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Université de Nice, Parc Valrose, 06108 Nice, cedex 2, France

Monograf́ıas de la Real Academia de Ciencias de Zaragoza 34, 51–71, (2010).

Abstract

At present, there exists a wide range of fire behavior models and studies aiming

to simulate fire. After a brief review of fire spread models we focus on physical

models. Physical or combustion models describe the evolution of physical quantities

inside the vegetation, considered as a porous medium, and as a consequence provide

the evolution of the fire front. Between combustion models we can distinguish two

groups:

1. Complex models, where general conservation laws are considered and several

phases, solid phase and gas phase with different temperatures, two layers mod-

els, etc.

2. Simplified models, where in general an average media is considered with av-

erage magnitudes. Usually only one temperature is considered and only one

phase (the other phase is parameterized). The simplified models are more

realistic than models based on cellular automata, geometric models and other

empirical models, but allow faster computations than complex models, pro-

viding computation times below real time and at the same time taking into

account the main physical mechanisms concerning the fire propagation.

This models takes into account three of the main mechanisms in fire spread,

namely, Water content, Radiation qnd Wind and topography effects. We will discuss

also some aspects concerning the numerical methods involved.
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1 Introduction

Fire modelling is a highly challenging problem from both the physical and the nu-

merical point of view, which forces. From the more simple and empirical models to the

more complex theoretical models, all of a compromise position among urge of practical

usefulness, computer capabilities and existing numerical methods.

The empirical models are based on empirical correlations found on actual fires and on

documentation of the principle characteristics of different vegetation types. Among them

we should mention the one develop by Rothermel [1], implemented in the well known

software Behave, used in most of the North American forestry management offices. These

models predict the position of the fire front, but many relevant physical variables of the

fire are unknown. Since they rely in correlations obtained in real situations, their use with

different physical conditions is hard.

Combustion models are based on balance laws of physics and intend to keep track of

the real physical variables involved in a fire. They are usually posed on a bidimensional

domain (for real time computations this is mandatory) representing the vegetation layer

which is considered as a porous medium where the main variables of fire develop. Coupled

to these equations through certain parameters, several important physical effects like wind,

moisture, tilt or radiation are evaluated.

The general deduction and simplification of the initial three dimensional differential

equations is complex as can be seen in [2] and [3]. Consequently equations are usually

simply posed following plausible physical arguments. Despite of the relatively wide range

of different approximations to the problem the basic structure of the differential equations

to be solved usually conserve a common structure. The following adimensional equations

may represent a simple but realistic model.

∂e

∂t
+w · ∇e− (J ∗ u4 − u4) + αu = Af(u, y) (1)

e ∈ G(u) (2)

∂y

∂t
= −f(u, y) (3)

Here e is the non-dimensional enthalpy, u is the non-dimensional temperature and y is

the non-dimensional mass fraction of fuel.

The non-dimensional enthalpy e introduced accounts for moisture effects, and is an

element of a multivalued maximal monotone operator G, given by:

G(u) =



































u if u < uv

[uv , uv + λv] if u = uv

u+ λv if uv < u < up

[up + λv , up + λv + λp] if u = up

u+ λv + λp if u > up

(4)
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where uv and up, are the non-dimensional evaporation temperature of the water and the

non-dimensional pyrolysis temperature of the solid fuel, respectively. The quantities λv

and λp are the non-dimensional evaporation heat and pyrolysis heat.

The right hand side functions f follow an Arrhenius type law and modelize on one

side the loss of fuel and on the other the energy gain due to combustion. The term αu

represents the energy lost by convection in the vertical direction.

If the medium is optically thick the non local radiation −(J ∗ u4 − u4) could be

approximated by a non linear diffusion term plus an additional convection term if the

kernel J(·) is non symmetric. This asymmetry is usually due to wind and surface tilt.

Clearly using a Taylor expansion

(J ∗ u4)(x)− u4 =

∫

J(x− y)u4(y)dy − u4(x)

= −(

∫

J(z)zdz)(u4)′(x) + (

∫

J(z)z2dz)(u4)′′(x) + ...

If the kernel J(.) is symmetric then

−(J ∗ u4 − u4) ≈ −(

∫

J(z)z2dz)(4u3u′)′(x) (5)

Thermal radiation is nearly always the dominant mode of heat transfer in the vicinity of

a large fire source. Furthermore, it is usually accepted that radiation form the flames above

the vegetable layer is not only the dominant radiative contribution, but also the main

mechanism of fire spread [5]. The numerical treatment of radiation is computationally

expensive since it is highly nonlinear and a three dimensional phenomena. So radiative

models are restricted to approximated schemes. In this paper we present two simplified

models for the thermal radiation: a local radiation diffusive model, and a non local

radiation model.

Wind is an important hazard parameter in forest fire and thus a convenient local

windfield should be generated. In the present examples the model developed in [6] is

implemented.

