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Chapter 12

MathTIDES reference guide

12.1 Representing ODEs in MathTIDES

The Taylor Series Method integrates only first order ODE systems. However, a higher

order ODE, with certain conditions, may be transformed into a first order ODE system, a

dynamical system described by a potential function V leads to a first order ODE system

(ẏ = Y , Ẏ = F = −∇V ), and the Hamilton’s equations obtained from a Hamiltonian H
are a first order ODE system.

In MathTIDES a first order ODE is represented by means of an expression with head

FirstOrderODE$. However, the user will declare the ODE with an expression with one of

the following heads:

• FirstOrderODE : declares a first order ODE directly.

• NthOrderODE : declares a first order ODE from a k-th order ODE.

• PotentialToODE : declares a first order ODE from a potential function V .

• HamiltonianToODE : declares a first order ODE from a hamiltonian function H.

The result in all cases is an expression with head FirstOrderODE$ that contains the

internal representation in MathTIDES of a first order differential equation.

12.1.1 First order differential equations

A first order ODE is represented by the equation

dy

dt
= f(t,y(t); p), y(t0) = y0, y ∈ IRn, p ∈ IRm, (12.1)

where
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• t is the independent variable. It may appear explicitely or not.

• y = (y1, . . . , yn) is the n-dimensional vector of variables (n > 0).

• p = (p1, . . . , pm) is the m-dimensional vector of parameters (m ≥ 0).

• f = (f1, . . . , fn) is the n-dimensional vector of functions (expressions) representing

the first order derivatives of the variables.

To declare a first order differential equation we will use an expression with the head

FirstOrderODE and the following arguments:

• First argument: the list of the expressions {f1, . . . , fn} of the derivatives of the

variables. The number n of elements of the list must be equal to the number of

variables. If n = 1 the argument is not a list.

• Second argument: the symbol that represents the independent variable t. This

symbol may appear explicitly, or not, in the first argument.

• Third argument: the list {y1, . . . , yn} of symbols that represents the variables. It

has the same number of elements than the first argument. If n = 1 the argument is

not a list.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

If the number of parameters m is equal to 1 the argument is not a list. If there is

no parameter (m = 0) this argument may be avoided.

To illustrate the use of FirstOrderODE let us take two examples. The first one is the

system of equations
dx

dt
= y,

dy

dt
= −x. (12.2)

To declare this ODE we will write the expression

In[33]:=

sincosODE = FirstOrderODE[{y, -x}, t, {x, y}]

Out[33]=

FirstOrderODE$[{y, -x}, t, {x, y}, {}]

The second example is the equation that define, for the initial condition x(0) = 0, the

elliptic integral of the first kind

dx

dt
=

1√
1− k2 sin2 t

, (12.3)
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that we declare with the expression

In[34]:=

ellF = FirstOrderODE[1/Sqrt[1 - k^2 Sin[t]^2], t, x, k]

Out[34]=

FirstOrderODE$[{1/Sqrt[1 - k^2 Sin[t]^2]}, t, {x}, {k}]

where the modulus k acts as a parameter.

12.1.2 Higher order differential equations

Let us consider an ODE system represented by means of the expressions

F (t,y,
dy

dt
,
d2y

dt2
, . . . ,

dky

dtk
; p) = 0, y(t0) = y0, . . . ,

dky

dtk
(0) = y

(k)
0 , (12.4)

where F ,y ∈ IRn, and p ∈ IRm.

Let us suppose that all the derivatives y
(k)
1 , . . . y(k)

n of the greatest order k appear

explicitely in (12.4) then, solving the system (12.4) in y
(k)
1 , . . . y(k)

n , if it is possible, we

transform the k-th order ODE into a first order ODE by introducing the derivatives
dy

dt
,
d2y

dt2
, . . . ,

dk−1y

dtk−1
as new variables of the system.

MathTIDES tranforms automatically a k-th order ODE into a first order ODE by using

an expression with head NthOrderODE and the following arguments

• First argument: the list of the expressions {F1, . . . , Fn} that represent the system

of equations with a format defined by the following rules:

– The derivatives of a variable x must be represented by quotes: x, x’, x’’,

x’’’, ..

– The equations are represented by means of the symbol ==

– The number of equations is equal to the number of variables.

– If the number of variables is equal to one, the first and the third arguments

are not lists.

– The derivatives of greater order of all the variables must appear in the system.

