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Abstract

The purpose of this work is to show a broad framework in which the theory of

very weak solutions for the Dirichlet stationary problem for the Laplace and Stokes

equations in bounded domains of Rn, n ≥ 2, could be developed. Broad in the sense

of giving the more general spaces in which data can be taken in order to obtain a

very weak solution and define properly the trace of such solution. Density arguments

and a functional framework will be necessary, as well as classical regularity results

in the Lp-Sobolev spaces that will be generalized here.
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Introduction and notations

We are interested in the boundary problem for the Laplace equation and the Stokes system.

Recall that the Stokes systems is described by the following equations:

(S) −∆u +∇q = f and ∇ · u = h in Ω, u = g on Γ,

where u denotes the velocity and q the pressure and both are unknown, f the external forces, h

the compressibility condition and g the boundary condition for the velocity, the three functions

being known.

We will consider Ω a bounded open set of Rn, n ≥ 2, with boundary Γ. The vector fields and

matrix fields (and the corresponding spaces) defined over Ω or over Rn are respectively denoted

by boldface Roman and special Roman.
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The different kinds of solutions defined for these two problems (and also for the Navier-

Stokes system) have been widely studied in many works, specially weak and strong solutions. In

the case of incompressible fluids, h = 0, it has been well-known since Leray [23] (see also [24])

that if f ∈ W−1,p(Ω) and g ∈ W1−1/p,p(Γ) with p ≥ 2 and for any i = 0, . . . , I, verifying

∫

Γi

g · n dσ = 0, (0.1)

where Γi denote the connected components of the boundary Γ of the open set Ω, then there

exists a solution (u , q) ∈ W1,p(Ω)× Lp(Ω) satisfying (S).

The concept of very weak solution (u , q) ∈ Lp(Ω) × W−1,p(Ω) for Stokes or Navier-Stokes

equations, corresponding to very irregular data, has been developed in the last years by Giga

[19] (in a domain Ω of class C∞), Amrouche & Girault [5] (in a domain Ω of class C1,1) and more

recently by Galdi et al. [18], Farwig et al. [17] (in a domain Ω of class C2,1, see also Schumacher

[30]) and Kim [22] (in a domain of class C2). In this context, the boundary condition is chosen

in Lp(Γ) (see Brown & Shen [13], Conca [15], Fabes et al. [16], Moussaoui [27], Shen [31], Savaré

[29], Marusic-Paloka [26]) or more generally in W−1/p,p(Γ). For the non-stationary case, the

existence, uniqueness and regularity of very weak solutions for the Navier-Stokes equations have

been investigated (among other authors) by Amann [2, 3].

In this work, (for Stokes) first we present a result of existence of very weak solution for the

Stokes system in a bounded domain of Rn, for n ≥ 2. Before and after the study necessary

in order to establish this kind of regularity, we will present the results of existence of weak

and strong solutions in the Lp(Ω) Sobolev spaces. We use the method developed by Amrouche

& Girault appearing for the Stokes problem in [4, 5], for a bounded open set, and those of

Amrouche et al. in [7], for a half-space. However, the study will be made in a more general

context, where the functional spaces, all the density lemmas and the nature of the boundary

are different. The reason of this generalization is the necessity of using the Stokes results as a

tool in the search of very weak solutions for the Oseen and Navier-Stokes equations. In these

systems, the convection or non-linear term generate an “anisotropy” that can be collected in

the space of solutions, and allows us to define rigorously the traces of the vector functions which

are living in subspaces of Lp(Ω) (see Lemma 2.5 and Lemma 2.6).

The case of n = 3 was completely developed for Stokes, Oseen and Navier-Stokes by the

authors in [8, 9, 10], together with the result of existence of very weak solution for the Oseen and

Navier-Stokes equations. Concretely, we prove existence and regularity of very weak solutions

(u , q) ∈ Lp(Ω) × W−1,p(Ω) (for p ∈ (1,+∞) in the case of the Stokes system) with arbitrary

large data belonging to some Sobolev spaces of negative order, in a bounded connected open

set of class C1,1. This regularity for the domain differs from that one appearing in [17] (for a

result in domains of R2) and [18] (for a result in domains of R3), in which the authors consider

a bounded domain of class C2,1. Moreover, our solution is obtained in the space Tp,r(Ω) which

has been clearly characterized contrary to the abstract spaces appearing there.
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0.1 Functional spaces, norms and traces

In all this work, if we do not say anything else, Ω will be considered as a Lipschitz open

bounded set of Rn, n ≥ 2. When Ω is connected, we will say Ω is a domain. We will only specify

the regularity of Ω when it to be different from the regularity presented above.

In what follows, we will consider s ∈ R, p ∈ (1,+∞) and p′ stands for its conjugate:

1/p + 1/p′ = 1. We shall denote by m the integer part of s and by σ its fractional part:

s = m+σ with 0 ≤ σ < 1. The reflexive Banach space W s,p(Rn) is the space of all distributions

v defined in R
n such that:

• Dαv ∈ Lp(Rn), for all |α| ≤ m, when s = m is a nonnegative integer

• v ∈ Wm,p(Rn) and
∫
Rn×Rn

|Dαv(x)−Dαv(y)|p

|x−y|n+σp dxdy < ∞, for all |α| = m, when s = m+ σ is

nonnegative and is not an integer.

The space W s,p(Rn) is equipped by the norm: ‖v‖pWm,p(Rn) =

( ∑

|α|≤m

∫

Rn

|Dαv(x)|p dx

)1/p

, in

the first case, and by the norm ‖v‖W s, p(Rn) =

(
‖v‖pWm,p(Rn)+

∑
|α|=m

∫
Rn×Rn

|Dαv(x)−Dαv(y)|p

|x−y|n+σp dxdy

)1/p

,

in the second case. For s < 0, we denote by W s, p(Rn) the dual space of W−s, p′(Rn). In the

special case of p = 2, we shall use the notation Hs(Rn) instead of W s, 2(Rn). We also consider

the Sobolev space

Hs,p(Rn) = {v ∈ Lp(Rn); (I −∆)s/2v ∈ Lp(Rn)}.

It is known that Hs,p(Rn) = W s,p(Rn) if s is an integer or if p = 2. Furthermore, for s ∈ R, we

have that W s,p(Rn) →֒ Hs,p(Rn) if p ≤ 2 and Hs,p(Rn) →֒ W s,p(Rn) if p ≥ 2.

The definition of the space W s,p(Ω) is exactly the same as in the case of the whole space.

Because of D(Ω) is not dense in W s,p(Ω), the dual space of W s,p(Ω) cannot be identified to a

space of distributions in Ω. For this reason, we define W s,p
0 (Ω) as the closure of D(Ω) in W s,p(Ω)

and we denote by W−s, p′(Ω) its dual space.