2 Model with local radiation

In this first model we propose a simplified 2-D model where radiation is approximated

by a non-linear diffusive term. The convective term takes into account the effect of the

meteorological wind and the slope of the terrain. The non-dimensional equations are de-

rived from the conservation law of energy and mass fraction using the Frank-Kamenetskii

change of variables.

Let Q = [0, lx] × [0, ly] ⊂ R
2 a rectangle representing the projection of the surface

where the fire takes place, big enough so the fire does not arrive to the boundary and
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therefore Dirichlet boundary conditions can be considered.

∂te+w · ∇e−∇ (K (u)∇u) + αu = Af (u, y) , in S t ∈ (0, tmax),

e ∈ G(u), in S t ∈ (0, tmax),

∂ty = −Bf (u, y) , in S t ∈ (0, tmax),

(6)

where again e is the non-dimensional enthalpy, u is the non-dimensional temperature and

y is the non-dimensional mass fraction of fuel.

The non linear function K (u) = κ (1 + ǫu)3 + 1, in the diffusive term represents the

local radiation. The parameter K depends on the Stefan-Boltzmann constant, the optical

path length for radiation, the thermal conductivity and the ambient temperature. The

parameter ǫ depends on the activation energy, the universal constant of gases and the

ambient temperature.

The function f (u, y) = (u > upc) y exp(u/(1 + εu)) is given by an Arrhenius type

law where upc is the non dimensional temperature at which the process changes from

endothermic to exothermic, and the logic expressions is equal to 1 if the expression is

true and 0 if the expression is false. We write the pre-exponential factors A and B, out

of the function f , in order to simplify notation. Notice that the pre-exponential factor B

in 6 depends on the reaction heat.For more details about how to derive this model, its

solution and applications see [7]

3 Model with non local radiation

Let S be a surface defined by the mapping

S : Q 7−→ R
3

x, y −→ (x, y, h(x, y))

representing the part of the terrain where the propagation of a fire can take place. We will

assume that vegetation can be represented by a given fuel load together with a moisture

content. Besides we will assume that the height of the flames in a particular fire are

known and bounded by H . In order to take into account some three dimensional effects,

and particularly the radiation from the flames above the surface S, we will consider the

following three dimensional domain

D = {(x, y, z) ∈ R
3 (x, y) ∈ Q, h(x, y) < z < h(x, y) +H}

This model considers the energy and mass conservation equations in the surface S, and

the radiation equation in D.
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∂te+ αu = r in S t ∈ (0, tmax) (7)

e ∈ G(u) in S t ∈ (0, tmax) (8)

∂ty = −Bf(u, y), in S t ∈ (0, tmax), (9)

Again the function f follows an Arrhenius type law

f(u, y) = (u > up)(y > ye)y exp(−γ/(1 + u)) where ye is the mass fraction lower bound

of extinction.

The right hand side of equation (7) describes the thermal radiation reaching the surface

S from the flame above the layer. The intensity is defined as the radiation energy passing

through an area per unit time, per unit of projected area and per unit of solid angle.

The projected area is formed by taking the area that the energy is passing through and

projecting it normal to the direction of travel. The unit elemental solid angle is centered

about the direction of travel and has its origin at the area element.

After adimensionalization, the radiation equations in the direction Ω can be written

as

Ω.∇i+ a∗i = δ(1 + ug)
4 in D (10)

i = 0 on ∂D ∩ {x; Ω · n < 0} (11)

where i is the non-dimensional radiation intensity, a∗ is the non-dimensional absorbtion

coefficient, ug is the non dimensional flame temperature and δ depends on the Stefan-

Boltzmann constant. The right hand side represents the total emissive power of a black-

body. The incident energy at a point x(x, y, h(x, y)) of the surface S due to radiation from

the flame above the surface per unit time and per unit area will be obtained summing up

the contribution of all directions Ω, that is

r(x) =

∫ 2π

ω=0

i(x,Ω)Ω · n dω (12)

where we have only considered the hemisphere above the fuel layer.

For more details about how derive this model, its solution and applications see [4].

4 Wind Field Model

4.1 Wind equations

Let ω ⊂ R
2 be a two–dimensional normalized bounded and connected domain rep-

resenting the projection of the three–dimensional ground surface, x = (x1, x2) be any of

its points and τ be the time. We use small letters for the two–dimensional problem, and

capital letters for the three–dimensional problem. All quantities are adimensionalised.
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Let us consider the three–dimensional domain Ω = {(x, z) : x ∈ ω, h(x) < z < δ}

representing the air layer studied. We assume that the height δ is small in front of

the width and that the height h(x) of the surface at point x is smaller than δ. In this

section, we denote by an index xz the three–dimensional operators, and by an index x the

bi-dimensional operators.