• Second argument: the symbol that represents the independent variable t. This

symbol may appear explicitely or not in the first argument.
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• Third argument: the list {y1, . . . , yn} of symbols that represents the variables. It

has the same number of elements than the first argument. If n = 1 the argument is

not a list.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

If the number of parameters m is equal to 1 the argument is not a list. If there is

no parameter (m = 0) this argument may be avoided.

A k-th order differential equation is transformed into an equivalent system of first

order differential equations by extending the number of variables. If a variable has the

symbol x, the derivatives of this variable are converted into new variables whose symbol

begins by x and ends by $di, with i the order of the variable:

x’ ---> x$d1

x’’ ---> x$d2

x’’’ ---> x$d3

The order of the variables of the final system of equations is the following:

1. Variables (in the same order that before)

2. First derivatives (mantaining the relative order of the variables)

3. Second derivatives (mantaining the relative order of the variables)

4. ........

To illustrate the use of NthOrderODE let us take two examples. The first one is the

harmonic oscillator
d2x

dt2
+ ωx = 0. (12.5)

To declare this differential equation in MathTIDES we will write the expression

In[35]:=

oscillator = NthOrderODE[x’’ + w x == 0, t, x, w]

Out[35]=

FirstOrderODE$[{x$d1, -x w}, t, {x, x$d1}, {w}]

Let us observe the list of variables {x, x$d1} of the transformed system.

The second example is the following third order ODE
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x′′′ − 2y′′ + x′ = 2x2 − y,

4y′′′ − 2x′′y′ = 2x+ y2.

In MathTIDES we will write

In[36]:=

ntheq = NthOrderODE[

{x’’’ - 2 y’’ + x ’ == 2 x^2 - y,

4 y’’’ - 2 x ’’ y’ == 2 x + y^2}, t, { x, y}]

Out[36]=

FirstOrderODE$[{x$d1, y$d1, x$d2, y$d2, 2 x^2 - x$d1 - y + 2 y$d2,

1/4 (2 x + y^2 + 2 x$d2 y$d1)}, t, {x, y, x$d1, y$d1, x$d2,

y$d2}, {}]

Let’ s observe again the list of variables {x, y, x$d1, y$d1, x$d2, y$d2} of the

transformed system.

12.1.3 From potential to first order ODEs

Let’s suppose a potential V (y,p) in the variables y ∈ IRn, with m parameters p ∈ IRm,

then the equation ÿ = −∇V (y,p) will be obtained as a first order ODE by means of the

MathTIDES expression of head PotentialToODE that has the following arguments:

• First argument: the expression of the potential V . This expression is never a list.

• Second argument: the symbol that represents the independent variable t. This

symbol does not appear in the potential function.

• Third argument: the list {y1, . . . , yn} of symbols that represents the variables. If

n = 1 the argument is not a list.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

If the number of parameters m is equal to 1 the argument is not a list. If there is

no parameter (m = 0) this argument may be avoided.
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As an example let us take the Keplerian problem, in which the potential is given by

V =
µ√

x2 + y2 + z2
, (12.6)

where µ represents a parameter.

In[37]:=

PotentialToODE[-mu/Sqrt[x^2 + y^2 + z^2], t, {x, y, z}, mu]

Out[37]=

FirstOrderODE$[{x$d1, y$d1,

z$d1, -((mu x)/(x^2 + y^2 + z^2)^(3/2)), -((

mu y)/(x^2 + y^2 + z^2)^(3/2)), -((mu z)/(x^2 + y^2 + z^2)^(

3/2))}, t, {x, y, z, x$d1, y$d1, z$d1}, {mu}]

PotentialToODE computes the gradient of the potential and transforms the second

order equations into a first order equations duplicating the number of variables {x, y,

z, x$d1, y$d1, z$d1}. The symbols of the new variables (derivatives) are formed by

adding $d1 to the symbol of the duplicate variables.

12.1.4 Hamilton’s equations

Let’s suppose a dynamical system described by a Hamiltonian H(t,x,X,p) where

t is the independent variable (it may appear explicitely or not), x is the n-dimensional

vector of variables, X is the n-dimensional vector of associated momenta and p is the

m-dimensional vector of parameters. Then, the first order ODE that represents the dy-

namical system is given by the Hamilton’s equations

dx

dt
=
∂H
∂X

,
dX

dt
= −∂H

∂x
. (12.7)

With MathTIDES we create the differential equations directly from the Hamiltonian

by using an expression with the head HamiltonianToODE and the following arguments:

• First argument: the expression of the Hamiltonian H. This expression is never a

list.