For every s > 0, we denote by W s,p(Ω) the space of all distributions in Ω which are restric-

tions of elements of W s,p(Rn) and by W̃ s,p(Ω) the space of functions u ∈ W s,p(Ω) such that the

extension ũ by zero outside of Ω belongs to W s,p(Rn). Recall now some density results ([1, 20]):

i) The space D(Ω) is dense in W s,p(Ω) for any real s.

ii) The space D(Rn) is dense in W s,p(Rn) and in Hs,p(Rn) for any real s.

iii) The space D(Ω) is dense in W̃ s,p(Ω) for all s > 0.

iv) The space D(Ω) is dense in W s,p(Ω) for all 0 < s ≤ 1/p, that means that W s,p(Ω) =

W s,p
0 (Ω).

Theorem 0.1. (Traces of functions living in W s, p(Ω)) ([1, 20]) Let Ω be a bounded open set

of class Ck,1, for some integer k ≥ 0. Let s be real number such that s ≤ k+1, s− 1/p = m+σ,

where m ≥ 0 is an integer and 0 < σ < 1.
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i) The following mapping

γ0 : u 7→ u|Γ

W s, p(Ω) → W s−1/p, p(Γ)

is continuous and surjective. When 1/p < s < 1 + 1/p, we have Ker(γ0) = W s, p
0 (Ω).

ii) For m ≥ 1, the following mapping

(γ0, γ1) : u 7→ (u|Γ,
∂u
∂n |Γ

)

W s, p(Ω) → (W s−1/p, p(Γ)×W s−1−1/p, p(Γ))

is continuous and surjective. When 1+1/p < s < 2+1/p, we have Ker(γ0, γ1) = W s, p
0 (Ω).

We recall also the following embeddings:

W s, p(Ω) →֒ W t, q(Ω) for t ≤ s, p ≤ q such that s− n/p = t− n/q

W s, p(Ω) →֒ Ck, α(Ω) for k < s− n/p < k + 1, α = s− k − n/p,

where k is a non negative integer.

1 The Laplace equation

We are interested here in the resolution of the problem

(LD) −∆u = f in Ω and u = g on Γ,

with data in some Sobolev spaces. Before starting our study, we recall some results concerning

this problem. Recall that one consequence of the Calderon-Zygmund theory of singular integrals

and boundary layer potential is that for every f ∈ Wm−2,p(Ω) and g ∈ Wm−1/p,p(Γ), with m

positive integer, the problem (LD) has a unique solution u ∈ Wm,p(Ω) when Ω is of class Cr,1

with r = max{1,m−1}. If f ∈ W s−2,p(Ω) and g ∈ W s−1/p,p(Γ), with s > 1/p, then u ∈ W s,p(Ω)

provided that Ω is of class Cr,1 with r = max{1, [s]}, where [s] is the integer part of s. In [25],

Lions and Magenes made a complete study for smooth domains and p = 2. Grisvard in [20]

treats the case where Ω is of class Cr,1.

Jerison & Kenig in [21] and many other authors study the case where Ω is only a bounded

Lipschitz-continuous domain. First, we recall some results for p = 2.

i) If f ∈ H−1/2+ε(Ω), for some ε > 0 or f ∈ L2(Ω) and g = 0, then the unique solution u of

(LD) satisfies u ∈ H3/2(Ω).

ii) If f ∈ H−1+s(Ω), with −1/2 < s < 1/2 and g = 0, then u ∈ H1+s(Ω).

iii) If f = 0 and g ∈ Hs+1/2(Γ), with −1/2 ≤ s ≤ 1/2, then u ∈ H1+s(Ω).

iv) The conclusion in point i) is not true for ε = 0 : There exist a Lipschitz domain Ω and

f ∈ H−1/2(Ω) such that u /∈ H3/2(Ω).
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v) The conclusion in point ii) is not true for s > 1/2 : There exist a Lipschitz domain Ω and

f ∈ C∞(Ω) such that u /∈ H1+s(Ω).

In the case p arbitrary, we have the following result (see Jerison & Kenig, [21]).

Theorem 1.1. Let Ω be a bounded Lipschitz domain in R
N , N ≥ 3. There exists ε ∈ ]0, 1],

depending only on the Lipschitz constant of Ω such that for every f ∈ Hs−2,p(Ω) and g = 0,

there is a unique solution u ∈ Hs,p(Ω) to (LD) provided one of the following holds:

p0 < p < p′0 and 1
p < s < 1 + 1

p

1 < p ≤ p0 and 3
p − 1− ε < s < 1 + 1

p

p′0 ≤ p < ∞ and 1
p < s < 3

p + ε

where 1/p0 = 1/2 + ε/2 and 1/p′0 = 1/2 − ε/2. Moreover, we have the estimate

‖u‖Hs,p(Ω) ≤ C‖f‖Hs−2,p(Ω)

for all f ∈ Hs−2,p(Ω). When the domain is C1, the exponent p0 may be taken to be 1. When

s = 1, there is p1 > 3 such that if p′1 < p < p1, then the inhomogeneous Dirichlet problem has a

unique solution u ∈ Hs,p(Ω).

As particular case of the third condition, for any N ≥ 3 (and also N = 2), there exists a C1

domain Ω in R
N and f ∈ H−1+1/p,p(Ω) for which the solution u of (LD) with g = 0 does not

belongs to H1+1/p,p(Ω) for all 1 < p < ∞.

As we said before, if Ω is an open set of class C1,1, for each f ∈ W s−2,p(Ω) and g ∈

W s−1/p,p(Ω), the problem (LD) has a unique solution u ∈ W s,p(Ω) assuming 1/p < s ≤ 2. In

this work, we are interested in the search of very weak solutions, i. e. , solutions belonging to

W s,p(Ω) with 0 ≤ s ≤ 1/p and for a regular open set Ω, here of class C1,1. Moreover, we look

for optimal conditions for the data f and g in order to obtain such solutions. With this aim, we

introduce the space:

Mp(Ω) =
{
v ∈ Lp(Ω); ∆v ∈ W−2+1/p,p(Ω)

}
,

which is reflexive Banach space for the norm

‖v‖Mp(Ω) = ‖v‖Lp(Ω) + ‖∆v‖W−2+1/p,p(Ω).

Lemma 1.2. ([10]) The space D
(
Ω
)
is dense in Mp(Ω).

To study the traces of functions which belong to Mp(Ω), we have the following lemma.

Lemma 1.3. Let Ω be a bounded open set of Rn of class C1,1. The linear mapping γ0 : v 7−→ v|Γ

defined on D(Ω) can be extended to a linear continuous mapping

γ0 : Mp(Ω) −→ W−1/p, p(Γ).