The air velocity U = (U1, U2, U3) and the potential P satisfy the Navier–Stokes equa-

tions. On one hand, the momentum equation reads

∂U

∂τ
+ U · ∇xzU −

1

Re
∆xzU +∇xzP =

λ

Re
Te3, (13)

where T is the adimensional temperature, Re is the Reynolds number, λ is related to the

Grashoff number (indeed, λT is the Grashoff number), and e3 = (0, 0, 1).

On the other hand, the air compressibility is neglected, so that

∇xz · U = 0. (14)

In order to specify the boundary conditions, we decompose the boundary into ∂Ω =

S ∪ A ∪ L, where S = {(x, z) : x ∈ ω, z = h(x)} is the ground surface, A = {(x, z) : x ∈

ω, z = δ} is the air upper boundary and L = {(x, z) : x ∈ ∂ω, h(x) < z < δ} is the air

lateral boundary. Boundary conditions are

U ·N = 0,
∂U

∂N

∣

∣

∣

tan
= ζU, on S, (15)

U3 = 0, ∂zU1 = ∂zU2 = 0, on A, (16)

U |L = (vm, 0), onL, (17)

where ζ is the friction coefficient, N is the 3D inner unit normal vector field to ∂Ω, and

the subscript tan denotes the tangential component. Here vm is the horizontal component

of the meteorological wind (its vertical component is neglected), that is assumed to be

known, non depending on z and with a null total flux through the lateral boundary, that

is,

∂zvm = 0,

∫

∂ω

(δ − h) vm · ν ds = 0, (18)

where ν = (ν1, ν2) is the 2D inner unit normal vector field to ∂ω. We complete these

equations with the initial condition

U |τ=0 = U0, (19)

where U0 is the initial velocity, that we assume to be known. Equations (13) to (19) are

well posed, i.e. there exists a solution (U, P ), which is unique up to an additive constant

on pressure for a small enough Reynolds number.
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We distinguish the vertical velocity from the horizontal one denoting W = U3, V =

(U1, U2), and we define the horizontal flux at a point x ∈ ω and time τ by

V (τ, x) =

∫ δ

h(x)

V (τ, x, z) dz. (20)

The incompressibility and the fact that the air does neither cross S nor A, that is, U ·N =

0, involve that the horizontal flux is also incompressible, that is

∇x · V = 0. (21)

4.2 Asymptotic wind equations

Using the fact that the thickness δ of the considered air layer is small compared with

its width, and assuming that the wind is not too strong and more precisely that δ2Re≪ 1,

then preserving only the dominant terms and re-scaling P , Equations (13) and (14) write

−∂2zzV +∇xP = 0, (22)

∂zP = λT, (23)

∇x · V + ∂zW = 0. (24)

Boundary conditions (15), (16) and (17) give

(V,W ) ·N = 0, ∂zV = ζV, on S, (25)

W = 0, ∂zV = 0, on A, (26)

V · ν = (δ − h)vm · ν, on ∂ω. (27)

Equations (22) to (27) are well posed: given vm satisfying (18) and T , there exists a

solution (V,W, P ) which is unique up to an additive constant on P . For more details

about this convection asymptotic model and its further solution (28), (29) and (30), see

[6].

4.3 3D Horizontal velocity in terms of 2D potential

We assume that the air temperature linearly decreases with the height and vanishes

on the upper boundary (for a non zero constant given air temperature on the upper

boundary, similar formulas hold and numerical results are very close), that is

T (τ, x, z) = tS(τ, x)
δ − z

δ − h(x)
,

and that the temperature tS = tS(τ, x) on ground surface is given. Then, by Equation

(23), there exists a 2D potential p = p(τ, x) such that

P (τ, x, z) = p(τ, x) + t(τ, x)
(

δz −
1

2
z2
)

,
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where t is a re-scaled temperature given by

t(τ, x) =
λtS(τ, x)

δ − h(x)
.

The potential p is called 2D because it only depends on the first two spaces variables

x = (x1, x2); it also depends on time τ , but this last acts now as a parameter.

Then, Equation (22) and boundary conditions ∂zV (τ, x, δ) = 0 and ∂zV (τ, x, h(x)) =

ζV (τ, x, h(x)) included in (26) and (25) provide

V (x, z) = m(x, z)∇xp(τ, x) + n(x, z)∇xt(τ, x), (28)

where

m(x, z) =
(1

2
z2 − δz −

1

2
h2(x) + (δ + ξ)h(x)− ξδ

)

,

n(x, z) =
(

−
1

24
z4 +

1

6
δz3 −

1

3
δ3z +

1

24
h4(x)−

1

6
(δ + ξ)h3(x)

+
1

2
ξδh2(x) +

1

3
δ3h(x)−

1

3
ξδ3

)

,

being ξ = 1/ζ the inverse of the friction coefficient ζ .