• Second argument: the symbol that represents the independent variable t. This

symbol may appear or not in the Hamiltonian.
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• Third argument: the list {x1, . . . , xn, X1, . . . Xn} of symbols that represents the

variables and momenta. The length of this list is always an even number. The order

of the momenta corresponds with the order of the associated variables.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

If the number of parameters m is equal to 1 the argument is not a list. If there is

no parameter (m = 0) this argument may be avoided.

As an example we take the planar Keplerian problem whose hamiltonian is given by

the expression

H =
X2 + Y 2

2
− µ√

x2 + y2
, (12.8)

where the variables (x, y) represent the position, the momenta (X, Y ) represent the ve-

locity and µ represents a parameter.

In[38]:=

hamkep = HamiltonianToODE[(X^2 + Y^2) /2 -mu/Sqrt[x^2 + y^2],

t, {x, y, X, Y}, mu]

Out[38]=

FirstOrderODE$[{X,

Y, -((x mu)/(x^2 + y^2)^(3/2)), -((y mu)/(x^2 + y^2)^(

3/2))}, t, {x, y, X, Y}, {mu}]

12.2 Creating the TSM Integrator with MathTIDES

12.2.1 How to create the TSM Integrator

To write the C or Fortran code to use together with the TIDES library we will use

an expression with head TSMCodeFiles and the following arguments:

• First argument: the first order differential equation. This is an expression with

head FirstOrderODE$ created by one of the previously described expressions.

• Second argument: an string that represents name of the files. With this name

MathTIDES writes several files (depending on the options) with extension .h, .c or

.f

• Options: optional arguments described later in this chapter.
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12.2.2 Files written with TSMCodeFiles

Let’s suppose that we write "name" as the second argument of TSMCodeFiles. Then

TSMCodeFiles writes the following files:

• Minimal Version in C (minc-tides)

– A driver (main program) named "dr name.c".

– Two files "name.c", "name.h" with the differential equation (ODE files).

– Compiling and running the previous files with the file "minc tides.c" (writ-

ten with option TIDESFiles), or linking them with the library LibTIDES we

create the executable program.

• Minimal Version in FORTRAN (minf-tides)

– A driver (main program) named "dr name.f".

– A file "name.f" with the differential equation.

– Compiling and running the previous files with the file "minf tides.f" (writ-

ten with option TIDESFiles), or linking them with the library LibTIDES we

create the executable program.

• Standard versions (dp-tides and mp-tides)

– A driver named "dr name.c".

– Two files "name.h" and "name.c" with the differential equation.

– Compiling "dr name.c" and "name.c" and linking them with LibTIDES (in-

cluding libmpfr.a and libgmp.a with the version mp-tides) we obtain the

executable to integrate the ODE.

The files written by MathTIDES are saved on the default directory of Mathematica.

The user may change the default directory by using SetDirectory. For instance to change

the default directory to the directory where the local Mathematica notebook is, use the

expression

In[39]:=

SetDirectory[NotebookDirectory[]];

The expression TSMCodeFiles shows on the screen the names of the written files and

the directories where they had been stored.
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12.2.3 Options to change the version of the integrator and the files written

by TIDES

12.2.3.21 Option: Driver

By default a driver with the main program is created. With Driver -> False ,

MathTIDES does not write a driver, but it writes the ODE files.

12.2.3.22 Option: ODEFiles

With the option ODEFiles -> False , MathTIDES does not write the ODE files.

The default is True. This option is useful after we create an integrator and we want to

change only the driver.

12.2.3.23 Option: MinTIDES

MinTIDES is used to create files to use with the minimum versions of TIDES.

MinTIDES -> "C" creates the C minimum version minc-tides.

MinTIDES -> "Fortran" creates the Fortran minimum version minf-tides.

The default option, MinTIDES -> False , creates the standard version.

12.2.3.24 Option: Precision

When the option MinTIDES is not used an standard version is created. We choose

between dp-tides or mp-tides by means of the option Precision. By default this option

has the value Precision->Double . This means that the standard double precision

version dp-tides is created.

With the options Precision->Multiple or Precision->Multiple[n] a multiple

precision version mp-tides is created. In the second case the integer n declares the number

of precision digits to use in the integration.

