
Part II

Learning to use TIDES by mean of

examples

21

Chapter 5

Integrating ODEs with TIDES

5.1 Seven steps to integrate ODEs with TIDES

To integrate ODEs with TIDES we need Mathematica and a C (or Fortran) com-

piler. We may decompose the work to integrate the ODE in seven steps: four steps in

Mathematica and three steps with a C (or Fortran) compiler.

1. With Mathematica:

(M.1) Load the package MathTIDES (see 5.2).

(M.2) Declare the work directory (see 5.3).

(M.3) Declare the differential equation (see 5.4).

(M.4) Write the C (or Fortran) code files to integrate the previously declared dif-

ferential equation. In this step we may choose between four different TSM

Integrators. There are two different files created with MathTIDES: the ODE

file and the driver (main program). The ODE file must be written with Math-

TIDES because it uses internal algorithms very difficult to create manually.

The driver may be written manually or by using MathTIDES (see 5.5).

2. With a C (or Fortran) compiler:

(C.1) Compile the files generated with MathTIDES.

(C.2) Link them with LibTIDES.

(C.3) Run the executable.

23

5.2 Step (M.1): loading MathTIDES

The first step in Mathematica is to load the package MathTIDES by writing

In[1]:=

<< MathTIDES‘

5.3 Step (M.2): declaring the work directory

The files written by MathTIDES are saved on the default directory of Mathematica

(you can know this directory with the expression Directory[]).

The user may change the default directory by using the expression SetDirectory, for

instance, changing the default directory to the directory where the local Mathematica

notebook is. Let us suppose we open a notebook that is inside the folder Example, and

we write

In[2]:=

SetDirectory[NotebookDirectory[]]

Out[2]=

....../Example/

then, all the files created after this command are stored on this directory. The output of

the previous command gives us the complete path of the new work directory.

5.4 Step (M.3): declaring the differential equation

The Taylor Series Method integrates only first order ODE systems. However, a higher

order ODE, under certain conditions, may be transformed into a first order ODE system,

a dynamical system described by a potential function V leads to a first order ODE system

(ẏ = Y , Ẏ = F = −∇V), and the Hamilton’s equations obtained from a Hamiltonian H
are a first order ODE system.

In MathTIDES a first order ODE is represented by means of an expression with head

FirstOrderODE$. However, the user will declare the ODE with an expression with one of

the following heads:

24

• FirstOrderODE : declares a first order ODE directly (see 6.2).

• NthOrderODE : declares a first order ODE from a n-th order ODE (see 8.1.1).

• PotentialToODE : declares a first order ODE from a potential function V (see 7.1.1).

• HamiltonianToODE : declares a first order ODE from a hamiltonian function H (see

8.2.1).

We will learn the use of the four expressions in the following chapters of examples. The

result in all cases is an expression with head FirstOrderODE$, that contains the Math-

TIDES internal representation of a first order differential equation. It has the following

four arguments

• First argument: the list of the expressions {f1, . . . , fn} of the derivatives of the

variables. The number n of elements of the list must be equal to the number of

variables.

• Second argument: the symbol that represents the independent variable t. This

symbol may appear explicitly or not in the first argument.

• Third argument: the list {y1, . . . , yn} of symbols that represents the variables. It

has the same number of elements than the first argument.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

This is an empty list when the ODE has no parameter.

5.5 Step (M.4): writing the code files

To write the C or Fortran code to use together with the TIDES library we will use

an expression with head TSMCodeFiles and the following arguments:

• First argument: the first order differential equation. This is an expression with head

FirstOrderODE$ created with one of the previously described expressions.

• Second argument: an string that represents the name of the files. With this name

MathTIDES writes several files (depending on the options) with extension .h, .c

or .f

• Options: optional arguments described later.

Let’s suppose that we write "name" as the second argument of TSMCodeFiles, then

two different kind of files can be created: a driver (main problem), named "dr name.c",

25

that contains a call to the integrator, and a file "name.c" (with its corresponding header

file "name.h") that contains the code of the ODE. When we use the minimal version in

Fortran (minf-tides) the files have the extension ".f" and no header file is written.

Compiling the driver and the ODE codes and linking them with LibTIDES (and with

GMP and MPFR, when we use the version mp-tides) we obtain the executable to integrate

the ODE (steps (C.1), (C.2)).

The expression TSMCodeFiles shows on the Mathematica session the names of the

written files and the directories where they have been stored.

The options of the third argument follow the general rules of Mathematica:

• The format is: NameOfTheOption -> ValueOfTheOption

• There are several option for the expression TSMCodeFiles, and the order of this

options it is indifferent.

• If we do not write a particular option it takes the default value.

There are two kind of options of TSMCodeFiles: the options that changes the dif-

ferential equation and the options that changes the driver. In the next chapters we will

describe all these options, together with the examples.

5.6 Steps (C.1), (C.2), (C.3): compiling, linking and running

the code files

These steps will we explained in the next chapter 6

26

Chapter 6

Using the four versions of the TSM Integrator: the

sine and cosine differential equation

6.1 Example: the sine and cosine differential equation

We begin with the simple differential equation

dx

dt
= y,

dy

dt
= −x, (6.1)

with two variables and no parameters. The analytical solution of this differential equation

with the initial conditions x(0) = 0, y(0) = 1 are the functions x = sin t, y = cos t.

In this chapter we will learn the basic use of TIDES by integrating this differential

equation. Our first objective is to show on the screen the values of the sine and cosine in

the points {0, π/4, π/2}.
This is a simple example of first order ODE of two variables and no parameter. The

first thing to do is to learn how to declare a general first order ODE and apply it to the

example.

6.2 Declaring first order differential equations

A first order ODE is represented by the equation

dy

dt
= f(t,y(t); p), y(t0) = y0, y ∈ IRn, p ∈ IRm, (6.2)

where

• t is the independent variable. It may appear explicitly, or not, in the function f .

• y = (y1, . . . , yn) is the n-dimensional vector of variables (n > 0).

27

• p = (p1, . . . , pm) is the m-dimensional vector of parameters (m ≥ 0).

• f = (f1, . . . , fn) is the n-dimensional vector of functions (expressions) representing

the first order derivatives of the variables.

To declare a first order differential equation we will use an expression with the head

FirstOrderODE and the following arguments:

• First argument: the list of the expressions {f1, . . . , fn} of the derivatives of the

variables. The number n of elements of the list must be equal to the number of

variables. If n = 1 the argument is not a list.

• Second argument: the symbol that represents the independent variable t. This

symbol may appear explicitly, or not, in the first argument.

• Third argument: the list {y1, . . . , yn} of symbols that represent the variables. It has

the same number of elements than the first argument. If n = 1 the argument is not

a list.

• Fourth argument: the list {p1, . . . , pm} of symbols that represent the parameters. If

the number of parameters m is equal to 1 the argument is not a list. If there is no

parameter (m = 0) this argument may be avoided.

In our example, to declare the sine and cosine differential equation we write

In[3]:=

sincosODE = FirstOrderODE[{y, -x}, t, {x, y}];

Henceforth, we name sincosODE to this ODE. The arguments to declare the ODE are:

the expressions of the right hand term of the differential equation {y, -x}, the symbol of

the independent variable t (a dummy variable in this case), and the list of symbols of the

variables {x, y}. In this case there is not fourth argument because there is no parameter.

6.3 Declaring the work directory

First of all we change in MathTIDES the work directory: The file sincosODE.nb

with all the examples of this chapter is stored inside the directory chapter06 that is

in TIDESExamples.

28

In[4]:=

SetDirectory[NotebookDirectory[]]

Out[4]=

/....../TIDESExamples/chapter06

where the dots depend on where we copy the directory TIDESExamples.

We change too, in the shell terminal, the directory of work before to compile and run

the code files.

$cd /....../TIDESExamples/chapter06

6.4 Options of TSMCodeFiles to declare the TSM Integrator

The last step in MathTIDES is to write the code to integrate the ODE. To do that

we will use the MathTIDES expression TSMCodeFiles. In 5.5 we explained the two first

arguments. Here we will see any of the options used to write the driver. Now we will

learn the first options of this expressions: the options to choose the TSM Integrator.

6.4.0.1 Option: MinTIDES

MinTIDES is used to create files to use with the minimum versions of TIDES.

MinTIDES -> "C" creates the C minimum version minc-tides.

MinTIDES -> "Fortran" creates the Fortran minimum version minf-tides.

The default option, MinTIDES -> False , creates the standard version.

6.4.0.2 Option: Precision

When the option MinTIDES is not used an standard version is created. We choose

between dp-tides or mp-tides by means of the option Precision. By default this option

has the value Precision->Double . This means that the standard double precision

version dp-tides is created.

With the options Precision->Multiple or Precision->Multiple[n] a multiple

precision version mp-tides is created. In the second case the integer n declares the number

of precision digits to use in the integration.

If we want only the ODE files, and we do not want the driver, it is sufficient to use

the option Precision->Multiple because these files work independently of the default

precision that must be declared on the driver. When we create a driver we need the option

29

Precision->Multiple[n], where the integer n is the number of precision digits declared

on the driver.

6.4.0.3 Option: TIDESFiles

With the option TIDESFiles -> True one of the files minc tides.c, minf tides.f,

dp tides.h or mp tides.h (depending on the version) is written.

6.5 More options of TSMCodeFiles to change the driver

6.5.0.4 Option: InitialConditions

With the option InitialConditions -> { ...} we change, on the driver, the

initial value of the vector of variables. The length of the list must be equal to the number

of variables. If we do not use this options stars, ******, instead of numerical values,

appear on the driver.

In our problem we write InitialConditions -> {0, 1} , because the initial con-

ditions are x(0) = 0, y(0) = 1.

6.5.0.5 Option: Output

This options declares where the solution (dense or not) is written. There are two

possibilities

Output -> Screen

Output -> "file"

In the first case the solution is written on the screen, in the second case into a file named

file. By default no output is written.

In the minimal versions, if the output is not sending to the screen, the solution in t0

and the solution in tf is written on the screen. In our case we want to write the solution

on the screen, then we write Output -> Screen.

Finally we will write the option IntegrationPoints -> {0, Pi/2, Points[1]}
to declare the integration points. This option will we explained in detail in 7.4.0.7.

6.6 Integrating sincosODE with minf-tides

After declaring the work directory (see 6.3), we write in MathTIDES

In[5]:=

30

TSMCodeFiles[sincosODE,

"sincosMFL",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, Pi/2, Points[1]},

Output -> Screen,

MinTIDES -> "Fortran"]

Out[5]=

File "dr_sincosMFL.f", "sincosMFL.f" written on directory

"/....../TIDESExamples/chapter06".

The option MinTIDES -> "Fortran" writes a code that use the minf-tides integrator.

Two Fortran files (with extension .f) are created.

Finally to integrate the ODE we open the terminal and, after changing the work

directory, we compile the files with the Fortran compiler, we link them with LibTIDES

and we run the executable.

$gfortran dr_sincosMFL.f sincosMFL.f -lTIDES -lm -o sincosmfl

$./sincosmfl

Finally, the solution appears on the screen

0.0000000000000000E+00 0.0000000000000000E+00 0.1000000000000000E+01

0.1570796326794897E+01 0.1000000000000000E+01 -0.2220446049250313E-15

Each line of the output represents: ti, x(ti), y(ti).

Another way to do that, without linking the library LibTIDES, is by adding the option

TIDESFiles->True.

In[6]:=

TSMCodeFiles[sincosODE,

"sincosMF",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, Pi/2, Points[1]},

Output -> Screen,

MinTIDES -> "Fortran",

TIDESFiles->True]

31

Out[6]=

Files "dr_sincosMF.f", "sincosMF.f", "minf_tides.f" written

on directory "/....../TIDESExamples/chapter06".

then a new file named minf tides.f is created. This file contains the integrator core and

substitutes the library LibTIDES.