4.4 Equations governing the 2D potential

Using (28) in Equations (21) (which follows from (24), (25) and (26)) and (27), we

find that the potential p = p(τ, x) satisfies the following 2D boundary problem

−∇x · (a∇xp) = ∇x · (b∇xt) in ω, (29)

a
∂p

∂ν
= −b

∂t

∂ν
+ v on ∂ω, (30)

where

a = a(x) =
1

3
(δ − h(x))2(3ξ + δ − h(x)),

b = b(x) =
1

30
(δ − h(x))2

(

2δ2(2δ + 5ξ)− 2δ(δ − 5ξ)h(x)− (3δ + 5ξ)h2(x) + h3(x)
)

,

and

v = v(τ, x) = (δ − h(x))vm(τ, x) · ν(x)

is the horizontal normal flux on ∂ω. By Hypothesis (18), it satisfies
∫

∂ω

v = 0. (31)

Equations (29)–(30) are well posed: given t and v, there exists a solution p, which is

unique up to an additive constant. This constant will be fixed by the extra condition
∫

ω

p = 0.
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4.5 Variational solution of the 2D potential equations

Let

L2
0(∂ω) =

{

v ∈ L2(∂ω) :

∫

∂ω

v = 0
}

,

V =
{

ϕ ∈ H1(ω) :

∫

ω

ϕ = 0
}

.

Given t ∈ H1(ω) and v ∈ L2
0(∂ω), by Lax–Milgram theorem, there exists a unique p ∈ V

such that
∫

ω

a∇p · ∇ϕ =

∫

∂ω

vϕ−

∫

ω

b∇t · ∇ϕ, ∀ϕ ∈ V. (32)

Let us check that it satisfies (29) and (30). Given φ ∈ D(ω), ϕ = φ + c belongs to

V for some c ∈ R; then (32) writes
∫

ω
a∇p · ∇φ = −

∫

ω
b∇t · ∇φ since

∫

∂ω
v(φ + c) =

c
∫

∂ω
v = 0. This provides Equation (29) in distribution sense. Now (29) and (32) give

∫

ω
(∇ · (a∇p + b∇t))ϕ =

∫

∂ω
vϕ. This provides Boundary Condition (30) in a weak sense

since ϕ may coincide with any given element of H1(ω) in a neighborhood of ∂ω.

In fact, data depend on time τ which acts as a parameter: given t(τ) ∈ H1(ω) and

v(τ) ∈ L2
0(∂ω), there exists a unique solution p(τ) ∈ V.

5 The Optimal Control Problem

In order to simplify notation in the sequel, the time τ is omitted since it acts as a

parameter, and the index x is omitted in differential operators since they only act on this

variable.

5.1 Identification of wind on the boundary

We are going now to identify v to the solution u of an optimal control problem: given

N experimental measurements Vi of the wind velocity at given points (xi, zi), i = 1,. . .N ,

we search the value of v ∈ L2
0(∂ω) such that the V (xi, zi) given by (28) are as close as

posible to the experimental values Vi. This is an optimal control problem where:

• v ∈ L2
0(∂ω) is the control.

• The state equations is (32).

• The cost function is chosen to be

J(v) =
1

2

N
∑

i=1

‖V (xi, zi)− Vi‖
2 +

α

2

∫

∂ω

v2.
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Due to (28),

J(v) =
1

2

N
∑

i=1

‖m(xi, zi)∇p(xi) + n(xi, zi)∇t(xi)− Vi‖
2 +

α

2

∫

∂ω

v2. (33)

In practice, instead of (33), we use the following regularized functional

J(v) =
1

2

N
∑

i=1

∫

ω

ρǫ,i(x)‖m(x, zi)∇p(x) + n(x, zi)∇t(x)− Vi‖
2 dx+

α

2

∫

∂ω

v2 (34)

where ρǫ,i is a suitable mollifier cancelling outside a small ball B(xi, ǫ) and such that
∫

ρǫ,i(x) dx = 1. For example,

ρǫ,i(x) =
1

ǫ2
ρ
(x− xi

ǫ

)

,

where ρ(x) = c exp(−1/(1− ||x||2)) for ||x|| < 1, and ρ(x) = 0 for ||x|| ≥ 1.

The optimal control problem to be solved is to find u ∈ L2
0(∂ω) such that

J(u) = inf
v∈L2

0
(∂ω)

J(v). (35)

Remark. The regularization term α
2

∫

∂ω
v2dσ is necessary for mathematical reasons. In-

deed, without this term the optimal control problem has no solution (if we search for the

control u in the whole space L2
0). We have choosen α a small number. If a good estimation

of the wind flux v ≈ u∗ is known on the boundary, we can modify the cost functional in

(33) as follows:

J(v) =
1

2

N
∑

i=1

∫

ω

ρǫ,i(x)‖m(x, zi)∇p(x) +n(x, zi)∇t(x)−Vi‖
2 dx+

α

2

∫

∂ω

(v−u∗)2dσ (36)

and choose a larger value for α. Note that we cannot impose at the same time the value of

the wind flux on the boundary and the value of the solution at several given points, as once

the wind flux v is given on the boundary the wind field is uniquely determined by (29)-

(30). Therefore the optimal control problem with the former functional is a compromise

(and so is the value of the parameter α) between these two sets of data. Usually in

practical applications we do not have a good estimation of the flux on the boundary, and

this is the reason why we choose the value of α to be small, typically α = 0.001.