If we want only the ODE files, and we do not want the driver, it is sufficient to use

the option Precision->Multiple because these files work independently of the default

precision that must be declared on the driver. When we create a driver we need the option

Precision->Multiple[n], where the integer n is the number of precision digits declared

on the driver.

12.2.3.25 Option: TIDESFiles

With the option TIDESFiles -> True one of the files minc tides.c, minf tides.f,

dp tides.h or mp tides.h (depending on the version) is written.

12.2.4 Options to change how to call the integrator

The following options only changes the driver and they do not affect to the ODE files.

12.2.4.26 Option: InitialConditions
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With the option InitialConditions -> { ...} we change, on the driver, the

initial value of the vector of variables. The length of the list must be equal to the number

of variables. If we do not use this options stars, ******, instead of numerical values,

appear on the driver.

12.2.4.27 Option: ParametersValue

With the option ParametersValue -> {...} we change, on the driver, the value

of the parameters. The length of the list must be equal to the number of parameters.

If we do not use this options stars, ******, instead of numerical values, appear on the

driver.

12.2.4.28 Option: IntegrationPoints

With this option we declare, on the driver, the list of points in which the solution is

computed. There are several versions of this option:

• IntegrationPoints -> {t0, Delta[dt], Points[k]}

– t0 is the initial integration point (real number).

– dt is the interval between points in dense output (real number). It can be

positive or negative.

– k is an integer with the number of equidistant points in which the solution is

computed.

– With this option the solution is computed in {t0, t1, . . . , tk} = {t0, t0+dt,

t0+2*dt, ..., t0+k*dt}.

• IntegrationPoints -> {t0, tf, Points[k]}

– t0 is the initial integration point (real number).

– tf is the final integration point (real number). It can be lesser or greater than

t0.

– k is an integer with the number of equidistant points in which the solution is

computed. dt for dense output is equal to (tf-t0)/k.

– With this option the solution is computed in {t0, t1, . . . , tk} = {t0, t0+dt,

t0+2*dt, ..., t0+k*dt = tf}.

• IntegrationPoints -> {t0, tf, Delta[dt]}

– t0 is the initial integration point (real number).

– tf is the final integration point (real number). It can be lesser or greater than

t0.
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– dt is the interval between points in dense output (real number). If tf is lesser

than t0, it must be negative.

– With this option the solution is computed in {t0, t1, . . . , tk} = {t0, t0+dt,

t0+2*dt, ... t0+k*dt}, with k such us t0+k*dt <= tf < t0+(k+1)*dt.

Not always the last point of the dense output coincides with the end integration

point tf.

• IntegrationPoints -> {t0, t1, ..., tf}

– t0 is the initial integration point (where the initial conditions are given). It is

a real number.

– t1,...,tf are the points where we want to compute the solution. They all

are real numbers. tf is the final integration point.

– With this option the option is only valid for the standard versions. In minimal

versions you can use IntegrationPoints -> {t0, tf}, with the initial and

final point, for non-dense output.

– {t0, t1, ..., tf} are in order (increasing or decreasing). They can be non-

equidistant points.

12.2.4.29 Option: RelativeTolerance, AbsoluteTolerance

Declares the value of the tolerances in the application of the method.

RelativeTolerance -> rtol

AbsoluteTolerance -> atol

rtol and atol are real numbers. The default value, for both tolerances, is 10(1−p), where

p is the number of precision digits declared with the option Precision -> Multiple[p]

(10−16 for double precision integration). If only one tolerance is declared both are taken

equal.

12.2.5 Option to compute the value of extra functions along the solution

12.2.5.30 Option: AddFunctions

This option changes the ODE files and the driver.

The integration of the system (1.1) gives the function y(t), i.e. the evolution over the

time of the variables. Sometimes, we are interested in the evolution, along the solution

of the system, of a dynamical variable defined by a function G(t,y,p), i.e. the function

G(t) = G(t,y(t),p). Writing the option AddFunctions-> {G1, G2,...} we redefine
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the differential equation to extend the application of the Taylor method to find the time

evolution of the functions G1,G2, ...