$gfortran dr_sincosMF.f sincosMF.f minf_tides.f -lm -o sincosmf

$./sincosmf

6.7 Integrating sincosODE with minc-tides

After declaring the work directory (see 6.3), we write in MathTIDES

In[7]:=

TSMCodeFiles[sincosODE,

"sincosMCL",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, Pi/2, Points[1]},

Output -> Screen,

MinTIDES -> "C"]

Out[7]=

Files "dr_sincosMCL.c", "sincosMCL.c", "sincosMCL.h" written

on directory "/....../TIDESExamples/chapter06".

The option MinTIDES -> "C" writes a code that use the minc-tides integrator. Three

C files (with extensions .c and .h) are created.

Finally to integrate the ODE we open the terminal and after changing the work di-

rectory we compile the files with the C compiler, link them with LibTIDES and run the

executable and the screen shows the solution.

$gcc dr_sincosMCL.c sincosMCL.c -lTIDES -lm -o sincosmcl

$./sincosmcl

32

Another way to do that, without linking the library LibTIDES, is by adding the option

TIDESFiles->True.

In[8]:=

TSMCodeFiles[sincosODE,

"sincosMC",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, Pi/2, Points[1]},

Output -> Screen,

MinTIDES -> "C",

TIDESFiles->True]

Out[8]=

Files "dr_sincosMC.c", "sincosMC.c", "sincosMC.h", "minc_tides.c",

"minc_tides.h" written on directory "/....../TIDESExamples/chapter06".

then a new file named minc tides.c is created. This file contains the integrator core and

substitutes the library LibTIDES.

$gcc dr_sincosMC.c sincosMC.c minc_tides.c -lm -o sincosmc

$./sincosmc

6.8 Integrating sincosODE with dp-tides

After declaring the work directory (see 6.3), we write in MathTIDES

In[9]:=

TSMCodeFiles[sincosODE,

"sincosDP",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, Pi/2, Points[1]},

Output -> Screen]

Out[9]=

Files "dr_sincosDP.c", "sincosDP.c", "sincosDP.h" written on directory

"/....../TIDESExamples/chapter06".

33

If we do not use the option MinTIDES the standard option is created, in this case we

call the dp-tides integrator. Three C files (with extensions .c and .h) are created.

Finally to integrate the ODE we open the terminal and after changing the work di-

rectory we compile the files with the C compiler, link them with LibTIDES, and run the

executable.

$gcc dr_sincosDP.c sincosDP.c -lTIDES -lm -o sincosdp

$./sincosdp

6.9 Integrating sincosODE with mp-tides

After declaring the work directory (see 6.3), we write in MathTIDES

In[10]:=

TSMCodeFiles[sincosODE,

"sincosMP",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, Pi/2, Points[1]},

Output -> Screen,

Precision -> Multiple[30]]

Out[10]=

Files "dr_sincosMP.c", "sincosMP.c", "sincosMP.h" written on directory

"/....../TIDESExamples/chapter06".

With the option Precision -> Multiple[30] we call to the mp-tides integrator and

prepare the integrator to work with 30 digits of precision. Three C files (with extensions

.c and .h) are created.

Finally to integrate the ODE we open the terminal and after changing the work direc-

tory we compile the files with the C compiler, link them with LibTIDES and the MPFR

and GMP libraries, and run the executable.

$gcc dr_sincosMP.c sincosMP.c -lTIDES -lm -lmpfr -lgmp -o sincosmp

$./sincosmp

Let’s note that the option Precision is not compatible with the option MinTIDES.

34

Chapter 7

Understanding the files written by MathTIDES: the

keplerian motion

7.1 The keplerian motion

The keplerian motion can be described by the second order ODE

ẍ = −∂V
∂x

, ÿ = −∂V
∂y

, z̈ = −∂V
∂z

, (7.1)

where the potential function V is

V (x, y, z) = − µ√
x2 + y2 + z2

, (7.2)

and µ represents a parameter.

By defining three new variables X = ẋ, Y = ẏ, Z = ż we may write the equations (7.1)

as a first order ODE

Ẋ = −∂V
∂x

, Ẏ = −∂V
∂y

, Ż = −∂V
∂z

, ẋ = X, ẏ = Y, ż = Z (7.3)

With MathTIDES it is sufficient to declare the expression of the potential function and

it extends the variables and computes the derivatives to obtain explicitely the differential

equation (7.3).

7.1.1 From potential to first order ODEs

Let’ s suppose a potential V (y,p) in the variables y ∈ IRn, withm parameters p ∈ IRm,

then the equations ÿ = −∇V (y,p) will be obtained as a first order ODE by means of the

MathTIDES expression of head PotentialToODE that has the following arguments:

• First argument: the expression of the potential V . This expression is never a list.

35

• Second argument: the symbol that represents the independent variable t. This

symbol does not appear in the potential function.

• Third argument: the list {y1, . . . , yn} of symbols that represents the variables. If

n = 1 the argument is not a list.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

If the number of parameters m is equal to 1 the argument is not a list. If there is

no parameter (m = 0) this argument may be avoided.

PotentialToODE computes the gradient of the potential and transforms the second

order Newton’s equation into a first order equation duplicating the number of variables.

The symbols of the new variables (derivatives) are formed by adding $d1 to the symbol

of the duplicated variables.

In our case to obtain (7.3) from (7.2) we write

In[11]:=

keplerODE = PotentialToODE[-mu/Sqrt[x^2 + y^2 + z^2], t, {x, y, z}, mu]

Out[11]=

FirstOrderODE$[{x$d1, y$d1,

z$d1, -((mu x)/(x^2 + y^2 + z^2)^(3/2)), -((

mu y)/(x^2 + y^2 + z^2)^(3/2)), -((mu z)/(x^2 + y^2 + z^2)^(

3/2))}, t, {x, y, z, x$d1, y$d1, z$d1}, {mu}]

The symbols that represent the variables of the first order ODE are in this case: {x,
y, z, x$d1, y$d1, z$d1}.

Let us suppose the position and velocity of the orbiter in the initial instant are x =

(0.8, 0, 0),X = (0, 1.2247448713915892, 0), and we choose a set of units such as µ = 1.

In this conditions the period of the orbit is equal to 2π. Then we want to compute the

position and velocity in five points between t = 0 and the period T = 2π in equidistant

time intervals. Then, in MathTIDES we write

In[12]:=

TSMCodeFiles[keplerODE,

"kepler",

36

InitialConditions -> {0.8, 0, 0, 0, 1.2247448713915892, 0},

ParametersValue -> {1},

IntegrationPoints -> {0, 2 Pi, Points[4]},

Output -> Screen]

Out[12]=

"Files "dr_kepler.c", "kepler.h", kepler.c", written on directory

"/....../TIDESExamples/chapter07".

In this example we have a parameter. We give the value of the parameter with the

option

7.1.1.6 Option: ParametersValue

With the option ParametersValue -> {...} we change, on the driver, the value

of the parameters. The length of the list must be equal to the number of parameters.

If we do not use this options stars, ******, instead of numerical values, appear on the

driver.

7.2 Understanding the driver

The driver is the main program, where we declare the parameters of the integrator

and we call it. MathTIDES writes the most simple driver with the essential information,

but, understanding this driver, the user can write or change it manually. In what follows

we enumerate the essential points of the driver of the previous example:

1. It includes the TIDES header file (dp tides.h for double precision and mp tides.h

for multiple precision) and the ODE header file. After that the main function begins.

#include "dp_tides.h"

#include "kepler.h"

int main() {

2. It declares the parameters of the ODE

int npar = 1;

double p[npar];

p[0] = 1. ;

37

To initialize the parameters it declares a int variable npar with the number of

parameters (in our case npar=1), and a double array, double p[npar] whose di-

mension coincides with the number of parameters. Finally it gives value to the

parameters.

3. It declares the variables of the ODE

int nvar = 6;

double v[nvar];

v[0] = 0.8 ;

v[1] = 0.0 ;

v[2] = 0.0 ;

v[3] = 0.0 ;

v[4] = 1.2247448713915892 ;

v[5] = 0.0 ;

To initialize the variables it declares a int variable nvar with the number of vari-

ables, six in our case: three variables (position) and three first order derivatives

(velocity), and a double array, double v[nvar] whose dimension coincides with

the number of variables. Finally it gives value to the variables.

4. It declares the number of extra functions

int nfun = 0;

Besides the evolution with the time of the variables, with TIDES we may compute

the evolution of functions of the variables. We will explain in detail this option in

(8.2.3). If we do not use this possibility we declare a int variable nfun equal to 0.

5. It declares the tolerances (relative and absolute) used in the numerical integration

double tolrel = 1.e-16 ;

double tolabs = 1.e-16 ;

By default the driver defines both tolerances equal to 10−16. The user may change

them manually on the driver or by using the options: RelativeTolerance ->

rtvalue, AbsoluteTolerance -> atvalue in MathTIDES.

6. It declares the integration points

double tini = 0.0;

double tend = 6.283185307179586;

38

int nipt = 4;

double dt = (tend - tini)/nipt ;

The way to declare the integration points is discussed in detail in section (7.4) in

this chapter.

7. It declares the output way

FILE* fd = stdout;

In this case the driver uses the standard output (screen) by declaring the pointer to

FILE fd.

8. It calls the LibTIDES funtion dp tides delta to integrate the problem

dp_tides_delta(kepler, NULL, nvar, npar, nfun, v, p,

tini, dt, nipt, tolrel, tolabs, NULL, fd);

This, and other LibTIDES functions to integrate ODES, and their arguments, will

we described in detail in (7.5).

9. It ends the main program

return 0;

}

7.3 Understanding the ODE file

The user may change easily the driver, however the ODE file needs to be created by

MathTIDES. Here we find a description of the ODE file for the integration of the Kepler

problem

1. It has a block of initialization of the variables. This block is always identical except

for the name and the value of the variables.

long kepler(iteration_data *itd, double t, double v[],

double p[], int ORDER, double *cvfd)

{

int i;

static int VARIABLES = 6;

static int PARAMETERS = 1;

39

static int FUNCTIONS = 0;

static int LINKS = 13;

static int POS_FUNCTIONS[1] = {0};

initialize_dp_case();

double ct[] = {-1.5, -1.};

2. It has a block with the ODE function after applying the automatic differentiation

rules

for(i=0; i<=ORDER; i++) {

double_var_t(itd, var[4],var[1], i);

double_var_t(itd, var[5],var[2], i);

double_var_t(itd, var[6],var[3], i);

double_var_t(itd, link[10],var[4], i);

double_var_t(itd, link[11],var[5], i);

double_var_t(itd, link[12],var[6], i);

double_mul_t_cc(itd, ct[1],par[0],link[0],i);

double_mul_t(itd, var[1],var[1],link[1],i);

double_mul_t(itd, var[2],var[2],link[2],i);

double_mul_t(itd, var[3],var[3],link[3],i);

double_add_t(itd, link[1],link[2],link[4],i);

double_mul_t(itd, link[0],var[1],link[5],i);

double_mul_t(itd, link[0],var[2],link[6],i);

double_mul_t(itd, link[0],var[3],link[7],i);

double_add_t(itd, link[3],link[4],link[8],i);

double_pow_t_cc(itd, link[8],ct[0],link[9],i);

double_mul_t(itd, link[5],link[9],link[10],i);

double_mul_t(itd, link[6],link[9],link[11],i);

double_mul_t(itd, link[7],link[9],link[12],i);

}

3. It has an ending block. This is always identical

write_dp_solution();

return NUM_COLUMNS;

}

40

7.4 Ways to declare the integration points

The points where the result of the integration are showed or stored may be handled

by means of an option of MathTIDES.