5.2 Solution of the optimal control problem

Let Bv ∈ V be the solution of
∫

ω

a∇Bv · ∇ϕ =

∫

∂ω

vϕ, ∀ϕ ∈ V, (37)
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and r ∈ V be the solution of
∫

ω

a∇r · ∇ϕ = −

∫

ω

b∇t · ∇ϕ, ∀ϕ ∈ V. (38)

The operator B is linear continuous from L2
0(∂ω) in V, and r is independent of v.

The solution of (32) is p = Bv + r, therefore

J(v) =
1

2
π(v, v)− λ(v) + µ (39)

where π is the bilinear continuous function on L2
0(∂ω)× L2

0(∂ω) given by

π(u, v) =
N
∑

i=1

∫

ω

ρǫ,i(m∇Bu) · (m∇Bv) + α

∫

∂ω

uv, (40)

λ is the continuous linear function in L2
0(∂ω) given by

λ(v) =

N
∑

i=1

∫

ω

ρǫ,i(m∇r + n∇t− Vi) ·m∇Bv, (41)

and µ is the constant

µ =
1

2

N
∑

i=1

∫

ω

ρǫ,iVi · Vi. (42)

Obviously,

π(v, v) ≥ α||v||2L2

0
(∂ω).

Then, by Theorem 1.1 Chapter 1 in [9], there exist a unique solution u of Problem (35).

It is characterized by J ′(u) = 0, where J ′(u) is the derivative of J at point u, which is a

real linear continuous function on L2
0(∂ω). That is

J ′(u) · v = 0, ∀v ∈ L2
0(∂ω). (43)

Using the chain rule,

J ′(u) · v =
N
∑

i=1

∫

ω

ρǫ,i(m∇p + n∇t− Vi) ·m∇Bv + α

∫

∂ω

uv (44)

(this formula holds for all u ∈ V).

5.3 Definition of the adjoint state and elimination of the control

Denote now p the potential associated to u by (32), that is the unique solution p ∈ V

of
∫

ω

a∇p · ∇ϕ =

∫

∂ω

uϕ−

∫

ω

b∇t · ∇ϕ, ∀ϕ ∈ V. (45)

Let

W =
{

ψ ∈ H1(ω) :

∫

∂ω

ψ = 0
}

.
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We introduce the adjoint state as the solution q ∈ W of:

∫

ω

a∇q · ∇ψ =

N
∑

i=1

∫

ω

ρǫ,i(m∇p + n∇t− Vi) ·m∇ψ, ∀ψ ∈ W. (46)

Since J ′(u) = 0 the expression (44) of J ′ provides

N
∑

i=1

∫

ω

ρǫ,i(m∇p+ n∇t− Vi) ·m∇Bv = −α

∫

∂ω

uv. (47)

Let us take ψ = Bv + c in (46) where c = −
∫

∂ω
Bv/|ω| is such that ψ ∈ W. With (47) it

gives
∫

ω

a∇q · ∇Bv = −α

∫

∂ω

uv. (48)

On the other hand, let us take ϕ = q + c′ in Definition (37) of Bv, where c′ = −
∫

ω
q/|ω|

is such that ϕ ∈ V. Since
∫

∂ω
v = 0, we get

∫

ω

a∇Bv · ∇q =

∫

∂ω

vq + c′
∫

∂ω

v =

∫

∂ω

vq. (49)

Comparing (48) and (49), it results, for all v ∈ L2
0(∂ω),

∫

∂ω

qv = −α

∫

∂ω

uv. (50)

Since u ∈ L2
0(∂ω) (by definition (35)) and q|∂ω ∈ L2

0(∂ω) (because
∫

∂ω
q = 0 from q ∈ W),

(50) implies

u = −
1

α
q. (51)

Using this, Definition (45) of p, gives

∫

ω

a∇p · ∇ϕ+
1

α

∫

∂ω

qϕ = −

∫

ω

b∇t · ∇ϕ, ∀ϕ ∈ V. (52)

5.4 An equivalent problem

In order to allow easier numerical computation, let us see that it is equivalent to solve

coupled equations (52) and (46) in H1(ω) instead of V and W.