Moreover, we have the Green formula: ∀v ∈ Mp(Ω), ∀ϕ ∈ W 2, p′(Ω) ∩W 1, p′

0 (Ω),

∫

Ω
v∆ϕdx− 〈∆v, ϕ〉

W−2+1/p,p(Ω)×W
2−1/p,p′

0
(Ω)

=

〈
v,

∂ϕ

∂n

〉

W−1/p, p(Γ)×W 1/p, p′ (Γ)

. (1.1)
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Proof. Let v ∈ D
(
Ω
)
and ϕ ∈ W 2, p′(Ω) ∩W 1, p′

0 (Ω), then formula (1.1) obviously holds. For

every µ ∈ W 1/p, p′(Γ), there exists ϕ ∈ W 2, p′(Ω) ∩ W 1, p′

0 (Ω) such that ∂ϕ
∂n = µ on Γ, with

‖ϕ‖W 2, p′(Ω) ≤ C ‖µ‖W 1/p, p′(Γ). Consequently,

∣∣ 〈v, µ〉W−1/p, p(Γ)×W 1/p, p′(Γ)

∣∣ ≤ C ‖v‖Mp(Ω) ‖µ‖W 1/p, p′ (Γ).

Thus

‖v‖W−1/p, p(Γ) ≤ C ‖v‖Mp(Ω).

We can deduce that the linear mapping γ is continuous for the norm of Mp(Ω). Since D
(
Ω
)
is

dense in Mp(Ω), γ can be extended by continuity to γ ∈ L
(
Mp(Ω); W−1/p, p(Γ)

)
and formula

(1.1) holds for all v ∈ Mp(Ω) and ϕ ∈ W 2, p′(Ω) ∩W 1, p′

0 (Ω).

We now can solve the Laplace equation with singular boundary condition.

Theorem 1.4. Let Ω be a bounded open set of Rn of class C1,1. For any f ∈ W−2+1/p,p(Ω) and

g ∈ W−1/p, p(Γ), the Laplace equation (LD) has a unique solution u ∈ Lp(Ω), with the estimate

‖u‖Mp(Ω) ≤ C (‖f‖W−2+1/p,p(Ω) + ‖g‖W−1/p, p(Γ)).

Proof. Thanks to the Green formula (1.1), it is easy to verify that u ∈ Lp(Ω) is solution of

problem (LD) is equivalent to the variational formulation: Find u ∈ Lp(Ω) such that

∀v ∈ W 2, p′(Ω) ∩W 1, p′

0 (Ω),
∫

Ω
u∆v dx =− 〈f, v〉

W−2+1/p,p(Ω)×W
2−1/p,p′

0
(Ω)

+

〈
g,

∂v

∂n

〉

W−1/p, p(Γ)×W 1/p, p′ (Γ)

.
(1.2)

Indeed, let u ∈ Lp(Ω) be a solution to (LD). Then, the Green formula (1.1) yields (1.2).

Conversely, let u ∈ Lp(Ω) be a solution to (1.2). Taking v in D(Ω), we obtain −∆u = f in Ω

and u ∈ Mp(Ω). Using this last relation and again the Green formula (1.1), we deduce that for

all v ∈ W 2, p′(Ω) ∩W 1, p′

0 (Ω),

〈
u,

∂v

∂n

〉

W−1/p, p(Γ)×W 1/p, p′ (Γ)

=

〈
g,

∂v

∂n

〉

W−1/p, p(Γ)×W 1/p, p′(Γ)

and finally u = g on Γ.

Let’s then solve problem (1.2). We know that for all F ∈ Lp′(Ω), there exists a unique

v ∈ W 2, p′(Ω) ∩W 1, p′

0 (Ω) satisfying −∆v = F in Ω, with the estimate

‖v‖W 2, p′(Ω) ≤ C‖F‖Lp′ (Ω).

Then we have
∣∣∣∣∣〈f, v〉W−2+1/p,p(Ω)×W

2−1/p,p′

0
(Ω)

−

〈
g,

∂v

∂n

〉

W−1/p, p(Γ)×W 1/p, p′(Γ)

∣∣∣∣∣

≤ C ‖f‖W−2+1/p,p(Ω)‖v‖W 2−1/p,p′ (Ω) + ‖g‖W−1/p, p(Γ)‖
∂v

∂n
‖W 1/p, p′(Γ)

≤ C
(
‖f‖W−2+1/p,p(Ω) + ‖g‖W−1/p, p(Γ)

)
‖F‖Lp′ (Ω).
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In other words, we can say that the linear mapping

T : F 7−→ 〈f, v〉
W−2+1/p,p(Ω)×W

2−1/p, p′

0
(Ω)

−

〈
g,

∂v

∂n

〉

W−1/p, p(Γ)×W 1/p, p′(Γ)

is continuous on Lp′(Ω), and according to the Riesz representation theorem, there exists a unique

u ∈ Lp(Ω), such that

∀F ∈ Lp′(Ω), T (F ) = 〈u, F 〉Lp(Ω)×Lp′ (Ω) ,

i.e u is solution of (LD).

Corollary 1.5. Let Ω be a bounded open set of Rn of class C1,1 and σ be a real number such

that 0 ≤ σ ≤ 1.

i) We assume that f ∈ W−2+σ/p′+1/p,p(Ω) and g ∈ W σ−1/p,p(Γ). Then the solution u given

by Theorem 1.4 belongs to W σ,p(Ω) and satisfies the estimate

‖u‖Wσ,p(Ω) ≤ C (‖f‖W−2+σ/p′+1/p,p(Ω) + ‖g‖Wσ−1/p,p(Γ)).

ii) If moreover f ∈ W σ−1,p(Ω) and g ∈ W σ+1/p′,p(Γ), then u ∈ W σ+1,p(Ω) and satisfies the

estimate

‖u‖Wσ+1,p(Ω) ≤ C (‖f‖Wσ−1,p(Ω) + ‖g‖Wσ+1/p′,p(Γ)).

Proof. First, we observe that if σ = 0, the conclusion in point i) holds because Theorem 1.4

and the conclusion in point ii) is satisfied thanks to classical regularity of generalized solutions

for Problem (LD). If σ = 1, the point i) holds for the same reason and the second point due

to the classical regularity of strong solutions for Problem (LD). Hence, we can suppose that

0 < σ < 1. In this case, it suffices to use interpolation argument (see [25], [32], [11]) and elliptic

regularity problem for the generalized solutions.

Remark 1.6.

i) The results of the second point are optimal unlike part i) which is optimal only when

f = 0.

ii) We can reformulate the point ii) as follows. For any f ∈ W−s,p(Ω) and g ∈ W 2−s−1/p,p(Γ),

with 0 ≤ s ≤ 1, Problem (LD) has a unique solution u ∈ W 2−s,p(Ω) satisfying u = g on Γ.

Theorem 1.7. Let Ω be a bounded open set of Rn of class C1,1, s be a real number such that
1
p < s ≤ 2. We assume that f ∈ W s−2,p(Ω) and g ∈ W s−1/p,p(Γ). Then Problem (LD) has a

unique solution u ∈ W s,p(Ω) which satisfies the estimate

‖u‖W s,p(Ω) ≤ C (‖f‖W s−2,p(Ω) + ‖g‖W s−1/p,p(Γ)).
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Proof. The theorem is proved by Corollary 1.5 point ii) if 1 ≤ s ≤ 2. Let be then s a real

number such that 1
p < s ≤ 1. Using Theorem 0.1, we can suppose g = 0. We known that D(Ω)

is dense in the space of functions of W s,p(Ω) equal to zero on Γ, that means that

W s,p
0 (Ω) = {v ∈ W s,p(Ω); v = 0 on Γ}.

