,p(0, T ;F,F ) and of Lq(0, T ;V ), then

A is relatively compact in C([0, T ];F ) and Lq(0, T ;E).

4.2 Heat equation

Lemma 4.2. Consider T > 0, Q =]0, T [×Ω, u0 ∈ H1
0 (Ω), G ∈ L2(Q) and u in W (0, T ) = {v ∈

L2(0, T ;H1
0 (Ω)), ∂tv ∈ L2(0, T ;H−1(Ω)) the unique weak solution of the heat equation:

∂tu − ∆u = G in Q, with u(0, .) = u0.

Then, u ∈ H1(Q) ∩ C([0, T ],H1
0 (Ω)) and for any t ∈ [0, T ],

∫

]0,t[×Ω
|∂tu(σ)|2 dxdσ +

1

2

∫

Ω
|∇u(t)|2 dx =

1

2

∫

Ω
|∇u(0)|2 dx +

∫

]0,t[×Ω
G(σ)∂tudxdσ. (4.1)

Proof. .

The result holds if the data u0 and G are regular. This can be proved by multiplying the

equation by ∂tu. If un
0 and Gn are regular approximations of u0 and G and if un denotes the

corresponding solution, then, for any t ∈]0, T ], we get that

∫

]0,t[×Ω
|∂t(u

n − um)(σ)|2 dxdσ +

∫

Ω
|∇(un − um)(t)|2 dx ≤

≤
∫

Ω
|∇(un

0 − um
0 )|2 dx +

∫

]0,t[×Ω
|(Gn − Gm)(σ)|2 dxdσ,

and one concludes by a Cauchy sequence argument.
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Toulouse Math. (5), 3(3-4) (1981) 247-274.

[24] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. (4), 146 (1987)

65-96.

[25] G. Vallet, Sur une loi de conservation issue de la géologie, C. R. Math. Acad. sci. Paris,
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