On one hand, (p, q) ∈ H1(ω)×H1(ω) and satisfies

∫

ω

a∇p · ∇ϕ+
1

α

∫

∂ω

qϕ = −

∫

ω

b∇t · ∇ϕ, ∀ϕ ∈ H1(ω), (53)

∫

ω

a∇q · ∇ψ =

N
∑

i=1

∫

ω

ρǫ,i(m∇p+ n∇t− Vi) ·m∇ψ, ∀ψ ∈ H1(ω). (54)

Indeed (53) is satisfied by constant ϕ (since
∫

∂ω
q = 0) and therefore by all ϕ′ + c with

ϕ′ ∈ V and c ∈ R, that is for all ϕ ∈ H1(ω). And (54) is satisfied by constant ψ and

therefore by all ψ′ + c with ψ′ ∈ W, that is for all ψ ∈ H1(ω).
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On the other hand, let us check that the solution of (53)–(54) is unique up to a constant

on p. Let here (p, q) denote the difference of two possible solutions. It satisfies (53)–(54)

with t = 0 and Vi = 0. Setting ϕ = q in such (53) and ψ = −p in such (54) and adding,

we get

1

α

∫

∂ω

q2 +

N
∑

i=1

∫

ω

ρǫ,i‖m∇p‖2 = 0

and then q|∂ω = 0. Setting now ϕ = p in (53), we get
∫

ω
a‖∇p‖2 = 0 and then ∇p = 0

and p is constant. Setting finally ψ = q in (54), we get
∫

ω
a‖∇q‖2 = 0 and then q|∂ω = 0

gives q = 0. This proves that (∇p, q) is unique, that is the uniqueness of (p, q) up to a

constant on p.

5.5 Expression of the adjusted wind

There exists a unique (∇p, q) solution of coupled equations (53)–(54). Indeed there

exists u ∈ L2
0(∂ω) satisfying (43), and then p ∈ V solution of (45) and q ∈ W solution

of (46), and then (∇p, q) satisfies (53)–(54) and is unique as seen in section 5.4. The

adjusted wind velocity V (x, z) is given in terms of this ∇p(x) at every point (x, z) by

(28).

6 Approximated Solution

6.1 Approximated equations

In order to make p unique and to improve numerical solution, we actually compute the

solution of the following approximated equations: find (p, q) ∈ H1(ω)×H1(ω) solution of

∫

ω

a∇p · ∇ϕ+ η

∫

∂ω

pϕ+
1

α

∫

∂ω

qϕ = −

∫

ω

b∇t · ∇ϕ, ∀ϕ ∈ H1(ω), (55)

∫

ω

a∇q · ∇ψ + η

∫

∂ω

qψ =
N
∑

i=1

∫

ω

ρǫ,i(m∇p + n∇t− Vi) ·m∇ψ, ∀ψ ∈ H1(ω), (56)

for a small parameter η (in the examples below η = 0.001), and then we compute the

(approximated ajusted) wind velocity V (x, z) at every point (x, z) in terms of∇p(x) using

expression (28).

Remark. The reader could expect regularization terms involving integrals on ω instead

of ∂ω. In (56), the regularization term η
∫

∂ω
qψ is used in order to get

∫

∂ω
q = 0 (by

choosing ψ = 1). Indeed this important condition (it gives u ∈ L2
0(∂ω) by (51)) which

followed from the exact equation (53) (by choosing ϕ = 1) is no longer contained in the

approximated equation (55). In this last, we then use the regularization term η
∫

∂ω
pϕ in

order to get Equality (57) below.
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6.2 Convergence

Let us check that the solution of (55)–(56) goes to the solution of exact equations

(53)–(54) as η → 0. At first, let us bound q. Setting ϕ = q in (55), ψ = −p in (56) and

adding, we get

1

α

∫

∂ω

q2 +

N
∑

i=1

∫

ω

ρǫ,i‖m∇p‖2 = −

∫

ω

b∇t · ∇q −

N
∑

i=1

∫

ω

ρǫ,i(n∇t− Vi) ·m∇p. (57)

By Cauchy–Schwarz inequality, it follows that

1

α

∫

∂ω

q2 +
1

2

N
∑

i=1

∫

ω

ρǫ,i‖m∇p‖2 ≤ c1 −

∫

ω

b∇t · ∇q. (58)

Here and in the sequel, ci denotes various positive numbers independent of η, p and q.

Setting ψ = q in (56) and using m ≤ c2a and Cauchy–Schwarz inequality, we get

1

2

∫

ω

a‖∇q‖2 + η

∫

∂ω

q2 ≤ c3

N
∑

i=1

∫

ω

ρǫ,i‖m∇p‖2 + c4. (59)

Dividing by 2c3, adding to (58) and using b ≤ c5a and Cauchy–Schwarz inequality, we get

1

α

∫

∂ω

q2 + c6

∫

ω

a‖∇q‖2 ≤ c7. (60)

This implies that q is bounded in H1(ω).