We have also the same relation for the space W 2−s,p′

0 (Ω) because 1 ≤ 2− s < 1 + 1/p′. Conse-

quently u ∈ W s,p
0 (Ω) satisfies −∆u = f in Ω if and only if: ∀v ∈ W−s+2, p′

0 (Ω),

〈u, ∆v〉W s,p
0

(Ω)×W−s,p′ (Ω) = −〈f, v〉
W s−2,p(Ω)×W−s+2 p′

0
(Ω)

(1.3)

Let’s solve problem (1.3). By Remark 1.6 point ii), we know that for all F ∈ W−s,p′(Ω), there

exists a unique v ∈ W−s+2, p′

0 (Ω) satisfying −∆v = F in Ω, with the estimate

‖v‖W−s+2, p′ (Ω) ≤ C‖F‖W−s,p′(Ω).

Then,
∣∣∣〈f, v〉

W s−2,p(Ω)×W−s+2 p′

0
(Ω)

∣∣∣ ≤ C ‖f‖W s−2,p(Ω)‖v‖W−s+2 p′(Ω) ≤ C ‖f‖W s−2,p(Ω)‖F‖W−s,p′ (Ω).

In other words, we can say that the linear mapping

T : F 7−→ 〈f, v〉
W s−2,p(Ω)×W−s+2, p′

0
(Ω)

is continuous on W−s,p′(Ω), and by the Riesz representation theorem, there exists a unique

u ∈ W s,p
0 (Ω), such that

∀F ∈ W−s,p′(Ω), T (F ) = 〈u, F 〉W s,p
0

(Ω)×W−s,p′(Ω) ,

i.e u is solution of (LD) with g = 0 .

Remark 1.8. i) When f ∈ W 1/p−2,p(Ω), we can conjecture that u /∈ W 1/p,p(Ω).

ii) If 1/p < s < 1, f ∈ W s−2,p(Ω) and g ∈ W s−1/p,p(Γ), then the solution u of (LD)

belongs to W s,p(Ω). These assumptions are weaker than those of Corollary 1.5 i) because

W−2+s/p′+1/p,p(Ω) →֒ W s−2,p(Ω) if 1/p < s < 1. Moreover, they are optimal.

iii) If 0 ≤ s ≤ 1/p, Theorem 1.7 cannot be applied. Indeed, the trace mapping is not continu-

ous (and not surjective) from W s,p(Ω) into W s−1/p,p(Γ). If s = 0 and g ∈ W−1/p,p(Γ), we

cannot expect to find a solution u more regular than Lp(Ω). Theorem 1.4 shows that it is

possible if f ∈ W−2+1/p,p(Ω). In the case of 0 < s ≤ 1/p and g ∈ W s−1/p,p(Γ), we cannot

expect either to find a solution u better than W s,p(Ω). Corollary 1.5 point ii) shows that

it is possible if f ∈ W−2+s/p′+1/p,p(Ω), taking into account that −2+ s/p′+1/p > −2+ s.

Remark 1.9. In the case p = 2, we have proved in particular the following results which are

naturally better than the case where Ω is considered only Lipschitz:

i) if f ∈ H−1/2(Ω) and g ∈ H1(Γ), then u ∈ H3/2(Ω),

ii) if f ∈ H−1+s(Ω), with −1/2 < s ≤ 1 and g = 0, then u ∈ H1+s(Ω),

iii) if f = 0 and g ∈ Hs+1/2(Γ), with −1 ≤ s ≤ 1 then u ∈ H1+s(Ω).
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2 The Stokes problem

2.1 Preliminary results

In the sequel, we will use the following spaces used in the following versions of De Rham’s

Theorem:

Dσ(Ω) = {ϕ ∈ D(Ω); ∇ ·ϕ = 0}, Dσ(Ω) = {ψ ∈ D(Ω); ∇ ·ψ = 0}.

Lemma 2.1.

i) De Rham’s Theorem for distributions(See [28]): Let Ω be any open subset of Rn and

let f be a distribution of D′(Ω) that satisfies:

∀v ∈ Dσ(Ω), 〈f, v〉 = 0.

Then, there exists a distribution π in D′(Ω) such that f = ∇π.

ii) De Rham’s Theorem in W−m,p(Ω)(See [5]): Let m be any integer, p any real number

with 1 < p < ∞. Let f ∈ W−m,p(Ω) satisfy:

ϕ ∈ Dσ(Ω), 〈f,ϕ〉 = 0.

Then, there exists π ∈ W−m+1,p(Ω) such that f = ∇π. If in addition the set Ω is connected,

then π is defined uniquely, up to an additive constant, and there exists a positive constant

C, independent of f, such that:

inf
K∈R

‖π +K‖W−m+1,p(Ω)/R ≤ C ‖f‖W−m,p(Ω).

2.2 The new spaces

We begin by introducing some spaces: First,

Xr,p(Ω) = {ϕ ∈ W1,r
0 (Ω); ∇ · ϕ ∈ W 1,p

0 (Ω)}, 1 < r, p < ∞, (2.1)

and we set Xp,p(Ω) = Xp(Ω). Their dual spaces, (Xr,p(Ω))
′ and (Xp(Ω))

′, will be characterized

in Lemma 2.3. Second, the solenoidal space:

Hp(Ω) = {v ∈ Lp(Ω); ∇ · v = 0}. (2.2)

And finally, the spaces:

Tp,r(Ω) = {v ∈ Lp(Ω); ∆v ∈ (Xr′,p′(Ω))
′}, Tp,r,σ(Ω) = {v ∈ Tp,r(Ω); ∇ · v = 0}, (2.3)

endowed with the topology given by the norm: ‖v‖Tp,r(Ω) = ‖v‖Lp(Ω)+‖∆v‖[Xr′,p′ (Ω)]′ . Observe

that when p = r, these spaces are denoted as Tp(Ω) and Tp,σ(Ω), respectively.

The proofs of the following lemmas are classical, although the functional spaces are changed.

They can be seen in [10] for n = 3, but the proofs are also valid for any n ≥ 2.
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Lemma 2.2. i) The space Dσ(Ω) is dense in Hp(Ω).

ii) The space D(Ω) is dense in Xr,p(Ω) and for all q ∈ W−1,p(Ω) and ϕ ∈ Xr′,p′(Ω), we have

〈∇q, ϕ〉[Xr′,p′ (Ω)]′×Xr′,p′(Ω) = −〈q, ∇ · ϕ〉
W−1,p(Ω)×W 1,p′

0
(Ω)

. (2.4)

Lemma 2.3. Let f ∈ (Xr,p(Ω))
′. Then, there exist F0 = (fij)1≤i,j≤n such that F0 ∈ L

r′(Ω),

f1 ∈ W−1,p′(Ω) and satisfying:

f = ∇ · F0 +∇f1. (2.5)

Moreover, ‖f‖[Xr,p(Ω)]′ = max{‖fij‖Lr′(Ω), 1 ≤ i, j ≤ n, ‖f1‖W−1,p′ (Ω)}. Conversely, if f satisfies

(2.5), then f ∈ (Xr,p(Ω))
′.