7.4.0.7 Option: IntegrationPoints

With this option we declare, on the driver, the list of points in which the solution is

computed. There are several versions of this option:

• IntegrationPoints -> {t0, Delta[dt], Points[k]}

– t0 is the initial integration point (real number).

– dt is the interval between points in dense output (real number). It can be

positive or negative.

– k is an integer with the number of equidistant points in which the solution is

computed.

– With this option the solution is computed in {t0, t1, . . . , tk} = {t0, t0+dt,

t0+2*dt, ..., t0+k*dt}.

• IntegrationPoints -> {t0, tf, Points[k]}

– t0 is the initial integration point (real number).

– tf is the final integration point (real number). It can be lesser or greater than

t0.

– k is an integer with the number of equidistant points in which the solution is

computed. dt for dense output is equal to (tf-t0)/k.

– With this option the solution is computed in {t0, t1, . . . , tk} = {t0, t0+dt,

t0+2*dt, ..., t0+k*dt = tf}.

• IntegrationPoints -> {t0, tf, Delta[dt]}

– t0 is the initial integration point (real number).

– tf is the final integration point (real number). It can be lesser or greater than

t0.

– dt is the interval between points in dense output (real number). If tf is lesser

than t0, it must be negative.

– With this option the solution is computed in {t0, t1, . . . , tk} = {t0, t0+dt,

t0+2*dt, ... t0+k*dt}, with k such us t0+k*dt <= tf < t0+(k+1)*dt.

Not always the last point of the dense output coincides with the end integration

point tf.

41

• IntegrationPoints -> {t0, t1, ..., tf}

– t0 is the initial integration point (where the initial conditions are given). It is

a real number.

– t1,...,tf are the points where we want to compute the solution. They all

are real numbers. tf is the final integration point.

– This option is only valid for the standard versions. In minimal versions you

can use IntegrationPoints -> {t0, tf}, with the initial and final point, for

non-dense output.

– {t0, t1, ..., tf} are in order (increasing or decreasing). They can be non-

equidistant points.

In our example we have four ways to declare the integration points

1. IntegrationPoints -> {0, Delta[Pi/2], Points[4]}

TSMCodeFiles[keplerODE,

"kepler1",

InitialConditions -> {0.8, 0, 0, 0, 1.2247448713915892, 0},

ParametersValue -> {1},

IntegrationPoints -> {0, Delta[Pi/2], Points[4]},

Output -> Screen]

With the option IntegrationPoints -> {0, Delta[Pi/2], Points[4]} we inte-

grate in five (4+1) points: the first point is the first element (0), and a value of π/2

between each point. By using this option the part of the driver that declares the

integration points has the format

double tini = 0.0;

double dt = 1.570796326794897;

int nipt = 4;

In the driver we declare the initial point in a double variable tini, The increment

in a double variable dt, and the number of points (without counting the initial

point t0) in a int variable nipt.

2. IntegrationPoints ->{0, 2 Pi , Points[4]}

TSMCodeFiles[keplerODE,

"kepler2",

42

InitialConditions -> {0.8, 0, 0, 0, 1.2247448713915892, 0},

ParametersValue -> {1},

IntegrationPoints -> {0, 2 Pi , Points[4]},

Output -> Screen]

With the option IntegrationPoints -> {0, 2 Pi, Points[4]} we integrate in

five (4+1) equidistant points between 0 and 2π. In the driver we change the block

that declares the integration points by adding the final point in a double variable

tend and computing dt instead of declaring it.

double tini = 0.0;

double tend = 6.283185307179586;

int nipt = 4;

double dt = (tend - tini)/nipt ;

3. IntegrationPoints -> {0, 2 Pi, Delta[Pi/2]}

TSMCodeFiles[keplerODE,

"kepler3",

InitialConditions -> {0.8, 0, 0, 0, 1.2247448713915892, 0},

ParametersValue -> {1},

IntegrationPoints -> {0, 2 Pi, Delta[Pi/2]},

Output -> Screen]

With the option IntegrationPoints -> {0, 2 Pi, Delta[Pi/2]} we integrate

in five (4+1) equidistant points between in increments of π/2. In the driver we

change the block that declares the integration points by declaring the initial, final

points and the increment and computing the number of points.

double tini = 0.0;

double dt = 1.570796326794897;

double tend = 6.283185307179586;

int nipt = (int) floor ((tend-tini)/dt);

4. IntegrationPoints -> {0, Pi/2, Pi , 3 Pi/2, 2 Pi}

TSMCodeFiles[keplerODE,

"kepler4",

InitialConditions -> {0.8, 0, 0, 0, 1.2247448713915892, 0},

43

ParametersValue -> {1},

IntegrationPoints -> {0, Pi/2, Pi , 3 Pi/2, 2 Pi},

With the option IntegrationPoints -> {0, Pi/2, Pi , 3 Pi/2, 2 Pi} we de-

clare a list of points where the solution is computed. The driver in this case is

different: we need to declare the total number of points in the int variable ntot,

declare the array double lt[ntot] with dimension equal to the number of points

and eventually declare the elements of the array.

int ntot = 5;

double lt[ntot] ;

lt[0] = 0.0 ;

lt[1] = 1.570796326794897 ;

lt[2] = 3.141592653589793 ;

lt[3] = 4.71238898038469 ;

lt[4] = 6.283185307179586 ;

In this case the driver changes, not only the way to declare the integration points,

but the way to call the integrator. We use a new LibTIDES function dp tides list

whose arguments will be described in the next section.

dp_tides_list(kepler, NULL, nvar, npar, nfun,

v, p, lt, ntot, tolrel, tolabs, NULL, fd);

7.5 LibTIDES functions to call the integrator

There are two LibTIDES functions to call the TSM Integrator.

void dp_tides_delta(DBLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

double *x, double *p,

double t0, double dt, int nipt,

double tolrel, double tolabs,

dp_data_matrix *dmat, FILE* fileout);

44

void dp_tides_list(DBLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

double *x, double *p,

double *lt, int ntot,

double tolrel, double tolabs,

dp_data_matrix *dmat, FILE* fileout) ;

The arguments of both functions are all equal except for those arguments relative to

the integration points.

• The linked function: fcn is a pointer to the function that contains the ODE function.

In this argument we write the name used in the second argument of TSMCodeFiles.

• The partial derivatives information: pdd is a pointer to an integer that represents

an array with the necessary information to compute the desired partial derivatives

(see chapter 10). Use NULL when no partial derivative needs to be computed.

• The dimensions of the problem: nvar, npar, nfun are three integer numbers that

represent, respectively, the number of variables, the number of parameters and the

number of extra functions to evaluate.

• Initial value of the variables: x is a pointer to a double that represents an array

with nvar elements. On input it has the value of the initial conditions (value of the

variables at the initial point). On output it has the value of the variables at the

final integration point.

• Value of the parameters: p is a pointer to a double, or an array with npar elements.

It has the value of the parameters. If there is no parameter this argument will be

NULL.

• Integration points(case dp tides delta): the integration points are represented

by three arguments: two double variables tini, dt that contains the initial point

and the increment and a int variable nipt with the number of equidistant points

where we compute the solution (without including the initial point).

• Integration points(case dp tides list): the integration points are represented by

two arguments lt and ntot. lt is a pointer to a double that represents an array of

dimension ntot that contains the list {t0, . . . , tk} of points where the solution will

be computed. These points can be non-equidistants. The list must be ordered, but

the order can be increasing or decreasing (for backward integration).

45

• Tolerances: tolrel, tolabs are two double variables with the relative and abso-

lute tolerance of the method.

• Output of the integrator: dmat is a pointer to a dp data matrix type that represent

a data matrix where the output will be stored (this will be explained later on section

8.2.4). fileout is a pointer to a FILE where the output will be written on.

46

Chapter 8

More examples: several gravitational problems

8.1 The three body problem

The planar three body problem is formulated by means of the second order differential

equations

ẍ− 2ẏ = x− (1− µ)(x+ µ)

(
√

(x+ µ)2 + y2)3
− µ(x+ µ− 1)

(
√

(x+ µ− 1)2 + y2)3
,

ÿ + 2ẋ = y − (1− µ)y

(
√

(x+ µ)2 + y2)3
− µy

(
√

(x+ µ− 1)2 + y2)3
,

where (x, y) and (ẋ, ẏ) represent the position and velocity of the third body with respect

to the keplerian orbit of the primaries, and µ ∈ (0, 1) represents the ratio of masses of the

primaries.

MathTIDES handles k-th order differential equations by transforming them into first

order ODEs.

8.1.1 Higher order differential equations

Let us consider an ODE system represented by means of the expressions

F (t,y,
dy

dt
,
d2y

dt2
, . . . ,

dky

dtk
; p) = 0, y(t0) = y0, . . . ,

dky

dtk
(0) = y

(k)
0 , (8.1)

where F ,y ∈ IRn, and p ∈ IRm.

Let us suppose that all the derivatives y
(k)
1 , . . . y(k)

n of the greatest order k appear

explicitely in (8.1), then, solving the system (8.1) in y
(k)
1 , . . . y(k)

n , if it is possible, we

transform the k-th order ODE into a first order ODE by introducing the derivatives
dy

dt
,
d2y

dt2
, . . . ,

dk−1y

dtk−1
as new variables of the system.

47

MathTIDES tranforms automatically a k-th order ODE into a first order ODE by using

an expression with head NthOrderODE and the following arguments

• First argument: the list of the expressions {F1, . . . , Fn} that represent the system

of equations with a format defined by the following rules:

– The derivatives of a variable x must be represented by quotes: x, x’, x’’,

x’’’, ...

– The equations are represented by means of the symbol ==

– The number of equations is equal to the number of variables.

– If the number of variables is equal to one, the first and the third arguments

are not lists.

– The derivatives of greater order of all the variables must appear in the system.

• Second argument: the symbol that represents the independent variable t. This

symbol may appear explicitely or not in the first argument.

• Third argument: the list {y1, . . . , yn} of symbols that represents the variables. It

has the same number of elements than the first argument. If n = 1 the argument is

not a list.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

If the number of parameters m is equal to 1 the argument is not a list. If there is

no parameter (m = 0) this argument may be avoided.

A k-th order differential equation is transformed into an equivalent system of first

order differential equations by extending the number of variables. If a variable have the

symbol x, the derivatives of this variable are converted into new variables whose symbol

begins by x and ends by $di, with i the order of the variable:

x’ ---> x$d1

x’’ ---> x$d2

x’’’ ---> x$d3

The order of the variables of the final system of equations is the following:

1. Variables (in the same order that before)

2. First derivatives (maintaining the relative order of the variables)

3. Second derivatives (maintaining the relative order of the variables)

48

4.

To illustrate the use of NthOrderODE we will see in the next subsection the three body

example. There are two more examples in (12.1.2).