Now, let us bound p. Setting ϕ = p in (55) and using b ≤ c5a, Cauchy–Schwarz

inequality and (60), we get

1

2

∫

ω

a‖∇p||2 + η

∫

∂ω

p2 ≤ c8 −
1

α

∫

∂ω

pq ≤ c8 + c9

(

∫

∂ω

p2
)1/2

. (61)

Setting ψ = 1 in (56), we get
∫

∂ω
q = 0, and then, setting ϕ = 1 in (55), we get

∫

∂ω

p = −
1

αη

∫

∂ω

q = 0. (62)

Therefore Poincaré–Wirtinger inequality (
∫

∂ω
p2)1/2 ≤ c10(

∫

ω
‖∇p‖2)1/2 holds. Then (61)

gives (
∫

ω
‖∇p‖2)1/2 ≤ c11 and p is bounded in H1(ω).

Let now ηn → 0. There exists a subsequence such that the corresponding solution

(pn, qn) of (55)–(56) goes to some limit (p, q) weakly in H1(ω) × H1(ω) and therefore

strongly in L2(ω) × L2(ω) and its trace converges strongly in L2(∂ω) × L2(∂ω). Then

the limit (p, q) satisfies exact equations (53)–(54). These equations possessing a unique

solution, as seen in § 5.4, all subsequences go to the same limit and therefore the whole

sequence (pn, qn) goes to (p, q).

64



6.3 Computation of wind

Practically, we compute the unique solution (p, q) of (approximated) coupled equations

(55)–(56) for a small parameter η, and then we compute the (approximated ajusted) wind

velocity V (x, z) at every point (x, z) in terms of ∇p(x) using expression (28).

6.4 Finite element approximation

Let us discretize the approximated equations (55)–(56). Let TH be a uniform triangu-

lation of ω corresponding to a discretization parameter H and let VH be the associated

space of P1 (or P2) finite elements. Besides a better order of convergence, a reason in favor

of P2 against P1 is that in practical applications, the variable of physical interest is the

wind velocity V which is obtained from the potential p using expression (28), involving

derivatives.

Choosing a finite element basis {φi} for VH , we introduce the following matrices

G =

{
∫

ω

a∇φr · ∇φk + η

∫

∂ω

φrφk

}

r,k

,

C1 =

{

1

α

∫

∂ω

φrφk

}

r,k

, C2 =

{ N
∑

i=1

∫

ω

ρǫ,im
2∇φr · ∇φk

}

r,k

and the vectors

fp =

{

−

∫

ω

b∇t · ∇φr

}

r

, fq =

{

−

N
∑

i=1

∫

ω

ρǫ,i(n∇t− Vi)m · ∇φr

}

r

.

Then, the discrete problem associated to (55)–(56) is the following linear algebraic system:

[

G C1

−C2 G

][

p

q

]

=

[

fp

fq

]

(63)

The matrix in (63) being nonsymmetric and very ill-conditioned, most of the standard

iterative methods fail to converge or have a very slow convergence (this is the case of

GMRES-ILU preconditioned). For moderate number of unknowns we use the state-of-

the-art sparse LU factorization [10]. In [11] a highly effective solution method is obtained

by means of a preconditioned Schur complement approximate, leading to a nonsymmetric

system that can be solved by GMRES in a constant number of iterations. For the descrip-

tion and a complete numerical analysis of this approximate see [11]. According to this

numerical analysis and to the numerical experiments described in the following section,

the number of iterations appears to be insensitive to η and only mildly dependent on α.

Note that p is determined up to a constant, but only ∇p is needed to compute the wind

velocity V . Then we choose η small enough so that the perturbation term does not affect

the value of ∇p up to the desired precision.

65



7 Numerical Examples

7.1 Example 1: Wind filed adjustement with real data

We have considered a simulation using realistic wind data that have been supplied

by Desarrollos Eólicos S.A., (DESA) in several measurement points for an episode along

March 21, 2003, see [12].

The studied three-dimensional domain Ω is located near Lugo, Spain, at 43N of lati-

tude and it is horizontally limited by four points of UTM coordinates (609980, 4799020),

(626000,4799020), (626000, 4813040) and (609980, 4813040), respectively. The upper

boundary A of Ω has been taken at a height δ = 1080 m. A digital elevation map was

provided by DESA on a quadrilateral grid of element size 20× 20 m. The X axis corre-

sponds to East direction and the Y one to North. Thus, we are working with a region of

16020 × 14020 m. The minimum and maximum terrain heights are 420 m and 1020 m,

respectively. Figure 1 represents a color map of the heights of the terrain.

Figure 1.— Terrain heights and stations: From North to South E208, E212, E242,

E206 and E283
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Wind has been measured every 10 minute at 5 stations which are plotted on Figure

1: from North to South, we find E208, E212, E242, E206 and E283. At stations E208

and E212, the wind was measured at two different heigts. Their coordinates are given in

Table 1.

Station UTM-E UTM-N Height

E206 615396 4805218 924.8

E208 616917 4807256 945.0

E212 617423 4806382 895.0

E242 618290 4806136 873.2

E283 617473 4804111 849.0

Table 1.— Coordinates of stations (in meters)

Roughness is an essential factor on the characteristics of the resulting wind profile. In

this case, the roughness length values are 0.03 m, 0.05 m, 0.08 m, 0.3 m and 0.8 m.