As consequence of Lemma 2.2 ii), we have the following embeddings if 1
r ≤ 1

p +
1
n :

W−1,r(Ω) →֒ (Xr′,p′(Ω))
′ →֒ W−2,p(Ω), (2.6)

Giving a meaning to the trace of a very weak solution of a Stokes, Oseen or Navier-Stokes

problem is not trivial. Remember that we are not in the classical variational framework. In this

way, we need to introduce some spaces. First, we consider the space:

Yp′(Ω) = {ψ ∈ W2,p′(Ω); ψ|Γ = 0, (∇ ·ψ)|Γ = 0}

that can also be described (see [5]) as:

Yp′(Ω) = {ψ ∈ W2,p′(Ω); ψ|Γ = 0,
∂ψ

∂n
· n

∣∣∣
Γ
= 0}. (2.7)

Observe that the range space of the normal derivative γ1 : Yp′(Ω) → W1/p,p′(Γ) is:

Zp′(Γ) = {z ∈ W1/p,p′(Γ); z · n = 0}.

We also introduce the space Hp,r(div; Ω) = {v ∈ Lp(Ω); ∇·v ∈ Lr(Ω)}, which is equipped with

the graph norm. The following lemma will help us to prove a trace result. The proof can be

taken from [10], Lemmas 10 and 11, and it is also valid for the n ≥ 2.

Lemma 2.4. i) The space D(Ω) is dense in Tp,r(Ω).

ii) The space D(Ω) is dense in Tp,r(Ω) ∩Hp,r(div; Ω).

iii) The space Dσ(Ω) is dense in Tp,r,σ(Ω).

2.3 The trace result

The following two lemmas prove that the tangential trace of functions v of Tp,r,σ(Ω) belongs

to the dual space of Zp′(Γ), which is:

(Zp′(Γ))
′ = {µ ∈ W−1/p,p(Γ); µ · n = 0}. (2.8)

Before, we recall that we can decompose v into its tangential, v τ , and normal parts, that is:

v = v τ + (v · n)n .

10



Lemma 2.5. Let Ω be a bounded open set of Rn of class C1,1. Let 1 < p < ∞ and r > 1 be such

that 1
r ≤ 1

p + 1
n . The mapping γτ : v 7→ vτ |Γ on the space D(Ω) can be extended by continuity

to a linear and continuous mapping, still denoted by γτ , from Tp,r(Ω) into W−1/p,p(Γ), and we

have the Green formula: for any v ∈ Tp,r(Ω) and ψ ∈ Yp′(Ω),

〈∆v,ψ〉[Xr′,p′ (Ω)]′×Xr′,p′(Ω)=

∫

Ω
v ·∆ψ dx−

〈
vτ ,

∂ψ

∂n

〉

W−1/p,p(Γ)×W1/p,p′ (Γ)

.

Proof. We start with the expression: let v ∈ D(Ω), then

〈
v τ ,

∂ψ

∂n

〉

W−1/p,p(Γ)×W1/p,p′ (Γ)

=

∫

Ω
v ·∆ψ dx − 〈∆v ,ψ〉[Xr′,p′(Ω)]′×Xr′,p′(Ω) (2.9)

which is valid for any ψ ∈ Yp′(Ω). Observe that Yp′(Ω) ⊂ Xr′,p′(Ω) because
1
r ≤ 1

p +
1
n and the

normal trace of the functions of ψ ∈ Yp′(Ω) belongs to the space Zp′(Γ).

Let µ ∈ W1/p,p′(Γ). Then, µ = µτ + (µ · n)n . Since Ω is of class C1,1, we know that there

exists ψ ∈ W2,p′(Ω) such that ψ = 0 and
∂ψ

∂n
= µτ on Γ and verifying:

‖ψ‖
W2,p′ (Ω) ≤ C ‖µτ‖W1/p,p′ (Γ) ≤ C ‖µ‖

W1/p,p′ (Γ).

Moreover, ψ ∈ Yp′(Ω). Therefore, we can bound the boundary term as follows for such functions

ψ:

∣∣∣〈v τ ,µ〉W−1/p,p(Γ)×W1/p,p′ (Γ)

∣∣∣ =
∣∣∣∣∣

〈
v τ ,

∂ψ

∂n

〉

W−1/p,p(Γ)×W1/p,p′ (Γ)

∣∣∣∣∣

≤ ‖v‖Lp(Ω)‖ψ‖W2,p′ (Ω) + ‖∆v‖[Xr′,p′ (Ω)]′‖ψ‖Xr′,p′ (Ω) ≤ C ‖v‖Tp,r(Ω)‖ψ‖Yp′ (Ω)

Thus,

‖v τ‖W−1/p,p(Γ) ≤ C ‖v‖Tp,r(Ω).

Therefore, the linear continuous mapping v 7→ v τ |Γ defined on D(Ω) is continuous for the norm

of Tp,r(Ω). Since D(Ω) is dense in Tp,r(Ω), then we can extend this mapping from Tp,r(Ω) into

W−1/p,p(Γ), that is, the tangential trace of functions of Tp,r(Ω) belongs to W−1/p,p(Γ).

Lemma 2.6. i) The space D(Ω) is dense in Hp,r(div; Ω).

ii) Let 1 < p < ∞ and r > 1 be such that 1
r ≤ 1

p + 1
n . The mapping γn : v 7→ v · n|Γ on

the space D(Ω) can be extended by continuity to a linear and continuous mapping, still

denoted by γn, from Hp,r(div; Ω) into W−1/p,p(Γ), and we have the Green formula: for

any v ∈ Hp,r(div; Ω) and ϕ ∈ W 1,p′(Ω),

∫

Ω
v · ∇ϕ dx+

∫

Ω
ϕ div v dx = 〈v · n, ϕ 〉W−1/p,p(Γ)×W 1/p,p′ (Γ) .
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2.4 Very weak, weak and strong regularity

We treat the Stokes system under the compatibility condition:
∫

Ω
h(x ) dx = 〈g · n , 1〉W−1/p,p(Γ)×W 1/p,p′(Γ). (2.10)

Basic results on weak and strong solutions of problem (S) for n ≥ 2 may be summarized in the

following theorem (see [5], [14]).