8.1.2 Finding a horseshoe orbit

A horseshoe orbit is a particular solution of the three body problem. The tutorial will

be continued by finding and plotting one of these horseshoe orbits. First of all we define

the ODE

In[13]:=

threeBP = {

x’’ - 2 y’ == x - (1 - mu) (x + mu)/r^3 - mu (x + mu - 1)/s^3,

y’’ + 2 x’ == y - (1 - mu) y/r^3 - mu y/s^3

} /. {r -> Sqrt[(x + mu)^2 + y^2], s -> Sqrt[(x + mu - 1)^2 + y^2]};

In[14]:=

threeBPEQ = NthOrderODE[threeBP, t, {x, y}, {mu}]

Out[14]=

FirstOrderODE$[{x$d1, y$d1,

x - (mu (-1 + mu + x))/((-1 + mu + x)^2 + y^2)^(

3/2) - ((1 - mu) (mu + x))/((mu + x)^2 + y^2)^(3/2) + 2 y$d1,

-2 x$d1 + y - (mu y)/((-1 + mu + x)^2 + y^2)^(

3/2) - ((1 - mu) y)/((mu + x)^2 + y^2)^(3/2)},

t, {x, y, x$d1, y$d1}, {mu}]

where we see that the variables are, in this order, the position and the first derivatives,

{x, y, x$d1, y$d1}.
To find the horseshoe orbit we integrate this ODE with the initial conditions (x =

0.85, y = 0.5, ẋ = 0, ẏ = 0), and a value of the parameter µ = 0.001. Instead of writing

the solution on the screen we write it into a file named horseshoe. To create the files,

with the driver, we write in MathTIDES

49

In[15]:=

TSMCodeFiles[threeBPEQ,

"threebody",

InitialConditions -> {0.85, 0.5, 0, 0},

ParametersValue -> {0.001},

IntegrationPoints -> {0, 150, Points[150]},

Output -> "horseshoe"]

Out[15]=

Files "dr_threebody.c", "threebody.h", threebody.c", written

on directory "/....../TIDESExamples/chapter08".

The main difference with respect to previous examples is the use of the Output option.

In this case a string "horseshoe" means that the solution will be written into a file with

the name of the string. The file has the same format that the screen output:

• Each line represents an instant (point) where the solution is computed.

• If there are n variables, the output has n+ 1 columns. The first column is the time

ti where the solution is computed and the rest of columns represent the value of the

variables in ti.

With Mathematica, or any plotting software, we may read the file and plot the

solution

In[16]:=

dat = OpenRead["horseshoe"];

sol = ReadList[dat, {Real, Real, Real, Real, Real}];

solxy = Map[{#[[2]], #[[3]]} &, sol];

ListPlot[solxy, Joined -> True, AspectRatio -> Automatic]

and we obtain the plot

50

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 8.1: Horseshoe orbit

8.2 The main problem of the Earth artificial satellite

The first approximation to the motion of a Earth artificial satellite is the keplerian

motion given by the Hamiltonian Hk = v2/2−µ/r, where the position (x, y, z) represents

the coordinates, the velocity (X, Y, Z) represents the momenta, r =
√
x2 + y2 + z2, v =

√
X2 + Y 2 + Z2, and µ is the the gravitational constant.

The non-sphericity of the Earth perturbs this motion by adding a term to the hamil-

tonian that is represented by an infinite series that depends on a set of constants named

the harmonics. The most important harmonic, J2, is the term due to the flattening of the

Earth. If we consider only this term, by taking the rest of harmonics equal to zero, we

have a better approximation to the motion of a satellite named the main problem.

The Hamiltonian of the main problem is then

H = Hk + Vz, Hk =
v2

2
− µ

r
, Vz =

µJ2a
2

r3
P2(

z

r
). (8.2)

where a is the equatorial radius, and P2() represent the Legendre polynomial of order two.

The differential equations of this problem are given by the Hamilton’s equations

ẋ =
∂H
∂X

, ẏ =
∂H
∂Y

, ż =
∂H
∂Z

,

Ẋ = −∂H
∂x

, Ẏ = −∂H
∂y

, Ẏ = −∂H
∂x

.

We need to differentiate the hamiltonian with respect to both, variables and momenta,

to construct the equations. With MathTIDES it is sufficient to declare the expression of

the Hamiltonian and it computes the derivatives to obtain the differential equation.

51

Let us suppose we use the equatorial radius of the Earth as the length unit, and the

minute as the time unit, then the value of the parameters are (0.005530428042714393, 1,

0.0010826266835531513). With this election we take a set of initial conditions in wich

the variables are given by the vector x = (1.3, 0, 0), and the momenta are given by

the vector X = (0, 0.06423314045257492, 0.011326035717425298), that in the Keplerian

problem correspond with an orbit of period equal to 125.232059785382 minutes. We want

the solution in five points each 25 minutes.

8.2.1 Hamilton’s equations

Let’s suppose a dynamical system described by a Hamiltonian H(t,x,X,p) where

t is the independent variable (it may appear explicitely or not), x is the n-dimensional

vector of variables, X is the n-dimensional vector of associated momenta and p is the

m-dimensional vector of parameters. Then, the first order ODE that represents the dy-

namical system is given by the Hamilton’s equations

dx

dt
=
∂H
∂X

,
dX

dt
= −∂H

∂x
. (8.3)

With MathTIDES we create the differential equations directly from the Hamiltonian

by using an expression with the head HamiltonianToODE and the following arguments:

• First argument: the expression of the Hamiltonian H. This expression is never a

list.

• Second argument: the symbol that represents the independent variable t. This

symbol may appear or not in the Hamiltonian.

• Third argument: the list {x1, . . . , xn, X1, . . . Xn} of symbols that represents the

variables and momenta. The length of this list is always an even number. The order

of the momenta corresponds with the order of the associated variables.

• Fourth argument: the list {p1, . . . , pm} of symbols that represents the parameters.

If the number of parameters m is equal to 1 the argument is not a list. If there is

no parameter (m = 0) this argument may be avoided.

8.2.2 The main problem ODE

In our example we compute the Hamiltonian HamZ2 as the sum of the energy of the

Keplerian problem T+V and the potential of the main problem zon2, then the ODE named

ztODE2 is given by the expression

52

In[17]:=

T = (X^2 + Y^2 + Z^2)/2 ;

V = -mu/Sqrt[x^2 + y^2 + z^2];

zon2 = (mu rt^2)/r^2 J2 LegendreP[2, z/r] /. r -> Sqrt[x^2 + y^2 + z^2];

HamZ2 = T + V + zon2;

ztODE2 = HamiltonianToODE[HamZ2, t, {x, y, z, X, Y, Z}, {mu, rt, J2}]

Out[17]=

FirstOrderODE$[{X, Y, Z,

(J2 mu rt^2 x)/(x^2 + y^2 + z^2)^2 - (mu x)/(x^2 + y^2 + z^2)^(3/2) +

(2 J2 mu rt^2 x (-x^2 - y^2 + 2 z^2))/(x^2 + y^2 + z^2)^3,

(J2 mu rt^2 y)/(x^2 + y^2 + z^2)^2 - (mu y)/(x^2 + y^2 + z^2)^(3/2) +

(2 J2 mu rt^2 y (-x^2 - y^2 + 2 z^2))/(x^2 + y^2 + z^2)^3,

-((2 J2 mu rt^2 z)/(x^2 + y^2 + z^2)^2) -

(mu z)/(x^2 + y^2 + z^2)^(3/2) +

(2 J2 mu rt^2 z (-x^2 - y^2 + 2 z^2))/(x^2 + y^2 + z^2)^3},

t, {x, y, z, X, Y, Z}, {mu, rt, J2}]

with three parameters {mu, rt, J2}.

8.2.3 Computing extra functions

With this example we are not only interested into the values of the solution x(ti),X(ti)

at the desired points. We want to know the evolution of the functions T+V andH to check

how the energy of the Keplerian problems evolves in this problem, and how the energy

of the system is maintained during the integration. To do that we use, in TSMCodeFiles,

the option AddFunctions.

8.2.3.8 Option: AddFunctions

The integration of the system (1.1) gives the function y(t), i.e. the evolution over the

time of the variables. Sometimes, we are interested in the evolution, along the solution

of the system, of a dynamical variable defined by a function G(t,y,p), i.e. the function

G(t) = G(t,y(t),p). Writing the option AddFunctions-> {G1, G2,...} we redefine

the differential equation to extend the application of the Taylor method to find the time

53

evolution of the functions G1,G2, ...

8.2.4 Using data matrices to store the result

Instead of declaring the screen or a file to write the solution we want, in this case, to

store it into a data matrix to use it in later operations of the main program. To do that

we have a new LibTIDES data type named dp data matrix, together with the functions

to handle it, and in MathTIDES the TSMCodeFiles option DataMatrix.

The new data types dp data matrix is declared in LibTIDES by means of the C struc-

ture

typedef struct dp_DM {

int rows;

int columns;

double **data;

} dp_data_matrix;

The dimensions of the matrix are declared inside the LibTIDES taylor integrator. The

number of rows corresponds to the number of points where the solution is computed

(including the initial point as the first row). The number of columns must be sufficient

to store, in this order

• The point ti.

• The value of the variables in ti: x(ti).

• The value of the functions Gi(ti,x(ti),p) if AddFunction is used.

• The value of the partials derivatives if they are computed (see chapter 10).

Let us suppose a data matrix named dm. Once dm has been initialized, we may obtain

the number of rows and columns of this matrix by using dm.rows, dm.columns. The

element (i, j) of the matrix is dm.data[i][j].

Inside the LibTIDES integration the memory space to store the bidimensional array is

created dynamically. LibTIDES do not free automatically the space of the data matrices.

After using a data matrix it is convenient to force LibTIDES to delete it by using the

function

void delete_dp_data_matrix(dp_data_matrix *dm);

We may use a data matrix in the driver including the TSMCodeFiles option DataMatrix.

8.2.4.9 Option: DataMatrix

54

Option only for standard versions. By default DataMatrix->False, but there are two

other posibilities

DataMatrix -> True

DataMatrix -> "nameDM"

DataMatrix declares a bidimensional array where the solution will be stored. The

name is nameDM in the second case or the name of the file joined to " DataMatrix" in the

first case.

8.2.5 The integration code of the main problem

Then the C files to integrate the main problem of the satellite will be obtained by

writing in MathTIDES

In[18]:=

TSMCodeFiles[ztODE2, "SatJ2",

InitialConditions -> {1.3, 0, 0,

0, 0.06423314045257492, 0.011326035717425298},

ParametersValue -> {0.005530428042714393, 1, 0.0010826266835531513},

IntegrationPoints -> {0, 125, Delta[25]},

DataMatrix -> "datj2",

AddFunctions -> {(T + V), HamZ2}]

Out[18]=

Files "dr_SatJ2.c", "SatJ2.h", SatJ2.c", written on directory

"/....../TIDESExamples/chapter08"

If we read the file dr SatJ2.c we observe several differences with respect to previous

drivers. The first one is the line

dp_data_matrix datj2;

that declares a dp data matrix to store the solution.

The address of this pointer is passed to dp tides delta, where the pointer is initialized

with the adequate dimensions.

dp_tides_delta(SatJ2, NULL, nvar, npar, nfun, v, p,

tini, dt, nipt, tolrel, tolabs, &datj2, NULL);

55

Let us note that the last argument of the driver is NULL because of we do not write the

solution into any file nor on the screen.

The changes to compute the additional functions appear in the file SatJ2.c, i.e. the

ODE file, not in the driver.

There are two ways to compute the energy of the system: internally by using the

TIDES option to compute extra functions, and externally by computing the energy from

the value of the variables. In this example we want to illustrate both ways, then we need

to change manually the driver (dr SatJ2M.c) by including the function

double energy(double *v, double *p)

{

double r, cener, pener, j2ener, ener;

r = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);

cener = (v[3]*v[3]+v[4]*v[4]+v[5]*v[5])/2.;

pener = -p[0]/r;

j2ener = v[2]/r;

j2ener = (3*j2ener*j2ener -1)/2.;

j2ener = p[0]*p[1]*p[1]*p[2]*j2ener/(r*r);

ener = cener+pener+j2ener;

return ener;

}

that computes the energy from the solution.