For instance, let’s suppose we want to check the value of the tangent, together with

the sine and cosine in the system (6.1), then

In[40]:=

sincos = FirstOrderODE[{y, -x}, t, {x, y}];

In[41]:=

TSMCodeFiles[sincos, "sincosf", AddFunctions -> {x/y} ];

In the example of the hamiltonian of the planar keplerian problem we may check how

the energy maintains its value over the time, to do that we check the evolution of the

Hamiltonian

In[42]:=

kepHam = (v^2 /2 - mu/r)/.{r -> Sqrt[x^2 + y^2], v -> Sqrt[X^2 + Y^2]};

In[43]:=

hamkepener = HamiltonianToODE[kepHam, t, {x, y, X, Y}, mu];

In[44]:=

TSMCodeFiles[hamkepener, "hamkepener", AddFunctions -> {kepHam}];

12.2.6 Option to compute partial derivatives

12.2.6.31 Option: AddPartials

This option changes only the driver.

Together with the time evolution of the variables and functions we may compute

the evolution of the partial derivatives of the variables (and partial derivatives of the

functions) with respect to the initial conditions and with respect to the parameters. The

option to do that has four possible formats

• AddPartials-> {{u,v,..}, s}

• AddPartials-> {{u,v,..}, s, Until}
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• AddPartials-> {{u,v,..}, s, Only}

• AddPartials-> {{u,v,..}, listOfOrders}

The list {u,v,...} represents the symbols of the elements with respect to we compute

the derivatives. The symbols of this list are symbols of the variables or symbols of the

parameters. If the symbol corresponds to a variable the partial derivatives with respect

to the initial value of this variable is computed. If the symbol corresponds to a parameter

the partial with respect to the parameter is computed.

An integer s represents the total maximum order of the partial derivatives to compute.

If no third argument appears (or the third argument is the symbol Until) , all the

partial derivatives until total order s are computed. If the third argument is the symbol

Only, only the partial derivatives of total order s are computed.

If the second argument, listOfOrders, is a list, only the partial derivatives of the

orders in the list are computed. Then, supposing an ODE in which one of the variables

has the symbol y, and one of the parameters has the symbol a,

• AddPartials-> {{y,a}, 2} or AddPartials-> {{y,a}, 2}, Until} com-

pute

∂

∂y0

,
∂

∂a
,

∂2

∂y2
0

,
∂2

∂y0∂a
,

∂2

∂a2
.

• AddPartials-> {{y,a}, 2, Only} computes
∂2

∂y2
0

,
∂2

∂y0∂a
,

∂2

∂a2
.

• AddPartials-> {{y,a}, {{1,2},{2,3}}} computes
∂3

∂y0∂a2
,

∂5

∂y2
0∂a

3
.

If a function G is added with the option AddFunction, the partial derivatives of this

function with respect to the corresponding variables are added to the computation.

12.2.7 Options to change the output of the integrator

The following options only changes the driver and they do not affect to the ODE files.

12.2.7.32 Option: Output

This options declares where the solution (dense or not) is written. There are two

posiblilities

Output -> Screen

Output -> "file"
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In the first case the solution is written on the screen, in the second case into a file named

file. By default no output is written.

In the minimal versions, if the output is not sending to the screen, the solution in t0

and the solution in tf are written on the screen.

12.2.7.33 Option: DataMatrix

This option only works for standard versions. By default DataMatrix->False, but

there are two other posibilities

DataMatrix -> True

DataMatrix -> "nameDM"

DataMatrix declares a bidimensional array where the solution is stored. In the first

case the name of the data matrix is the name of the file joined to " DataMatrix", or

" EventsVector" when the option is used to compute events. In the second case the

name is nameDM.

The dimensions of the matrix are declared inside the LibTIDES Taylor integrator. The

number of rows corresponds to the number of points where the solution is computed

(including the initial point as the first row), or the number of found events when the

option is used to compute events. The number of columns must be sufficient to store, in

this order

• The point ti.

• The value of the variables in ti: x(ti).

• The value of the functions Gi(ti,x(ti),p) if AddFunction is used or the event func-

tion when the option is used to compute events.

• The value of the partial derivatives derivatives if they are computed.

12.2.8 Options to compute events

This options changes both, the driver and the ODE files, because, to compute events,

it is necessary to compute an extra function.

12.2.8.34 Option: FindZeros

MathTIDES writes, with the option FindZero->G , the code to compute the zeros of

G(y(t)) inside an interval. G is the Mathematica expression of the function G(y).

12.2.8.35 Option: FindExtrema

104



MathTIDES writes, with the option FindExtrema->G , the code to compute the local

extrema (maxima and minima) of G(y(t)) inside an interval. G is the Mathematica

expression of the function G(y).