Theorem 2.7. i) For every f ∈ W−1,p(Ω), h ∈ Lp(Ω), g ∈ W1−1/p,p(Γ), and satisfying

the compatibility condition (2.10), the Stokes problem (S) has exactly one solution u ∈

W1,p(Ω) and q ∈ Lp(Ω)/R. Moreover, there exists a constant C > 0 depending only on p

and Ω such that:

‖u‖W1,p(Ω) + ‖q‖Lp(Ω)/R ≤ C (‖f‖W−1,p(Ω) + ‖h‖Lp(Ω) + ‖g‖
W1−1/p,p(Γ)). (2.11)

ii) Moreover, if f ∈ Lp(Ω), h ∈ W 1,p(Ω), g ∈ W2−1/p,p(Γ), then u ∈ W2,p(Ω), q ∈ W 1,p(Ω)

and there exists a constant C > 0 depending only on p and Ω such that:

‖u‖W2,p(Ω) + ‖q‖W 1,p(Ω)/R ≤ C (‖f‖Lp(Ω) + ‖h‖W 1,p(Ω) + ‖g‖
W2−1/p,p(Γ)). (2.12)

We are interested here in the case of singular data satisfying precisely the following assump-

tions:

f ∈ (Xr′,p′(Ω))
′, h ∈ Lr(Ω), g ∈ W−1/p,p(Γ), with

1

r
≤

1

p
+

1

n
and r ≤ p. (2.13)

Recall that the space (Xr′,p′(Ω))
′ is an intermediate space between W−1,r(Ω) and W−2,p(Ω) (see

(2.6)).

Remark 2.8. If Ω is only a bounded Lipschitz domain, there exists ε > 0 depending only on the

Lipschitz constant of Ω such that if 2 ≤ p ≤ 3 + ε, f = 0, h = 0 and g ∈ W1−1/p,p(Γ) with
∫
Γ g ·n = 0, the conclusion of the first part of Theorem 2.7 holds. The result is also valid under

the assumptions f ∈ W−1,p(Ω), h = 0 and g = 0, for a ε such that (3 + ε)/(2 + ε) < p < 3 + ε

(see [13]).

We recall the definition and the existence result of very weak solution for the Stokes problem.

Definition 2.9 (Very weak solution for the Stokes problem). We say that (u , q) ∈

Lp(Ω) × W−1,p(Ω) is a very weak solution of (S) if the following equalities hold: For any

ϕ ∈ Yp′(Ω) and π ∈ W 1,p′(Ω),

−

∫

Ω
u ·∆ϕ dx − 〈q,∇ ·ϕ〉

W−1,p(Ω)×W 1,p′

0
(Ω)

= 〈f ,ϕ〉Ω− 〈g τ ,
∂ϕ

∂n
〉Γ,

∫

Ω
u · ∇π dx = −

∫

Ω
hπ dx + 〈g · n , π〉Γ,

(2.14)

where the dualities on Ω and Γ are defined by:

〈·, ·〉Ω = 〈·, ·〉[Xr′,p′(Ω)]′×Xr′,p′ (Ω), 〈·, ·〉Γ = 〈·, ·〉
W−1/p,p(Γ)×W1/p,p′ (Γ). (2.15)
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Note that W 1,p′(Ω) →֒ Lr′(Ω) and Yp′(Ω) →֒ Xr′,p′(Ω) if 1
r ≤ 1

p + 1
n , that means that all the

brackets and integrals have a sense.

Proposition 2.1. Suppose that f, h, g satisfy (2.13). Then the following two statements are

equivalent:

i) (u, q) ∈ Lp(Ω)×W−1,p(Ω) is a very weak solution of (S),

ii) (u, q) satisfies the system (S) in the sense of distributions.

Proof. i) Let (u , q) be a very weak solution to problem (S). It is clear that −∆u + ∇q = f

and ∇ ·u = h in Ω and consequently u belongs to Tp,r(Ω). Using Lemma 2.6 point ii), Lemma

2.5 and (2.4), we obtain

−

∫

Ω
u ·∆ϕ dx + 〈uτ ,

∂ϕ

∂n
〉
W−1/p,p(Γ)×W1/p,p′ (Γ) − 〈q,∇ ·ϕ〉

W−1,p(Ω)×W 1,p′

0
(Ω)

= 〈f ,ϕ〉Ω .

Since for any ϕ ∈ Yp′(Ω),

〈uτ ,
∂ϕ

∂n
〉
W−1/p,p(Γ)×W1/p,p′ (Γ) = 〈g τ ,

∂ϕ

∂n
〉
W−1/p,p(Γ)×W1/p,p′ (Γ),

we deduce that uτ = g τ in W−1/p,p(Γ). From the equation ∇ · u = h, we deduce that for any

π ∈ W 1,p′(Ω), we have

〈u · n , π〉Γ = 〈g · n , π〉Γ.

Consequently u · n = g · n in W−1/p,p(Γ) and finally u = g on Γ.

ii) The converse is a simple consequence of Lemma 2.6 point ii), Lemma 2.5 and (2.4).

Observe that the following result is a variation from Proposition 4.11 in [5], which was made

for f = 0 and h = 0. Here, we focus on the aspect that the fact of taking f 6= 0 and h 6= 0 make

over the whole proof appearing there. In the case r = p, we have:

Proposition 2.2. Let f ∈ (Xp′(Ω))
′, h ∈ Lp(Ω), g ∈ W−1/p,p(Γ), and satisfying the compati-

bility condition (2.10). Then, the Stokes problem (S) has exactly one solution u ∈ Lp(Ω) and

q ∈ W−1,p(Ω)/R. Moreover, there exists a constant C > 0 depending only on p and Ω such that:

‖u‖Lp(Ω) + ‖q‖W−1,p(Ω)/R ≤ C
{
‖f‖[Xp′ (Ω)]′ + ‖h‖Lp(Ω) + ‖g‖

W−1/p,p(Γ)

}
. (2.16)

Moreover u ∈ Tp(Ω) and

‖u‖Tp(Ω) ≤ C
{
‖f‖[Xp′ (Ω)]′ + ‖h‖Lp(Ω) + ‖g‖

W−1/p,p(Γ)

}
.

Proof. In [5], the proof of Proposition 2.2 is made for f = 0 and h = 0 (see Proposition 4.11

p. 132 [5]). It is on the aspects from the proof given in [5] were f and h take part on, where we

focus on below.

i) First step: We suppose that g · n = 0 on Γ and

∫

Ω
h(x ) dx = 0.

It remains to consider the following equivalent problem:
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Find (u , q) ∈ Lp(Ω)×W−1,p(Ω)/R such that: ∀w ∈ Yp′(Ω), ∀π ∈ W 1,p′(Ω)
∫

Ω
u · (−∆w +∇π) dx − 〈q,∇ ·w〉

W−1,p(Ω)×W 1,p′

0
(Ω)

= 〈f ,w〉[Xp′ (Ω)]′×Xp′(Ω) − 〈g τ ,
∂w

∂n
〉Γ −

∫

Ω
hπ dx

being Yp′(Ω) the space defined by (2.7) that verifies the embedding Yp′(Ω) →֒ Xp′(Ω). The

duality brackets are given in (2.15).