By adding the next piece of code we show on the screen the values of T+V and H,

computed inside the TIDES integrator, and the difference H-HC of the energy H computed

inside TIDES and HC computed with the function energy.

int i,j;

double var[6], ener;

for(i = 0 ; i <= nipt; i++) {

for(j = 0; j <6; j++) var[j] = datj2.data[i][j+1];

ener = energy(var,p);

printf("T+V = %.15le, H = %.15le, H - HC = %.10le\n",

datj2.data[i][7], datj2.data[i][8],

datosj2.data[i][8]-ener);

}

To print these values and the difference H-HC we make use of the solution stored in datj2,

where datj2.data[i][j] represents the row i (values of the solution in ti), and the

column j is the corresponding value. In this case we have

56

• Column 0: time ti.

• Columns 1,2,3: the variables x(ti), y(ti), z(ti).

• Columns 4,5,6: the momenta X(ti), Y (ti), Z(ti).

• Column 7: The value of T + V in ti.

• Column 8: The value of H in ti.

Finally we obtain the following results

T+V = -2.127087708736305e-03, H = -2.128859125591486e-03, H - HC = 0.0000000000e+00

T+V = -2.127230402142720e-03, H = -2.128859125591488e-03, H - HC = -8.6736173799e-19

T+V = -2.127137530248718e-03, H = -2.128859125591488e-03, H - HC = -4.3368086899e-19

T+V = -2.127138484455382e-03, H = -2.128859125591487e-03, H - HC = -8.6736173799e-19

T+V = -2.127229794041088e-03, H = -2.128859125591488e-03, H - HC = 4.3368086899e-19

T+V = -2.127087715068851e-03, H = -2.128859125591488e-03, H - HC = 4.3368086899e-19

57

58

Chapter 9

Handling multiple precision in TIDES: the elliptic

integral of the first kind

9.1 LibTIDES and MPFR library

LibTIDES handles multiple–precision by using the MPFR library. It is not necessary

to know MPFR if one uses the driver created by MathTIDES without modification, but,

when one tries to understand the driver or one wants to change it, it is useful to read the

user manual of MPFR and learn how TIDES uses MPFR. Let us begin by several basic

ideas about MPFR.

• In MPFR the basic data type is mpfr t. It represents a real number with the desired

binary precision digits.

• Every mpfr t variable must be initialized by using the function mpfr init2(var,

prec), where var represents the variable to initialize and prec represents its preci-

sion (in bits).

• The precision of each mpfr t variable represents the number of bits used when the

variable is stored. By default precision is 53 bits (the number of bits used for a

double).

• When MPFR makes any operation with a mpfr t variable the way in which the

result is rounded must be declared. The way to declare the rounding mode is

by passing to the function that makes the operation one of the following argu-

ments: MPFR RNDN, MPFR RNDZ, MPFR RNDU, MPFR RNDD (or GMP RNDN, GMP RNDZ,

GMP RNDU, GMP RNDD with a version of the MPFR library previous to the version

3.0).

59

• The way in which the driver created by MathTIDES gives value to the mpfr t vari-

ables is by using the function: mpfr set str(var, str, b, rnd). After calling

this function the variable var takes the value represented by the string str in base

b, and rounded in the way represented by rnd.

The precision and the rounding mode can be changed in MPFR for any variable and

any operation. However in TIDES we define a working precision and rounding mode and

we make all the operations and store every variable with the same precision and rounding

mode.

In TIDES we declare decimal precision instead of binary precision. The function

void set precision digits(int dprec)

declares that every mpfr t variable used in TIDES is stored with dprec decimals of pre-

cision. This function computes the number of necessary bits to work with this decimal

precision and store it in the global variable TIDES PREC, that is the second argument

used any time that mpfr init2 is called. TIDES PREC has a default value of 53 when

set precision digits() is not used. It means that TIDES works with MPFR but in

double precision (about 16 decimal digits).

The working rounding mode in TIDES is stored in the global variable TIDES RND. Its

default value is MPFR RNDN (GMP RNDN when a version of MPFR previous to the version

3.0 is used). To change the value of the working rounding mode use the function

void set rounding mode(mpfr rnd t rnd)

where rnd is one of the MPFR rounding modes.

9.2 The elliptic integral of the first kind

Let us take the first order differential equation

dx

dt
=

1√
1− k2 sin2 t

, x(0) = 0. (9.1)

whose solution, x(t; k) ∈ IR× IR→ IR, is the elliptic integral of the first kind

x(t; k) = F (t; k) =
∫ t

0

1√
1− k2 sin2 s

d s.

The ODE (9.1) is a non-autonomous system (the independent variable t appears on

the ODE) and it has a parameter k. To declare this ODE in MathTIDES we write

60

In[19]:=

ellipFODE = FirstOrderODE[{1/Sqrt[1 - k^2 Sin[t]^2]}, t, {x}, {k}];

Let us suppose we want to compute the values of the first order differential equation,

for k = 0.5 in the points t = 0, π/8, π/4, 3π/8, π/2, and we want to work with 30-digits

of precision, then we create the driver and the ODE files by writing

In[20]:=

TSMCodeFiles[ellipFODE,

"ellipF30",

InitialConditions -> {0},

ParametersValue -> {.5},

IntegrationPoints -> {0, Delta[Pi/8], Points[4]},

Precision->Multiple[30],

Output -> Screen]

Out[20]=

"Files "dr_ellipF30.c", "ellipF30.h", ellipF30.c", written on directory

"/....../TIDESExamples/chapter09".

All the options used here have been explained previously.

9.3 Driver for multiple precision arithmetic

The driver is the main program where we declare the parameters of the integrator and

we call it. MathTIDES writes the most simple driver with the essential information, but

understanding this driver the user can write or change it manually. In what follows we

enumerate the essential points of the driver of the previous example:

1. It includes the MPFR header file, the TIDES header file mp tides.h and the ODE

header file. After that the main function begins.

#include "mpfr.h"

#include "mp_tides.h"

#include "ellipF30.h"

61

int main() {

int i;

2. It declares the decimal precision digits

set_precision_digits(30);

With this function TIDES computes the value of TIDES PREC used to declare each

mpfr t variable.

3. It declares the parameters

int npar = 1;

mpfr_t p[npar];

for(i=0; i<npar; i++) mpfr_init2(p[i], TIDES_PREC);

mpfr_set_str(p[0], "0.5", 10, TIDES_RND);

To initialize the parameters we declare a int variable npar with the number of

parameters (one in our case), an array mpfr t p[npar] whose dimension coincides

with the number of parameters. We initialize each element of the array and finally

we give value to the parameters. The value of the parameters is passed by means

of an string that represent the value in base 10. MathTIDES writes this string with

the desired precision. The program uses the default rounding mode TIDES RND.

4. It declares the variables

int nvar = 1;

mpfr_t v[nvar];

for(i=0; i<nvar; i++) mpfr_init2(v[i], TIDES_PREC);

mpfr_set_str(v[0], "0", 10, TIDES_RND);

To initialize the variables we declare a int variable nvar with the number of variables

(one in our case), an array, mpfr t v[nvar] whose dimension coincides with the

number of variables. We initialize each element of the array and finally we give

value to the variables. The value of the variables is passed by means of an string

that represent the value in base 10. MathTIDES writes this string with the desired

precision.

5. It declares the number of extra functions

int nfun = 0;

62

Besides the evolution with the time of the variables, with TIDES we may compute

the evolution of functions of the variables. We will explain in detail this option in

8.2.3. If we do not use this possibility we declare a int variable nfun equal to 0.

6. It declares the tolerances (relative and absolute) used in the numerical integration

mpfr_t tolrel, tolabs;

mpfr_init2(tolrel, TIDES_PREC);

mpfr_init2(tolabs, TIDES_PREC);

mpfr_set_str(tolrel, "1.e-29", 10, TIDES_RND);

mpfr_set_str(tolabs, "1.e-29", 10, TIDES_RND);

By default the driver defines both tolerances equal to 10(1−p)where p is number of

precision digits. The user may change them manually on the driver or by using

the options: RelativeTolerance -> rtvalue, AbsoluteTolerance -> atvalue

in MathTIDES.

7. It declares the integration points

mpfr_t tini, dt;

mpfr_init2(tini, TIDES_PREC);

mpfr_init2(dt, TIDES_PREC);

mpfr_set_str(tini, "0", 10, TIDES_RND);

mpfr_set_str(dt,"0.39269908169872415480783042291",10,TIDES_RND);

int nipt = 4;

The way to declare the integration points is discussed in detail in the section 7.4.

The code in multiple precision is similar to the code in double but we need to

initialize the variables and give them a value by mean an string. In this case we see

how the value of π/8 is computed in MathTIDES with 30 digits of precision and a

string with this value is used to assign the value of dt.

8. It declares the output way

FILE* fd = stdout;

In this case the driver uses the standard output (screen) by declaring the pointer to

FILE fd.

9. It calls to the LibTIDES function to integrate the problem

63

mp_tides_delta(ellipF30, NULL, nvar, npar, nfun, v, p,

tini, dt, nipt, tolrel, tolabs, NULL, fd);

This, and other LibTIDES function to integrate ODEs, and their arguments, will we

described in detail in 9.4.

10. It ends the main program

return 0;

}

9.4 LibTIDES functions to call the integrator

There are two LibTIDES functions to call the TSM Integrator with multiple precision

void mp_tides_delta(MPLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

mpfr_t x[], mpfr_t p[],

mpfr_t tini, mpfr_t dt, int nipt,

mpfr_t tolrel, mpfr_t tolabs,

mp_data_matrix *dmat, FILE* fileout);

void mp_tides_list(MPLinkedFunction fcn,

int *pdd,

int nvar, int npar, int nfun,

mpfr_t x[], mpfr_t p[],

mpfr_t lt[], int ntot,

mpfr_t tolrel, mpfr_t tolabs,

mp_data_matrix *dmat, FILE* fileout);

The arguments of both functions are all equal except for those arguments relative to

the integration points.

• The linked function: fcn is a pointer to the function that contains the ODE function.

In this argument we write the name used in the second argument of TSMCodeFiles.

64

• The partial derivatives information: pdd is a pointer to an integer that represents

an array with the necessary information to compute the desired partial derivatives

(see chapter 10). Use NULL when no partial derivative needs to be computed.

• The dimensions of the problem: nvar, npar, nfun are three integer numbers that

represent, respectively, the number of variables, the number of parameters and the

number of extra functions to evaluate.

• Initial value of the variables: x is a pointer to a mpfr t that represents an array

with nvar elements. On input it has the value of the initial conditions (value of the

variables at the initial point). On output it has the value of the variables at the

final integration point.

• Value of the parameters: p is a pointer to a mpfr t, or an array with npar elements.

It has the value of the parameters. If there is no parameter this argument will be

NULL.

• Integration points (case mp tides delta): the integration points are represented

by three arguments: two mpfr t variables tini, dt that contains the initial point

and the increment and a int variable nipt with the number of equidistant points

where we compute the solution (without including the initial point).

• Integration points (case mp tides list): the integration points are represented by

two arguments lt and ntot. lt is a pointer to a mpfr t that represents an array of

dimension ntot that contains the list {t0, . . . , tk} of points where the solution will

be computed. These points can be non-equidistants. The list must be ordered, but

the order can be increasing or decreasing (for backward integration).

• Tolerances: tolrel, tolabs are two mpfr t variables with the relative and abso-

lute tolerance of the method.

• Output of the integrator: dmat is a pointer to a mp data matrix type that represent

a data matrix where the output will be stored (it is equivalent to the data type

explained on 8.2.4 but it uses mpfr t variables instead of double). fileout is a

pointer to a FILE where the output will be written on.

9.5 Options to change the files created with TSMCodeFiles

9.5.0.10 Option: Driver

65

By default a driver with the main program is created. With Driver -> False ,

MathTIDES does not write a driver, but it writes the ODE files.

9.5.0.11 Option: ODEFiles

With the option ODEFiles -> False , MathTIDES does not write the ODE files.