7.1.1 Wind computation for above real data

We procede in three steps:

• First, we estimate the main parameters of our optimal control wind model.

• We compute the wind with our model using data of input stations E206, E208 and

E212.

• Finally, we compare the computed wind to the measured wind at control stations

E242 and E283 (Table 2). They are also compared at input stations (Table 3) but

this is less significant since, there, the computed wind is optimized to be close to

data.

We propose a quadratic adjustment of the friction coefficient in terms of the of the

roughness of the terrain, i.e., ζ = a0 + a1z0 + a2z
2
0 . We have used a standard genetic

algorithm code (pgapack library), with string real coding, based on the model developed

by Levine [13] to look for optimal values of these quadratic adjustment parameters a0 , a1

and a2. We search for the optimum of the linear parameter a0 in [1, 10], the first order

parameter a1 in [0, 5] and the second order parameter a2 in [−0.05, 0.05]. The values of

the coefficients ai depends slightly of the meteorological conditions, which means that the

friction coefficient depends slightly on the solution. Typical values of the coefficients are

a0 = 3, a1 = 0.5 and a0 = −0.01 showing in practice a linear dependence of the friction

coefficient with the roughness.
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We have computed the wind every 10 minutes throughout the day with our optimal

control model for the above adjusted parameters, using wind data only at stations E206,

E208 and E212 (input stations). The data at the two other stations, E242 and E283

(control stations), are not used as input; they are used to control the efficiency of our

model. The measured and the computed wind velocities at these control stations are

shown in Figures 2 and 3. The estimation of the parameters ai has been carried out

only once each hour (24 computations along the day) using the first experimental wind

measurements that are available at the begining of each hour.
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Figure 2.— Comparison of measured and computed wind velocities at control station

E242
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Figure 3.— Comparison of measured and computed wind velocities at control station

E283

In order to compare our model (called 2.5-D model) with classical wind adjustment

models, these figures include the wind velocities computed by the three-dimensional mass

consistent model (3-D model) described in [12].
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Errors of the computed winds with respect to the measured winds at control stations

are given in Table 2. Remark that the present 2.5-D model provides better results at the

control station E242 which is close to the input stations (see Figure 1). On the contrary,

the 3-D model is more accurate at the control station E283 which is far from the input

stations. This error can be explained by the fact that the hypothesis of the 2.5-D model

are broken by the more rugged terrain at the station E283 (we can see on Figure 1 that

the level set lines are streched close to E283).

Stations and Average Average % Maximum Minimum Model

control points measured computed average absolute absolute

wind wind error error error

E242 (40 m) 8.40 10.69 27.24% 5.09 0.09 3-D

8.40 8.49 1.05 % 2.54 0.01 2.5-D

E283 (49 m) 13.62 12.95 4.94 % 3.04 0.02 3-D

13.62 7.73 43.28 % 9.88 1.34 2.5-D

Table 2.— Error at control stations

Errors at input stations are given in Table 3. As expected, average errors are small.

Stations and Average Average % Maximum Minimum Model

control points measured computed average absolute absolute

wind wind error error error

E206 (49 m) 15.37 15.50 0.81 % 0.46 0.01 3-D

15.37 14.82 3.62 % 1.15 0.23 2.5-D

E208 (15 m) 8.57 8.98 4.74 % 1.25 0.00 3-D

8.57 9.13 6.52 % 2.45 0.01 2.5-D

E208 (30 m) 9.25 9.92 7.21 % 1.36 0.05 3-D

9.25 9.42 1.82 % 1.41 0.00 2.5-D

E212 (15 m) 8.46 8.44 0.20 % 0.63 0.00 3-D

8.46 8.18 3.33 % 1.89 0.01 2.5-D

E212 (30 m) 9.02 9.85 9.25 % 1.60 0.31 3-D

9.02 8.46 6.17 % 2.16 0.01 2.5-D

Table 3.— Error at input stations
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7.2 Example 2: Fire propagation in the Ebro River Basin

In this example we consider the fire propagation in a zone of the Ebro river basin

where the combined effects of the topography, wind and radiation can be observed. First

due to the wind the fire front follows teh riverbed. Later the wind turns and by effect of

radiation the fire cross the river and rises up to the top of the mountain.

 wind field solid fuel, initial time

Figure 4.— Wind field, topography and initial fuel distribution

solid fuel, after 50 time steps solid fuel, after 200 time steps

Figure 5.— Fuel distribution and burned zone after 50 and 200 time steps
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tions of genetic algorithms in realistic wind field simulations. Studies in Comp Intelligence,

102 (2008), 165–182.

[13] Levine D., A parallel genetic algorithm for the set partitioning problem. PhD Thesis, Illinois

Institute of Technology / Argonne National Laboratory (1994)

71



72