We can prove (as in [5]) that for any pair (F, ϕ) ∈ Lp′(Ω)× (W 1,p′

0 (Ω) ∩ Lp′

0 (Ω)), we have:

∣∣∣〈f ,w〉[Xp′ (Ω)]′×Xp′(Ω) −

〈
g τ ,

∂w

∂n

〉

Γ

−

∫

Ω
hπ dx

∣∣∣

≤ C
(
‖f ‖[Xp′ (Ω)]′ + ‖g‖

W−1/p,p(Ω) + ‖h‖Lp(Ω)

) (
‖F‖

Lp′ (Ω) + ‖ϕ‖W 1,p′ (Ω)

)

being (w , π) ∈ Yp′(Ω)×W 1,p′(Ω)/R the unique solution of the Stokes (dual) problem:

−∆w +∇π = F and ∇ ·w = ϕ in Ω, w = 0 on Γ.

Note that for any k ∈ R,
∣∣∣∣
∫

Ω
hπ dx

∣∣∣∣ =
∣∣∣∣
∫

Ω
h (π + k) dx

∣∣∣∣ ≤ ‖h‖Lp(Ω)‖π‖Lp′ (Ω)/R (2.17)

and

‖w‖
W2,p′ (Ω) + ‖π‖W 1,p′ (Ω)/R ≤ C

(
‖F‖

Lp′ (Ω) + ‖ϕ‖W 1,p′ (Ω)

)
.

From this bound, we deduce that the mapping

(F, ϕ) → 〈f ,w〉Ω − 〈g τ ,
∂w

∂n
〉Γ −

∫

Ω
hπ dx

defines an element of the dual space of Lp′(Ω) × (W 1,p′

0 (Ω) ∩ Lp′

0 (Ω)) with norm bounded by

C(‖f ‖[Xp′ (Ω)]′ + ‖h‖Lp(Ω) + ‖g‖
W−1/p,p(Ω)). From Riesz’ Representation Theorem we deduce

that there exists a unique (u , q) ∈ Lp(Ω) × W−1,p(Ω)/R solution of (S) satisfying the bound

(2.16).

ii) Second step: Now, we suppose that

∫

Ω
h(x ) dx = 〈g · n , 1〉Γ and consider the Neumann

problem: Find θ ∈ W 1,p(Ω)/R such that:

(N) ∆θ = h in Ω,
∂θ

∂n
= g · n on Γ,

which has a unique solution θ ∈ W 1,p(Ω)/R and verifies the estimate:

‖θ‖W 1,p(Ω)/R ≤ C
(
‖h‖Lp(Ω) + ‖g · n‖

W−1/p,p(Γ)

)
. (2.18)

Set u0 = ∇θ. By step i), there exists a unique (z , q) ∈ Lp(Ω)×W−1,p(Ω)/R solution of problem:

−∆z +∇q = f +∇h and ∇ · z = 0 in Ω, z = g − u0|Γ on Γ,

where the characterization given by Lemma 2.3 implies that ∇h ∈ (Xp′(Ω))
′ and g − u0|Γ

satisfies the hypothesis of Step i). Finally, the pair of functions (u , q) = (z + u0, q) is the

required solution.
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Theorem 2.10. Let f, h, g satisfy (2.13) and (2.10). Then, the Stokes problem (S) has exactly

one solution u ∈ Lp(Ω) and q ∈ W−1,p(Ω)/R. Moreover, there exists a constant C > 0 depending

only on p and Ω such that:

‖u‖Lp(Ω) + ‖q‖W−1,p(Ω)/R ≤ C
{
‖f‖[Xr′,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖

W−1/p,p(Γ)

}
(2.19)

Moreover u ∈ Tp,r(Ω) and

‖u‖Tp,r(Ω) ≤ C
{
‖f‖[Xr′,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖

W−1/p,p(Γ)

}
.

In particular, if f ∈ W−1,r0(Ω) and h ∈ Lr0(Ω) with r0 = 2p/(2 + p), then (u, q) ∈ Lp(Ω) ×

W−1,p(Ω) with the corresponding estimates.

Proof. If we want to use hypotheses f ∈ (Xr′,p′(Ω))
′ instead of f ∈ (Xp′(Ω))

′ and h ∈ Lr(Ω)

instead of h ∈ Lp(Ω), appearing in Definition 2.9 and Proposition 2.2, then the differences on

the proof are linked to:

• Instead of 〈f ,w〉Ω, we have: 〈f ,w〉[Xr′,p′(Ω)]′×Xr′,p′ (Ω) for w ∈ Yp′(Ω).

Observe that Yp′(Ω) ⊂ Xr′,p′(Ω) if 1
r ≤ 1

p + 1
3 , which is the case defined in Lemma

2.5. Therefore, the same study can be made, only replacing the bound ‖f ‖[Xp′ (Ω)]′ by

‖f ‖[Xr′,p′(Ω)]′ .

• Now, we solve problem (N) with h ∈ Lr(Ω). Problem (N) is equivalent to the problem:

Find θ ∈ W 1,p(Ω)/R such that:

∀ϕ ∈ W 1,p′(Ω),

∫

Ω
∇θ · ∇ϕdx = 〈g · n , ϕ〉Γ −

∫

Ω
hϕdx

which is well defined for any ϕ ∈ W 1,p′(Ω) (observe that W 1,p′(Ω) →֒ Lr′(Ω) if 1
r ≤ 1

p +
1
3).

The mapping ℓ : ϕ 7→ 〈g ·n , ϕ〉Γ −

∫

Ω
hϕdx defines an element of the dual (W 1,p′(Ω)/R)′

because 〈ℓ, 1〉 = 0. Furthermore, an inf-sup condition is verified. Therefore, the problem

(N) has a unique solution θ ∈ W 1,p(Ω)/R and satisfies the estimate:

‖θ‖W 1,p(Ω)/R ≤ C
(
‖g · n‖W−1/p,p(Γ) + ‖h‖Lr(Ω)

)

Remark 2.11.

i) Observe that in [18] Theorem 3, the domain in R
3 considered is of class C2,1 instead of

class C1,1. Moreover, the divergence term h ∈ Lp(Ω) instead of h ∈ Lr(Ω). The regularity

considered for f , taking into account Lemma 2.3, is the same as we consider (f is the

divergence of a tensor in L
r(Ω) because of the gradient part can be associated to the

pressure). But for the divergence condition h, Galdi et al. consider h ∈ Lp(Ω), which is a

space smaller than that considered in this work (h ∈ Lr(Ω) for 1
r ≤ 1

p +
1
3). Moreover, our

solution is obtained in the space Tp,r(Ω) which has been clearly characterized contrary
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to the space Ŵ1,p(Ω) appearing in [18] which is not characterized, is completely abstract

and is obtained as the closure of W1,p(Ω) for the norm

‖u‖
Ŵ1,p(Ω)

= ‖u‖Lp(Ω) + ‖A−1/2
r Pr∆u‖Lr(Ω),

where Ar is the Stokes operator with domain equal to W2,p(Ω) ∩W1,p
0 (Ω) ∩ Lp

σ(Ω) and

Pr is the Helmholtz projection operator from Lr(Ω) onto Lr
σ(Ω).

ii) The same type of consideration about the domain and the space of solutions Tp,r(Ω) can

be made in [17] Theorem 1.2. In this case, the regularity considered for f , taking into

account Lemma 2.3, is the same as we consider; and the space of regularity for u they

obtained is the same of us. However, they say that condition over f can be weaken by

A−1
p Ppf ∈ Lp

σ(Ω) (see [17] Remark 1.6), but this condition is not clearly characterized.