12.2.8.36 Option: FindMinima

MathTIDES writes, with the option FindMinima->G , the code to compute the local

minima of G(y(t)) inside an interval. G is the Mathematica expression of the function

G(y).

12.2.8.37 Option: FindMaxima

MathTIDES writes, with the option FindMaxima->G , the code to compute the local

maxima of G(y(t)) inside an interval. G is the Mathematica expression of the function

G(y).

12.2.8.38 Option: EventTolerance

With the option EventTolerance->... we declare the tolerance of the numerical

method used to find the zeros of a polynomial (a number is a zero if its absolute value

is less than the tolerance). The default value is 10−16 if double precision is used, or

10−p, where p is the number of precision digits declared with the option Precision ->

Multiple[p].

12.2.8.39 Option: EventsNumber

With the option EventsNumber->... we declare the maximum number of events

that we want to compute inside the integration interval. Sometimes there are less events

than this maximum number. The default options is EventsNumber->0 that computes

all the events inside the interval. When TIDES finds all the desired events before to reach

the final integration point, the integration stops.

12.2.9 Options to change the parameters of the TSM Integrator in the driver

The following options change the parameters of the numerical integrator. The default

values are the best election for the most general cases and usually it is not necessary to

change them. They only changes the driver and they do not affect to the ODE files.

12.2.9.40 Option: Factor1, Factor2, Factor3

Factor1->... , Factor2->... and Factor3->... change the parameters fac1,

fac2 and fac3 respectively.

12.2.9.41 Option: MaxStepRatio, MinStepRatio
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MaxStepRatio->... and MinStepRatio->... change the parameters rmaxstep

and rminstep respectively.

12.2.9.42 Option: MinOrder

MinOrder->... changes the parameter minord.

12.2.9.43 Option: OrderIncrement

OrderIncrement->... changes the parameter nordinc.

12.2.9.44 Option: DefectErrorControl

DefectErrorControl->... declares if the TSM Integrator uses the defect error

control or not.

12.2.9.45 Option: MaxIterationsNumber

MaxIterationsNumber->... changes the parameter nitermax. This parameter is

used when the option DefectErrorControl is declared. If the TSM Integrator reaches

the maximum iteration number without achieving the DefectErrorControl condition, it

shows an error message.

12.2.9.46 Option: KahanSummation

KahanSummation->... declares if the TSM Integrator uses the Kahan summation

when computes the central point of the series expansion. By default its value is True.

This options works only with the standard version.

12.2.9.47 Option: CompensatedHorner

CompensatedHorner->... declares if the TSM Integrator uses the Compensated

Horner algorithm to evaluate the Taylor series. By default its value is False. This

options works only with the standard version.

12.3 MathTIDES function PartialDerivativesText

Another way to construct the driver to compute partial derivatives is by creating the

integrator without using the option AddPartials, and change the driver manually (see

10.4). To do that we need to use the MathTIDES function PartialDerivativesText,

that has four arguments:

1. A list with the symbols of the variables.

2. A list with the symbols of the parameters.

3. The third argument is equal to the expression after the arrow of the option AddPartials
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4. An string that contains a name to construct the name of the array used in the driver.

The output is the text of the initialization of the array to compute partial derivatives.

Copy and paste this text into the driver, and declare the array, and the partial derivatives

will be computed.
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Chapter 13

LibTIDES reference guide

13.1 LibTIDES and MPFR library

LibTIDES handles multiple–precision by using the MPFR library. There is not neces-

sary to know MPFR if one uses the driver created by MathTIDES without modification,

but, when one tries to understand the driver or one wants to change it, it is useful to

read the user manual of MPFR and learn how TIDES uses MPFR. Let us begin by several

basic ideas about MPFR.

• In MPFR the basic data type is mpfr t. It represents a real number with the desired

binary precision digits.

• Every mpfr t variable must be initialized by using the function mpfr init2(var,

prec), where var represents the variable to initialize and prec represents its preci-

sion (in bits).

• The precision of each mpfr t variable represents the number of bits used when the

variable is stored. By default precision is 53 bits (the number of bits used for a

double).

• When MPFR makes any operation with a mpfr t variable the way in which the

result is rounded must be declared. The way to declare the rounding mode is

by passing to the function that makes the operation one of the following argu-

ments: MPFR RNDN, MPFR RNDZ, MPFR RNDU, MPFR RNDD (or GMP RNDN, GMP RNDZ,

GMP RNDU, GMP RNDD with a version of the MPFR library previous to the version

3.0).