The default is True. This option is useful after we create an integrator and we want to

change only the driver.

9.6 Using LibTIDES without driver

To illustrate the use of TIDES without driver we will write a C function to compute the

elliptic integral of the first kind F (φ, k) with multiple precision arithmetic. To simplify

we restrict the code to φ ∈ [0, π/2], k ∈ [0, 1].

With the option Driver -> False we create only the ODE files

In[21]:=

TSMCodeFiles[ellipFODE, "ellipF", Driver->False]

Out[21]=

Files "ellipF.h", ellipF.c", written on directory

"/....../TIDESExamples/chapter09".

The code with this example is in the file mpellipticF.c inside the folder chapter7.

It must be written manually by the user, and it is described as follows:

1. The head ellipticF declares the input and output variables. When we use MPFR

it is better to declare the output as an argument of the function, instead a return

value, then the variable mpfr t ellipf will contain, after we call ellipticF, the

elliptic function evaluated at the input values phi, k.

void ellipticF(mpfr_t ellipf, mpfr_t phi, mpfr_t k)

{

2. To declare the precision of the output of the elliptic function we use the precision

of the input variables. We work with the small value between the precision of phi

and k.

66

int pphi, pk, prec;

pphi = (int)mpfr_get_prec (phi);

pk = (int)mpfr_get_prec (phi);

if(pphi > pk) prec = pk;

else prec = pphi;

3. The next is to declare the variables with the desired precision and initialize them

with its value

mpfr_t x, par, tini, tol;

mpfr_init2(x, prec);

mpfr_init2(par, prec);

mpfr_init2(tini, prec);

mpfr_init2(tol, prec);

mpfr_set_str(x, "0", 10, TIDES_RND);

mpfr_set_str(tini,"0", 10, TIDES_RND);

mpfr_set(par, k, TIDES_RND);

4. To declare the tolerance of the integrator we use the value 10−d, where d is the

number of decimal digits of precision. Then we need to convert the binary precision

prec into decimal precision dprec.

int dprec;

dprec = floor(prec/3.3219);

mpfr_set_si(tol, -dprec, TIDES_RND);

mpfr_exp10(tol, tol, TIDES_RND);

5. We call the integrator by computing the solution only in the last point.

mp_tides_delta(ellipMP, NULL, 1, 1, 0, &x, &par,

tini, phi, 1, tol, tol, NULL, NULL);

6. The solution is the value of the variable in the last point that is stored in x.

mpfr_set(ellipf, x, TIDES_RND);

}

The next code is a main program to check the previous function for several values of the

variable and the parameter .

67

#include "mpfr.h"

#include "mp_tides.h"

#include "ellipMP.h"

void ellipticF(mpfr_t ellipf, mpfr_t phi, mpfr_t k);

int main()

{

int dig = 30;

set_precision_digits(dig);

int i, npoints = 5;

mpfr_t phi, par, dphi, ppar, ellipF;

mpfr_init2(phi, TIDES_PREC);

mpfr_init2(dphi, TIDES_PREC);

mpfr_init2(par, TIDES_PREC);

mpfr_init2(ppar, TIDES_PREC);

mpfr_init2(ellipF,TIDES_PREC);

mpfr_set_str(dphi,"1.57079632679489661923132169164", 10, TIDES_RND);

mpfr_div_si(dphi, dphi, npoints, TIDES_RND);

printf("\nElliptic integral of first kind: \n");

mpfr_set_str(ppar,"0.1", 10, TIDES_RND);

for(i = 0; i <= npoints; i++) {

mpfr_mul_si(phi, dphi, i, TIDES_RND);

mpfr_mul_si(par, ppar, i, TIDES_RND);

ellipticF(ellipF, phi, par);

mpfr_printf("F(%d Pi/2, %.2Rf) = %.29Re\n", i, par, ellipF);

}

return 0;

}

After compiling and running the program we obtain

Elliptic integral of first kind:

F(0 Pi/2, 0.00) = 0.00000000000000000000000000000e+00

68

F(1 Pi/2, 0.10) = 3.14209953866789708725800078077e-01

F(2 Pi/2, 0.20) = 6.29856249577305325853287534572e-01

F(3 Pi/2, 0.30) = 9.53290897470820066486310930390e-01

F(4 Pi/2, 0.40) = 1.29826841666599685155151355841e+00

F(5 Pi/2, 0.50) = 1.68575035481259604287120365780e+00

69

70

Chapter 10

Computing partial derivatives: the Lorenz problem

10.1 The Lorenz problem

The classical Lorenz problem is defined by the ordinary differential equations

ẋ = a(y − x), ẏ = −x z + r x− y, ż = x y − b z. (10.1)

where x = (x, y, z) ∈ R3, and a, b, r ∈ R are the parameters.

In TIDES we declare the Lorenz ODE by writing

In[22]:=

lorenz = FirstOrderODE[{-s (x - y), -x z + r x - y, x y - b z},

t, {x, y, z}, {a, b, r}];

10.2 Computing partial derivatives of the solution of the ODE

Together with the time evolution of the variables and functions we may compute the

evolution of the partials of the variables (and partials of the functions) with respect to

the initial conditions and with respect to the parameters. To do that we need to declare,

on the driver, a line with an array of elements to send to the differential equation.

To create automatically the driver to compute partial derivatives we will use the option

AddPartials in TSMCodeFiles.

10.2.0.12 Option: AddPartials

The option AddPartials has four possible formats

71

• AddPartials-> {{u,v,..}, s}

• AddPartials-> {{u,v,..}, s, Until}

• AddPartials-> {{u,v,..}, s, Only}

• AddPartials-> {{u,v,..}, listOfOrders}

The list {u,v,...} represents the symbols of the elements with respect to we compute

the derivatives. The symbols of this list are symbols of the variables or symbols of the

parameters. If the symbol corresponds to a variable the partials with respect to the initial

value of this variable is computed. If the symbol corresponds to a parameter the partial

with respect to the parameter is computed.

An integer s represents the total maximum order of the partials to compute.

If no third argument appears (or the third argument is the symbol Until) , all the

partials until total order s are computed. If the third argument is the symbol Only, only

the partial derivatives of order s are computed.

If the second argument, listOfOrders, is a list, only the partial derivatives of the

orders in the list are computed. Then, supposing an ODE in which one of the variables

has the symbol y, and one of the parameters has the symbol a,

• AddPartials-> {{y,a}, 2} or AddPartials-> {{y,a}, 2}, Until} com-

pute

∂

∂y0

,
∂

∂a
,

∂2

∂y2
0

,
∂2

∂y0∂a
,

∂2

∂a2
.

• AddPartials-> {{y,a}, 2, Only} computes
∂2

∂y2
0

,
∂2

∂y0∂a
,

∂2

∂a2
.

• AddPartials-> {{y,a}, {{1,2},{2,3}}} computes
∂3

∂y0∂a2
,

∂5

∂y2
0∂a

3
.

If a function G is added with the option AddFunction, the partial derivatives of this

function with respect to the corresponding variables are added to the computation of the

solution and the partial derivatives of the solution.

10.3 Application to the Lorenz problem

Let us take the Lorenz problem with the initial conditions: x0 = 1, y0 = 1/3, z0 = 2/3,

and the parameters a = 10, b = 8/3, r = 27. We will integrate the problem from t0 = 0

until t = 5. and we want the solution only at the initial and the final point.

72

10.3.1 Case 1

To compute, and to write into a file, the solution together with the partial derivatives

of the solution with respect the parameter a until order 3 (∂/∂a, ∂2/∂a2, ∂3/∂a3) we write

In[23]:=

TSMCodeFiles[lorenz, "lorenzC1",

InitialConditions -> {1, 1/3, 2/3},

ParametersValue -> {10, 8/3, 27},

IntegrationPoints -> {0, 5},

AddPartials -> {{a}, 3, Until},

Output -> "lorenzC1.txt"]

Out[23]=

Files "dr_lorenzC1.c", "lorenzC1.h", lorenzC1.c", written on directory

"/....../TIDESExamples/chapter10".

The output file lorenzC1.txt contains two lines of numbers. The first line corre-

sponds to the initial time t = 0, and the second one corresponds to the end time t = 5.

Each row has 13 columns. The first column of the row i is the time ti, columns 2,3,4

contain (x(ti), y(ti), z(ti)), columns 5,6,7 are (∂x(ti)/∂a, ∂y(ti)/∂a, ∂z(ti)/∂a), columns

8,9,10 are (∂2x(ti)/∂a
2, ∂2y(ti)/∂a

2, ∂2z(ti)/∂a
2) and columns 11,12,13 are (∂3x(ti)/∂a

3,

∂3y(ti)/∂a
3, ∂3z(ti)/∂a

3). The number and order of the rows and columns for different

outputs (screen or data matrix) is exactly the same.

If we need partial derivatives with respect to only one initial condition or parameter

it is relatively easy to find the column that corresponds to each element of the output. It

always follows the same order: time, variables and partial derivatives of the variables.

10.3.2 Case 2

Let us take now two more difficult examples. With the same initial conditions and

parameters we compute all the partial derivatives, with respect to the initial conditions

x0, y0 and with respect to the parameter a, until order two. The MathTIDES expression

is equal to the previous case but now we change the option AddPartials

73

In[24]:=

TSMCodeFiles[lorenz, "lorenzC2",

InitialConditions -> {1, 1/3, 2/3},

ParametersValue -> {10, 8/3, 27},

IntegrationPoints -> {0, 5},

AddPartials -> {{x, y, a}, 2, Until},

Output -> "lorenzC2.txt"]

Out[24]=

Files "dr_lorenzC2.c", "lorenzC2.h", lorenzC2.c", written on directory

"/....../TIDESExamples/chapter10".

In this case we compute the 9 partial derivatives (in a different order):

∂/∂x0, ∂/∂y0, ∂/∂a,

∂2/∂x0∂y0, ∂2/∂x0∂a, ∂2/∂y0∂a,

∂2/∂x2
0, ∂2/∂y2

0, ∂2/∂a2.

Then the output has 31 columns: the columns of the time, three columns for the variables

and 9 partial derivatives for each variable.

10.3.3 Case 3

The next example combines the computation of an extra function together with the

computation of partial derivatives

In[25]:=

TSMCodeFiles[lorenz, "lorenzC3",

InitialConditions -> {1, 1/3, 2/3},

ParametersValue -> {10, 8/3, 27},

IntegrationPoints -> {0, 5},

AddPartials -> {{x, y, a}, 2, Only},

AddFunctions -> {(x - 1)^2 + (y - 1/3)^2 + (z - 2/3)^2},

Output -> "lorenzC3.txt"]

Out[25]=

74

Files "dr_lorenzC3.c", "lorenzC3.h", lorenzC3.c",written on directory

"/....../TIDESExamples/chapter10".

It computes the solution and the evolution of the function D = (x−1)2 +(y−1/3)2 +(z−
2/3)2. This function represents the square of the distance of the solution x to the initial

point. This is done by adding the option AddFunctions. Simultaneously we compute

the partial derivatives with respect to x0, y0 and a only at order two, i.e. the partial

derivatives (in a different order):

∂2/∂x0∂y0, ∂2/∂x0∂a, ∂2/∂y0∂a,

∂2/∂x2
0, ∂2/∂y2

0, ∂2/∂a2.

The partial derivatives of the function D are also calculated.

10.4 Changes in the driver to compute partial derivatives

Reading the ODE files obtained in cases 1 (10.3.1)and 2 (10.3.2) we observe that both

files are identical except for the name used. This is not true when we compute an extra

function.

The drivers are identical to that obtained without the option AddPartial but they

have two more lines.