Corollary 2.12. (See Corollary 3 in [10]) Let f , h, g satisfy (2.10) and f = ∇ · F0 + ∇f1

with F0 ∈ L
r(Ω), f1 ∈ W−1,p(Ω), h ∈ Lr(Ω), g ∈ W1−1/r,r(Γ). Then the solution u given

by Theorem 2.10 belongs to W1,r(Ω). If moreover f1 ∈ Lr(Ω), then the solution q given by

Theorem 2.10 belongs to Lr(Ω). In both cases, we have the corresponding estimates.

Remark 2.13. The space Tp,r(Ω) is an intermediate space between W1,r(Ω) and Lp(Ω), because

of

W1,r(Ω) →֒ Tp,r(Ω) when
1

r
≤

1

p
+

1

n
.

Remark 2.14. i) First, we have as consequence of Proposition 2.2 the following Helmholtz

decomposition: for any f ∈ (Xp′(Ω))
′, there exist ψ ∈ W−1,p(Ω) and q ∈ W−1,p(Ω) such

that

f = curl ψ +∇q, div ψ = 0 in Ω.

ii) In the same way, suppose that f = ∇·F with F ∈ L
p(Ω), h ∈ Lp(Ω) and g ∈ W1−1/p,p(Γ)

verifying the compatibility condition (2.10). Then, the solution (u , q) ∈ Lp(Ω)×W−1,p(Ω)

given by Theorem 2.10 satisfies (u , q) ∈ W1,p(Ω)× Lp(Ω) with the appropriate estimate.

Corollary 2.15. Let h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ) verifying the compatibility condition

(2.10) with 1
r ≤ 1

p +
1
n and r ≤ p. Then, there exists at least one solution u ∈ Tp,r(Ω) verifying

∇ · u = h in Ω, u = g on Γ.

Moreover, there exists a constant C = C(Ω, p, r) such that:

‖u‖Tp,r(Ω) ≤ C
(
‖h‖Lr(Ω) + ‖g‖

W−1/p,p(Γ)

)
.

The following corollary gives Stokes solutions (u , q) in fractionary Sobolev spaces of type

Wσ,p(Ω)×W σ−1,p(Ω), with 0 < σ < 2.

Corollary 2.16. Let s be a real number such that 0 ≤ s ≤ 1.
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i) Let f = ∇ · F0 +∇f1, h and g satisfy the compatibility condition (2.10) with

F0 ∈ Ws,r(Ω), f1 ∈ W s−1,p(Ω), g ∈ Ws−1/p,p(Γ), h ∈ W s,r(Ω),

with 1
r ≤ 1

p + 1
2 and r ≤ p. Then, Stokes Problem (S) has exactly one solution (u , q) ∈

Ws,p(Ω)×W s−1,p(Ω)/R satisfying the estimate

‖u‖Ws,p(Ω) + ‖q‖W s−1,p(Ω)/R ≤ C (‖F0‖Ws,r(Ω) + ‖f1‖W s−1,p(Ω) + ‖h‖W s,r(Ω) + ‖g‖
Ws−1/p,p(Γ))

ii) Assume that f ∈ Ws−1,p(Ω), g ∈ Ws+1−1/p,p(Γ), h ∈ W s,p(Ω), with the compatibility

condition (2.10). Then, Stokes Problem (S) has exactly one solution (u , q) ∈ Ws+1,p(Ω)×

W s,p(Ω)/R with

‖u‖Ws+1,p(Ω) + ‖q‖W s,p(Ω)/R ≤ C (‖f ‖Ws−1,p(Ω) + ‖h‖W s,p(Ω) + ‖g‖
Ws+1−1/p,p(Γ))

Remark 2.17. We can reformulate the point ii) as follows. For any

f ∈ W−s,p′(Ω), h ∈ W−s+1,p′(Ω), g ∈ W2−s−1/p′,p′(Γ),

with 0 ≤ s ≤ 1, then problem (S) has a unique solution (u , q) ∈ W2−s,p′(Ω)×W 1−s,p′(Ω)/R.

The following theorem gives solutions for external forces f ∈ Ws−2,p(Ω) and divergence condition

h ∈ W s−1,p(Ω) with 1/p < s < 2. If p = 2, we can obtain solutions in H1/2+ε(Ω) ×H1/2+ε(Ω),

0 < ε ≤ 3/2.

Theorem 2.18. Let s be a real number such that 1
p < s ≤ 2. Let f, h and g satisfy the

compatibility condition (2.10) with

f ∈ Ws−2,p(Ω), h ∈ W s−1,p(Ω) and g ∈ Ws−1/p,p(Γ).

Then, the Stokes problem (S) has exactly one solution (u, q) ∈ Ws,p(Ω)×W s−1,p(Ω)/R satisfying

the estimate

‖u‖Ws,p + ‖q‖W s−1,p/R ≤ C (‖f‖Ws−2,p(Ω) + ‖h‖W s−1,p + ‖g‖
Ws−1/p,p(Γ)) (2.20)

Remark 2.19. i) Remark 1.8 point ii) and iii) holds.

ii) If n = 2, Ω is a convex polygon, with Γ = ∪Γi,Γi linear segments, f = 0, h = 0 and

g ∈ Hs(Γi), for i = 1, . . . , I0, −1/2 < s < 1/2, then u ∈ Hr(Ω) for any r < s + 1/2 and

q ∈ Hs−1/2(Ω) ([27]).

iii) If Ω is a simply connected domain of R2, a result of existence of a u verifying the Stokes

equations for f = 0, h = 0 and g ∈ L2(Γ) (with
∫
Γ g · n = 0) can be seen in [12]. An

analogous result is also presented when g ∈ L∞(Γ).

iv) When Ω is bounded Lipschitz domain in R
n, with n ≥ 3, f = 0, h = 0, g ∈ L2(Γ)

(respectively g ∈ W1,2(Γ)) , with
∫
Γ g · n = 0, then u ∈ H1/2(Ω) (respectively u ∈

H3/2(Ω) and q ∈ H−1/2(Ω) (respectively q ∈ H1/2(Ω)) (see Fabes et al. [16]). If g ∈ Lp(Γ),

there exists ε = ε(Ω) > 0 such that if 2 − ε ≤ p ≤ 2 + ε, then u ∈ W1−1/p,p(Ω) and

q ∈ W−1/p,p(Ω).
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v) When Ω ⊂ R
3 is only a bounded Lipschitz domain, with connected boundary, the same

result has been proved by [31] with f = 0 and h = 0 for any p ≥ 2. The case of Ω ⊂ R
n

for n ≥ 4 suppose that for f = 0, h = 0 and g ∈ Lp(Ω), p ∈

[
2,

2(n − 1)(n − 2)

n(n− 3)

]
there

exists a unique u ∈ Lp1(Ω) for p1 =
np

p− 1
.
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