• The way in which the driver created by MathTIDES gives value to the mpfr t vari-

ables is by using the function: mpfr set str(var, str, b, rnd). After calling
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this function the variable var takes the value represented by the string str in base

b, and rounded in the way represented by rnd.

The precision and the rounding mode can be changed in MPFR for any variable and

any operation. However in TIDES we define a working precision and rounding mode and

we make all the operations and store every variable with the same precision and rounding

mode.

In TIDES we declare decimal precision instead of binary precision. The function

void set precision digits(int dprec)

declares that every mpfr t variable used in TIDES is stored with dprec decimals of pre-

cision. This function computes the number of necessary bits to work with this decimal

precision and store it in the global variable TIDES PREC, that is the second argument

used any time that mpfr init2 is called. TIDES PREC has a default value of 53 when

set precision digits() is not used. It means that TIDES works with MPFR but in

double precision (about 16 decimal digits).

The working rounding mode in TIDES is stored in the global variable TIDES RND. Its

default value is MPFR RNDN (GMP RNDN when a version of MPFR previous to the version

3.0 is used). To change the value of the working rounding mode use the function

void set rounding mode(mpfr rnd t rnd)

where rnd is one of the MPFR rounding modes.

13.2 LibTIDES functions to call the integrator

There are two LibTIDES functions to call the TSM Integrator in double precision.

void dp_tides_delta(DBLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

double *x, double *p,

double t0, double dt, int nipt,

double tolrel, double tolabs,

dp_data_matrix *dmat, FILE* fileout);
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void dp_tides_list(DBLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

double *x, double *p,

double *lt, int ntot,

double tolrel, double tolabs,

dp_data_matrix *dmat, FILE* fileout) ;

and two more in multiple precsion

void mp_tides_delta(MPLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

mpfr_t x[], mpfr_t p[],

mpfr_t tini, mpfr_t dt, int nipt,

mpfr_t tolrel, mpfr_t tolabs,

mp_data_matrix *dmat, FILE* fileout);

void mp_tides_list(MPLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

mpfr_t x[], mpfr_t p[],

mpfr_t lt[], int ntot,

mpfr_t tolrel, mpfr_t tolabs,

mp_data_matrix *dmat, FILE* fileout);

The arguments of these functions are all equal except for those arguments relative to

the integration points.

• The linked function: fcn is a pointer to the function that contains the ODE function.

In this argument we write the name used in the second argument of TSMCodeFiles.

• The partial derivatives information: pdd is a pointer to an integer that represents

an array with the necessary information to compute the desired partial derivatives

(see chapter 10). Use NULL when no partial derivative needs to be computed.
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• The dimensions of the problem: nvar, npar, nfun are three integer numbers that

represent, respectively, the number of variables, the number of parameters and the

number of extra functions to evaluate.

• Initial value of the variables: x is a pointer to a double (mpfr t) that represents an

array with nvar elements. On input it has the value of the initial conditions (value

of the variables at the initial point). On output it has the value of the variables at

the final integration point.

• Value of the parameters: p is a pointer to a double (mpfr t), or an array with npar

elements. It has the value of the parameters. If there is no parameter this argument

will be NULL.

• Integration points (cases dp tides delta, mp tides delta): the integration points

are represented by three arguments: two double (mpfr t) variables tini, dt, that

contain the initial point and the increment and a int variable nipt with the number

of equidistant points where we compute the solution (without including the initial

point).

• Integration points (cases dp tides list, mp tides list): the integration points

are represented by two arguments lt and ntot. lt is a pointer to a double (mpfr t)

that represents an array of dimension ntot that contains the list {t0, . . . , tk} of points

where the solution will be computed. These points can be non-equidistants. The

list must be ordered, but the order can be increasing or decreasing (for backward

integration).

• Tolerances: tolrel, tolabs are two double (mpfr t) variables with the relative

and absolute tolerance of the method.

• Output of the integrator: dmat is a pointer to a dp data matrix (or mp data matrix)

type that represent a data matrix where the output will be stored. fileout is a

pointer to a FILE where the output will be written on.