• A line after including the header files and before the beginning of the main program

with the initialization of an array of integers that contains the information that

LibTIDES needs to compute the partial derivatives:

int lorenzC1_PDData[] = {1, 4, 4, 5, 0, 1, 3, 6, 10, 10, 1, 1,

1, 1, 2, 1, 1, 3, 3, 1, 10, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 10, 0,

1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 0, 1, 2, 4, 7, 7, 1, 1, 1, 1, 1, 2,

1, 7, 0, 0, 0, 1, 0, 1, 2, 7, 0, 1, 2, 1, 3, 2, 1, 0, 1, 2, 3};

in case 1 and

int lorenzC2_PDData[] = {3, 1, 2, 4, 10, 11, 0, 1, 3, 5, 7, 10,

14, 18, 21, 25, 28, 28, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 2, 1, 1, 1, 1, 1,1, 2, 1, 28, 0, 0, 1, 0, 2, 0, 3, 0, 1,

4, 0, 2, 1, 5, 0, 3, 1, 6, 0, 2, 7, 0, 3, 2, 8, 0, 3, 9, 28, 0, 1,

0, 2, 0, 3, 0, 4, 1, 0, 5, 1, 2, 0, 6, 1, 3, 0, 7, 2, 0, 8, 2, 3, 0,

9, 3, 0, 11, 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 16, 1, 1, 1, 1, 1,

75

1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 16, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0,

2, 0, 3, 0, 3, 16, 0, 1, 2, 3, 4, 1, 5, 1, 6, 1, 7, 2, 8, 2, 9, 3,

0, 0, 0, 1, 0, 0, 0,1, 0, 0, 0, 1, 2, 0, 0, 1, 1,0, 1, 0, 1, 0, 2,

0, 0, 1, 1, 0, 0, 2};

in case 2.

• The second argument when we call to the integrator is the name of the previous

array

dp_tides_delta(lorenzC1, lorenzC1_PDData,

nvar, npar, nfun, v, p, tini, dt, nipt,

tolrel, tolabs, NULL, fd);

in case 1 and

dp_tides_delta(lorenzC2, lorenzC2_PDData,

nvar, npar, nfun, v, p, tini, dt, nipt,

tolrel, tolabs, NULL, fd);

in case 2.

10.5 MathTIDES function PartialDerivativesText

Another way to construct the driver to compute partial derivatives is by creating

the integrator without using the option AddPartials, and changing the driver manually.

To do that we need to use the MathTIDES function PartialDerivativesText. The

expression PartialDerivativesText has four arguments:

1. A list with the symbols of the variables.

2. A list with the symbols of the parameters.

3. The third argument is equal to the expression used to declare the option AddPartials

4. An string that contains a name to construct the name of the array used in the driver.

The output is the text of the initialization of the array to compute partial derivatives.

Copy and paste this text into the driver, and declare the array, and the partial derivatives

will be computed.

The alternative to write the integrators in cases 1 and 2 is to create the files to compute

the case without partial derivatives

76

In[26]:=

TSMCodeFiles[lorenz, "lorenzC",

InitialConditions -> {1, 1/3, 2/3},

ParametersValue -> {10, 8/3, 27},

IntegrationPoints -> {0, 5},

Output -> "lorenzC.txt"]

Out[26]=

Files "dr_lorenzC.c", "lorenzC.h", lorenzC.c", written on directory

"/....../TIDESExamples/chapter10".

After that we use MathTIDES to create the text to initialize the arrays

In[27]:=

PartialDerivativesText[{x, y, z}, {a, b, r}, {{a}, 3, Until},"lorenzC1"]

Out[27]=

int lorenzC1_PDData[] = {1, 4, 4, 5, 0, 1, 3, 6, 10, 10, 1, 1, 1,

1, 2, 1, 1, 3, 3, 1, 10, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 10, 0, 1, 0,

2, 1, 0, 3, 2, 1, 0, 5, 0, 1, 2, 4, 7, 7, 1, 1, 1, 1, 1, 2, 1, 7, 0,

0, 0, 1, 0, 1, 2, 7, 0, 1, 2, 1, 3, 2, 1, 0, 1, 2, 3};

In[28]:=

PartialDerivativesText[{x, y, z}, {a, b, r}, {{x, y, a}, 2, Until},

"lorenzC2"]

Out[28]=

int lorenzC2_PDData[] = {3, 1, 2, 4, 10, 11, 0, 1, 3, 5, 7, 10,

14, 18, 21, 25, 28, 28, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 28, 0, 0, 1, 0, 2, 0, 3, 0, 1,

4, 0, 2, 1, 5, 0, 3, 1, 6, 0, 2, 7, 0, 3, 2, 8, 0, 3, 9, 28, 0, 1, 0,

2, 0, 3, 0, 4, 1, 0, 5, 1, 2, 0, 6, 1, 3, 0, 7, 2, 0, 8, 2, 3, 0, 9,

3, 0, 11, 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 16, 1, 1, 1, 1, 1, 1,

77

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 2,

0, 3, 0, 3, 16, 0, 1, 2, 3, 4, 1, 5, 1, 6, 1, 7, 2, 8, 2, 9, 3, 0, 0,

0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0,

1, 1, 0, 0, 2};

Finally we make a copy and paste to include the line of each case into the driver

and we also change the second argument when we call the integrator by the name of the

corresponding array.

10.6 Computing the position of each element of the output

In the previous cases 2 and 3 it is difficult to know what is the position of a particular

partial derivative at the output. The next two LibTIDES functions returns an integer

number with the position of a particular partial derivative at the output (screen, file or

data matrix). This position is zero based (0 means the first column, the time, i means

the (i+ 1)-th column). They return −1 if the corresponding derivative is not computed.

The value 0 is never returned because it corresponds to the column of the time t.

long position_variable(int v, char* der, int nvar, int nfun, int *pdd);

long position_function(int f, char* der, int nvar, int nfun, int *pdd);

The arguments of these functions are the following

• The first argument is an integer number representing the index of the variable or

the index of the extra function. This index is zero based. i means the (i + 1)-th

variable or extra function.

• The second argument is an string of characters that represents the derivative. Let

us suppose we differentiate with respect to four elements (intial conditions or pa-

rameters) named α, β, γ, δ, then the symbol "1/2/0/1" represents the derivative

∂4/∂α∂β2∂δ. The string "0/0/0/0" means no derivative, and when it is used in

position variable or position function gives the column position of the vari-

able or the extra function. If we differentiate with respect to only one variable the

separator "/" may be omitted.

• The third and fourth argument are the number of variables of the ODE and the

number of extra functions. They are the same arguments used when we call the

integrator.

78

• The last argument pdd is a pointer to an integer that represents an array with the

necessary information to compute the desired partial derivatives.

In the Lorenz problem we have three variables x, y, z and three parameters a, b, r.

In case 10.3.1 we compute all the partial derivatives with respect to the parameter a until

order 3, then

• position variable(0, "2", 3, 0, lorenzC1 PDData) returns 7. It means that

the term ∂2x/∂a2 appears at the column 8.

• position variable(2, "0", 3, 0, lorenzC1 PDData) returns 3. It means that

the term z appears at the column 4.

• position variable(1, "5", 3, 0, lorenzC1 PDData) returns−1 because ∂5y/∂a5

is not computed.

• position variable(1, "1/1", 3, 0, lorenzC1 PDData) returns −1 because we

only differentiate with respect to one variable.

• position function(0, "1", 3, 0, lorenzC1 PDData) returns −1 because we do

not compute any extra function.

In case 10.3.2 we compute the partial derivatives until order 3 with respect to x0, y0, a, in

this order.

• position variable(0, "1/0/1", 3, 0, lorenzC2 PDData) returns 19. It means

that the term ∂2x/∂x0∂a appears at the column 20.

• position variable(2, "2/0/0", 3, 0, lorenzC2 PDData) returns 15. It means

that the term ∂2z/∂x2
0 appears at the column 16.

• position variable(0, "0/1/0", 3, 0, lorenzC2 PDData) returns 7. It means

that the term ∂x/∂y0 appears at the column 8.

• position variable(1, "0/0/0", 3, 0, lorenzC2 PDData) returns 2. It means

that the term y appears at the column 3.

• position variable(1, "5", 3, 0, lorenzC2 PDData) returns−1 because we com-

pute partial derivatives with respect to three variables.

• position variable(1, "1/0/1/0", 3, 0, lorenzC2 PDData) returns−1 because

we compute partial derivatives with respect to three variables.

• position function(0, "1/0/1", 3, 0, lorenzC2 PDData) returns −1 because

we do not compute any extra function.

79

In case 10.3.3 we compute one extra function D, and the partial derivatives, only at order

2, with respect to x0, y0, a, in this order.

• position variable(0, "1/0/1", 3, 1, lorenzC3 PDData) returns 13. It means

that the term ∂2x/∂x0∂a appears at the column 14.

• position variable(2, "2/0/0", 3, 1, lorenzC3 PDData) returns 7. It means

that the term ∂2z/∂x2
0 appears at the column 8.

• position variable(0, "0/1/0", 3, 1, lorenzC3 PDData) returns -1 because we

only compute derivatives of order 2.

• position variable(1, "0/0/0", 3, 1, lorenzC3 PDData) returns 2. It means

that the term y appears at the column 3.

• position function(0, "0/1/1", 3, 1, lorenzC3 PDData) returns 24. It means

that the term ∂2D/∂y0∂a appears at the column 25.

• position variable(1, "5", 3, 1, lorenzC3 PDData) returns−1 because we com-

pute partial derivatives with respect to three variables.

• position function(1, "1/0/1", 3, 1, lorenzC3 PDData) returns −1 because

we do compute only one extra function.

80

Chapter 11

Computing events

11.1 Events

Let’s suppose the ODE system

ẏ = f(t,y(t); p), y(t0) = y0, y (variables) ∈ IRn, p (parameters) ∈ IRm,

and y(t) the solution of this ODE.

Sometimes we want to locate, during the integration of the ODE, some events, like

zeros or extrema, of the real function G(y(t)) : [to, tf] ∈ IR→ IR inside a time interval.

TIDES has the possibility to locate four kind of events: zeros, local extrema, local

maxima and local minima. In all cases, TIDES computes the power series of the function

G(y(t)) and supposes that there is no more than one zero or extrema inside the convergence

interval of this series. The extrema are located by computing the zeros of the derivative.

The zeros are located by a change of sign into the convergence interval. If there are more

then one zero (extrema) inside the interval or the zero corresponds to a multiple zero, our

method does not guarantee that we find the event.

To illustrate how to search events let’s take again the sin and cosine differential equa-

tion given in (6.1)

ẋ = y, ẏ = −x, x(0) = 0, y(0) = 1,

whose solution are the functions x(t) = sin t, y(t) = cos t. We will use this ODE to

compute

• Case 1: all the zeros of the function x(t) + y(t) = sin t+ cos t between 0 and 10π.

• Case 2: the two first local extrema of the function y(t) = cos t between 0 and 10π.

• Case 3: Ten local maxima of the function x(t) + 2 y(t) = sin t + 2 cos t between 0

and 10π.

81

11.2 Events and MathTIDES

MathTIDES writes the code to compute events by using the expression TSMCodeFiles

in a similar way than the TSM Integrator is written.

The arguments of TSMCodeFiles are the same described in (5.5), but we change

the code by means of the options FindZeros, FindExtrema, FindMinima, FindMaxima,

EventTolerance and EventsNumber.

The following TSMCodeFiles options can not be used to compute events: MinTIDES,

RelativeTolerance, AbsoluteTolerance, AddFunctions and AddPartials. The rest of

the options can be used but sometimes they act in a different way.

11.2.1 Event options of TSMCodeFiles

11.2.1.13 Option: FindZeros

MathTIDES writes, with the option FindZero->G , the code to compute the zeros of

G(y(t)) inside an interval. G is the Mathematica expression of the function G(y).