13.3 Computing the position of each element of the output

Usually, when we compute partial derivatives, it is very difficult to know the position,

at the output, of a particular element. The next two LibTIDES functions returns an integer

number with the position of a particular partial derivative at the output (screen, file or

data matrix). This position is zero based (0 means the first column, the time, i means

the (i+ 1)-th column). They return −1 if the corresponding derivative is not computed.

The value 0 is never returned because it corresponds to the column of the time t.
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long position_variable(int v, char* der, int nvar, int nfun, int *pdd);

long position_function(int f, char* der, int nvar, int nfun, int *pdd);

The arguments of these functions are the following

• The first argument is an integer number representing the index of the variable or

the index of the extra function. This index is zero based. i means the (i + 1)-th

variable or extra function.

• The second argument is an string of characters that represents the derivative. Let

us suppose we differentiate with respect to four elements ( intial conditions or pa-

rameters) named α, β, γ, δ, then the symbol "1/2/0/1" represents the derivative

∂4/∂α∂β2∂δ. The string "0/0/0/0" means no derivative, and when it is used in

position variable or position function gives the column position of the vari-

able or the extra function. If we differentiate with respect to only one variable the

separator "/" may be omitted.

• The third and fourth argument are the number of variables of the ODE and the

number of extra functions. They are the same arguments used when we call the

integrator.

• The last argument pdd is a pointer to an integer that represents an array with the

necessary information to compute the desired partial derivatives.

13.4 LibTIDES functions to compute events

LibTIDES has eight different functions to compute events. Four in double precision

void dp_tides_find_zeros(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,

double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

void dp_tides_find_extrema(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,

double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

void dp_tides_find_minimum(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,
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double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

void dp_tides_find_maximum(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,

double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

and four in multiple precision

void mp_tides_find_zeros(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

void mp_tides_find_extrema(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

void mp_tides_find_minimum(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

void mp_tides_find_maximum(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

The arguments in all cases represent the same elements:

• The linked function: fcn is a pointer to the function that contains the iterations

needful to integrate the ODE and obtain events. In this argument we write the

name used in the second argument of TSMCodeFiles.

• The dimensions of the problem: nvar, npar are two integer numbers that represent,

respectively, the number of variables and the number of parameters.
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• Initial value of the variables: x is a pointer to a double (mpfr t) that represents an

array with nvar elements.

• Value of the parameters: p is a pointer to a double (mpfr t), or an array with npar

elements. It has the value of the parameters.

• Integration points: the variables tini, tend represent the limits of the integration

interval where TIDES search the events. tini is the point where we give the initial

conditions. tini can be less or greater than tend.

• Tolerance: tol represents the tolerance in the numerical method to search zeros of

polynomials.

• Number of events: A pointer to the integer numevents, that represents the max-

imum number of events that we search inside the integration interval. If we find

all numevents events the integration ends before the final point of the interval. If

we pass a value numevents = 0, TIDES search all the events inside the interval. In

output the value of numevents is the number of found events.

• Output of the integrator: dmat is a pointer to a dp data matrix (or mp data matrix)

type that represent a data matrix where the output events will be stored. fileout

is a pointer to a FILE where the output will be written on.

13.5 Using data matrices to store the results

To store the results of the integration in a data matrix we have two new LibTIDES

data type named dp data matrix and mp data matrix, together with the functions to

handle it, and in MathTIDES the TSMCodeFiles option DataMatrix.

The new data types are declared in LibTIDES by means of the C structures

typedef struct dp_DM {

int rows;

int columns;

double **data;

} dp_data_matrix;

typedef struct mp_DM {

int rows;

int columns;

mpfr_t **data;

} mp_data_matrix;
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The dimensions of the matrix are declared inside the LibTIDES taylor integrator. The

number of rows corresponds to the number of points where the solution is computed

(including the initial point as the first row). The number of columns must be sufficient

to store, in this order

• The point ti.

• The value of the variables in ti: x(ti).

• The value of the functions Gi(ti,x(ti),p) if AddFunction is used.

• The value of the partials derivatives if they are computed (see chapter 10).

Inside the LibTIDES integration the memory space to store the bidimensional array is

created dynamically. LibTIDES do not free automatically the space of the data matrices.

LibTIDES do not free automatically the space of the data matrices. After using a data

matrix it is convenient to force LibTIDES to delete it. There are two functions to do that

void delete_dp_data_matrix(dp_data_matrix *dm);

void delete_mp_data_matrix(mp_data_matrix *dm);
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