11.2.1.14 Option: FindExtrema

MathTIDES writes, with the option FindExtrema->G , the code to compute the local

extrema (maxima and minima) of G(y(t)) inside an interval. G is the Mathematica

expression of the function G(y).

11.2.1.15 Option: FindMinima

MathTIDES writes, with the option FindMinima->G , the code to compute the local

minima of G(y(t)) inside an interval. G is the Mathematica expression of the function

G(y).

11.2.1.16 Option: FindMaxima

MathTIDES writes, with the option FindMaxima->G , the code to compute the local

maxima of G(y(t)) inside an interval. G is the Mathematica expression of the function

G(y).

11.2.1.17 Option: EventTolerance

With the option EventTolerance->... we declare the tolerance of the numerical

method used to find the zeros of a polynomial (a number is a zero if its absolute value

is less than the tolerance). The default value is 10−16 if double precision is used, or

10−p, where p is the number of precision digits declared with the option Precision ->

Multiple[p].

11.2.1.18 Option: EventsNumber

82

With the option EventsNumber->... we declare the maximum number of events

that we want to compute inside the integration interval. Sometimes there are less events

than this maximum number. The default options is EventsNumber->0 that computes

all the events inside the interval. When TIDES finds all the desired events before to reach

the final integration point, the integration stops.

11.2.2 Changes in old options of TSMCodeFiles

11.2.2.19 Option: IntegrationPoints

The use of the option IntegrationPoints is similar than before, but the result is

slightly different. In fact only the initial and the final integration points are considered.

11.2.2.20 Option: DataMatrix

The option DataMatrix is similar than before, but when it is used to compute events

we have two differences

• All the computed events are stored in the data matrix. The number of rows of the

data matrix is equal to the number of events.

• If we use the option DataMatrix -> True the name of the data matrix where the

events are stored is the name of the file joined to EventsVector.

11.2.3 Case 1

The sine and cosine differential equation sincosODE has been declared in MathTIDES

as in the section (6.2). Then the ODE files and the driver to compute the events of the

first case are obtained with the expression

In[29]:=

TSMCodeFiles[sincosODE,

"sincosMinZ",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, 10 Pi},

Output -> Screen,

FindZeros -> x + y];

The output of this driver is

2.356194490192345e+00 7.071067811865476e-01 -7.071067811865476e-01 0.000000000000000e+00

5.497787143782138e+00 -7.071067811865476e-01 7.071067811865475e-01 0.000000000000000e+00

83

8.639379797371932e+00 7.071067811865472e-01 -7.071067811865471e-01 0.000000000000000e+00

1.178097245096173e+01 -7.071067811865474e-01 7.071067811865469e-01 -2.220446049250313e-16

1.492256510455152e+01 7.071067811865470e-01 -7.071067811865471e-01 0.000000000000000e+00

1.806415775814131e+01 -7.071067811865469e-01 7.071067811865469e-01 -2.775557561562891e-17

2.120575041173110e+01 7.071067811865470e-01 -7.071067811865468e-01 0.000000000000000e+00

2.434734306532090e+01 -7.071067811865468e-01 7.071067811865468e-01 0.000000000000000e+00

2.748893571891069e+01 7.071067811865470e-01 -7.071067811865469e-01 0.000000000000000e+00

3.063052837250048e+01 -7.071067811865470e-01 7.071067811865470e-01 0.000000000000000e+00

Each line of this output represents an event. The first column is the time t where the

event occurs. The columns 2 and 3 represents the solution x, y in this point. Finally the

last column represent the value of the event function (zero in this case).

The position of the elements in output is the same for a file and for a data matrix.

11.2.4 Case 2

In this case we compute the two first extrema of the cosine function

In[30]:=

TSMCodeFiles[sincosODE,

"sincosMinE",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, 10 Pi},

Output -> Screen,

FindExtrema -> x,

EventsNumber -> 2];

and we obtain the following result

1.570796326794897e+00 1.000000000000000e+00 0.000000000000000e+00 1.000000000000000e+00

4.712388980384690e+00 -1.000000000000000e+00 0.000000000000000e+00 -1.000000000000000e+00

We see in the previous lines that the first value corresponds to a local maximum and the

second point is a minimum. When the integrator detects the second event it stops.

11.2.5 Case 3

In this case we try to find 10 zeros of the functions sin t+ 2 cos t in [0, 10π].

In[31]:=

84

TSMCodeFiles[sincosODE,

"sincosMinM",

InitialConditions -> {0, 1},

IntegrationPoints -> {0, 10 Pi},

Output -> Screen,

FindMaxima -> x + 2 y,

EventsNumber -> 10];

The output

4.636476090008061e-01 4.472135954999579e-01 8.944271909999159e-01 2.236067977499790e+00

6.746832916180392e+00 4.472135954999577e-01 8.944271909999157e-01 2.236067977499789e+00

1.303001822335998e+01 4.472135954999574e-01 8.944271909999155e-01 2.236067977499788e+00

1.931320353053956e+01 4.472135954999575e-01 8.944271909999151e-01 2.236067977499788e+00

2.559638883771915e+01 4.472135954999578e-01 8.944271909999147e-01 2.236067977499787e+00

has only five lines because the funcion sin t+ 2 cos t has only five maxima in this interval.

11.3 Events and LibTIDES

If we observe the driver dr sincosMinZ we find two differences with respect to a TSM

integrator driver. The line

int nevents = 0;

declares an integer variable that contains the maximum number of events we may compute.

In this case the value 0 indicates that we want to compute all the events inside the

integrator interval.

The line

dp_tides_find_zeros(sincosMinZ, nvar, npar, v, NULL,

tini, tend, tol, &nevents, NULL, fd);

substitutes the integrator dp tides delta or dp tides list by the event generator, in

this case to find zeros. Substitute the word zeros by extrema, minima, maxima to find

other events.

11.3.1 LibTIDES functions to compute events

LibTIDES has eight different functions to compute events. Four in double precision

85

void dp_tides_find_zeros(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,

double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

void dp_tides_find_extrema(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,

double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

void dp_tides_find_minimum(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,

double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

void dp_tides_find_maximum(DBLinkedFunction fcn,

int nvar, int npar, double *x, double *p,

double tini, double tend, double tol,

int *numevents, dp_data_matrix *dmat, FILE* fileout) ;

and four in multiple precision

void mp_tides_find_zeros(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

void mp_tides_find_extrema(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

void mp_tides_find_minimum(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

86

void mp_tides_find_maximum(MPLinkedFunction fcn,

int nvar, int npar, mpfr_t *x, mpfr_t *p,

mpfr_t tini, mpfr_t tend, mpfr_t tol,

int *numevents, mp_data_matrix *dmat, FILE* fileout) ;

The arguments in all cases represent the same elements:

• The linked function: fcn is a pointer to the function that contains the ODE function.

In this argument we write the name used in the second argument of TSMCodeFiles.

• The dimensions of the problem: nvar, npar are two integer numbers that represent,

respectively, the number of variables and the number of parameters.

• Initial value of the variables: x is a pointer to a double (mpfr t) that represents an

array with nvar elements.

• Value of the parameters: p is a pointer to a double (mpfr t) , or an array with

npar elements. It has the value of the parameters.

• Integration points: the variables tini, tend represent the limits of the integration

interval where TIDES searchs the events. tini is the point where we give the initial

conditions. tini can be less or greater than tend.

• Tolerance: tol represents the tolerance in the numerical method to search zeros of

polynomials.

• Number of events: A pointer to the integer numevents, that represents the maxi-

mum number of events that we search inside the integration interval. If we find all

numevents events the integration ends before the final point of the interval. If we

pass a value numevents = 0, TIDES searchs all the events inside the interval. In

output the value of numevents is the number of found events.

• Output of the integrator: dmat is a pointer to a dp data matrix (or mp data matrix)

type that represent a data matrix where the output events will be stored. fileout

is a pointer to a FILE where the output will be written on.

11.4 Finding the period of a periodic orbit

Another use of the events seeker is to find the period of a periodic orbit. Let’s take

the Kepler problem of section 7.1 with the same initial conditions x = (0.8, 0, 0),X =

(0, 1.2247448713915892, 0) and value of the parameter µ = 1. With these values the orbit

is periodic of period 2π.

87

The period T of a periodic orbit is a value T such us x(T)−x0 = 0. Find this value is

the same that find a zero of the value of the square1 of the distance between the solution

x and the initial value x0, in this case d2 = (x− 0.8)2 + y2 + z2.

The MathTIDES expression to write the ODE functions and the driver is

In[32]:=

TSMCodeFiles[keplerODE,

"keplerP",

InitialConditions -> {0.8, 0, 0, 0, 1.2247448713915892, 0},

ParametersValue -> {1},

IntegrationPoints -> {0, 10 Pi},

EventsNumber -> 2,

FindZeros -> (x - 0.8)^2 + y^2 + z^2,

Output -> Screen];

Let us observe that we try to compute two events. This is because the first value where

the distance is zero is the initial point, then the period appears as the second zero of this

function. The (simplified) output in this case is

0.000000000000e+00 8.00e-01 0.00e+00 0.00e+00 0.00e+00 1.22e+00 0.00e+00 0.00e+00

6.283185307179e+00 8.00e-01 0.00e+00 0.00e+00 3.88e-16 1.22e+00 0.00e+00 0.00e+00

1We do not use the square root because the information is the same, we need to make more operations

and finally the series of the square root has a singular value in zero.

88

	II Learning to use TIDES by mean of examples
	Integrating ODEs with TIDES
	Seven steps to integrate ODEs with TIDES
	Step (M.1): loading MathTIDES
	Step (M.2): declaring the work directory
	Step (M.3): declaring the differential equation
	Step (M.4): writing the code files
	Steps (C.1), (C.2), (C.3): compiling, linking and running the code files

	Using the four versions of the TSM Integrator: the sine and cosine differential equation
	Example: the sine and cosine differential equation
	Declaring first order differential equations
	Declaring the work directory
	Options of TSMCodeFiles to declare the TSM Integrator
	More options of TSMCodeFiles to change the driver
	Integrating sincosODE with minf-tides
	Integrating sincosODE with minc-tides
	Integrating sincosODE with dp-tides
	Integrating sincosODE with mp-tides

	Understanding the files written by MathTIDES: the keplerian motion
	The keplerian motion
	From potential to first order ODEs

	Understanding the driver
	Understanding the ODE file
	Ways to declare the integration points
	LibTIDES functions to call the integrator

	More examples: several gravitational problems
	The three body problem
	Higher order differential equations
	Finding a horseshoe orbit

	The main problem of the Earth artificial satellite
	Hamilton's equations
	The main problem ODE
	Computing extra functions
	Using data matrices to store the result
	The integration code of the main problem

	Handling multiple precision in TIDES: the elliptic integral of the first kind
	LibTIDES and MPFR library
	The elliptic integral of the first kind
	Driver for multiple precision arithmetic
	LibTIDES functions to call the integrator
	Options to change the files created with TSMCodeFiles
	Using LibTIDES without driver

	Computing partial derivatives: the Lorenz problem
	The Lorenz problem
	Computing partial derivatives of the solution of the ODE
	Application to the Lorenz problem
	Case 1
	Case 2
	Case 3

	Changes in the driver to compute partial derivatives
	MathTIDES function PartialDerivativesText
	Computing the position of each element of the output

	Computing events
	Events
	Events and MathTIDES
	Event options of TSMCodeFiles
	Changes in old options of TSMCodeFiles
	Case 1
	Case 2
	Case 3

	Events and LibTIDES
	LibTIDES functions to compute events

	Finding the period of a periodic orbit

