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Abstract

In this paper we shall first discuss the properties that a numerical method

must possess to accurately approximate the solution of advection-diffusion-reaction

equations. From this discussion it will be clear that if we require both efficiency and

accuracy in the numerical simulations, then we have to use methods that will adapt

to the space-time behavior of the main features of the solutions. In this respect,

we shall present, in the framework of finite elements, a new goal oriented adaptive

method based on duality techniques and comment on the pros and cons of this

method as compared with conventional dual weighted residual adaptive methods.

This method is applied to the simulation of combustion problems such as planar

lifted flames and planar jets.

Key words and phrases:Parabolic problems, Finite elements, Time-space goal

oriented adaptivity, DWR method, unstructured triangular meshes.

1 Introduction

In the core of the mathematical formulation of the combustion problems we encounter

the model problem




Du

Dt
= ∇ · (K∇u) + f(u) in D × (0, T ], D ⊂ R

d, T ∈ R,

u(x, 0) = u0(x) x ∈ D (prescribed),

Bu = 0 in ∂D × (0, T ],

(1a)

where d denotes the space dimension, u : D × I → R
n, n ≥ 1, B is a boundary operator

and D is a bounded domain with sufficiently smooth boundary ∂D :=ΓD∪ΓN ∪ΓR, ΓD∩
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ΓN = ΓD ∪ ΓR = ΓR ∪ ΓN = ∅; here ΓD, ΓN and ΓR denote the pieces of ∂D on which

Dirichlet, Neumann or Robin type of boundary conditions are imposed. K is a d × d

symmetric positive definite matrix of diffusion coefficients, which, in general, depend on

(x, t) and u. f(u) is the reaction term such that the if rmax and rmin 6= 0 denote the largest

and smallest eigenvalues of
∂f

∂u
, then r := |rmax|

|rmin|
≫ 1.

D

Dt
is the total derivative operator

expressed as
D

Dt
:=

∂

∂t
+ a(x, t) · ∇, (1b)

here a(x, t) : D × I → R
d denotes a flow velocity such that at the inflow part of the

boundary ΓD satisfies the condition {x ∈ ΓD, a · n(x) < 0}. The diffusion matrix K is

such that for all v ∈ R
n, v 6= 0, let λmin = min v

TKv

v
T
v

and λmax := max v
TKv

v
T
v
, then there

is κ =
λmin

λmax
= O(1).. The solutions of (1a) exhibit a complex behavior as consequence

of the competition between the convection-diffusion-reaction mechanisms as well as the

nonlinear nature of the systems. We say that (1a) is :

(1) diffusion dominated if

|a| ≤ c1λmin and r ≤ c2λmin; (2)

(2) reaction dominated if

|a| ≤ c1λmin and r ≫ λmin; (3)

(3) convection dominated if

|a| ≫ λmin, (4)

where c1and c2 are constants of order 1. The most interesting problems are those in which

r ≫ λmin and
|a|

λmin

≫ 1.

It is characteristic for the solutions to encompass behavior on different time-space

scales. For instance, long time behavior together with rapid transients, or localized spatial

behavior with moving layers and blow up together with global propagation of perturba-

tions and pattern formation. All this points make difficult to devise a numerical method

able to completely capture such complex features. To illustrate some of these issues we

shall consider the simple model




∂u

∂t
+ a(x, t) · ∇u = ǫ∆u in D × (0, T ],

u(x, t) = g(x, t) on ∂Ω,

u(x, 0) = u0(x).

(5)

Here, D = (0, 1)2, T = 0.55, the diffusion coefficient ǫ = 10−3 and a(x, t) = [2, 1]T . The

initial condition u0(x)is given as: u0(x) = 0 for x = (x1, x2) ∈ Dδ = (δ, 1) × (0, 1 − δ).
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For x ∈ D\Dδ, u
0(x) is defined to be the linear function which satisfies the boundary

conditions.

g(x, t) =





1 for x1 = 0, 0 ≤ x2 ≤ 1,

1 for 0 ≤ x1 ≤ 1, x2 = 1,

(δ − x1)
+

δ
for 0 ≤ x1 ≤ 1, x2 = 0,

(x2 − 1 + δ)+

δ
for x1 = 1, 0 ≤ x2 ≤ 1,

where (a)+ = max(0, a) and δ = 7.8125× 10−3.

Note that for δ small the initial condition exhibits two boundary layers along x1 = 0

and x2 = 1. As time progresses, the boundary layer along x1 = 0 propagates into the

interior and interacts with the outflow boundary at x1 = 1 at time t = 0.5, developing

a new boundary layer. One can show via perturbation analysis that the width of the

boundary layer is O(ǫα), 0 < α < 1, therefore, when ǫ is small the boundary layers are

narrow regions. In general, it is out of question to calculate the exact solution of (5),

so that one has to resort to numerical methods in order to have an approximate idea

of the solution; the point now it is that a numerical method is a reduced model of an

infinite dimensional system which is approximated by a finite dimensional one produced

by methods such as finite elements or finite volume and so on, which depend on the mesh

size parameter h and the length of the time step ∆t. Thus, these methods approximate

the solution in a discrete set of points of dimension O(h−d) and at a discrete number of

time points O(∆t−1). Returning to the solution of (5), in principle one has to set up the

numerical method with a parameter h sufficiently small to properly resolve the boundary

layers, and since the boundary layers move through the domain as time progresses, then

a simple approach would be to build a uniform mesh of size h everywhere. Clearly, from

a computational view point this is not an efficient strategy because it uses a large number

of points, and many points may be unnecessary considering the evolution of the solution.

Different details of the internal boundary layer at t = 0.12 are represented in Figure 1.

On the other hand, the quality of the approximation depends on the mesh parameters

and on the mathematical properties, such as stability and convergence, of the numerical

methods, because according to an a priori error analysis for problems as (1a), one gets an

expression of the form

‖e(t)‖ = C(u)eLt{hp +∆tq}, (6)

where e(t) denotes the error between the exact and numerical solutions at time t in

the norm ‖·‖, L(a, λmin, f) is a positive constant, p and q are real numbers representing

the order of convergence of the numerical method and C(u) is a function depending of

the exact solution. In general, L is large and this means that the estimate (6) is only

meaningful when t is short. The term hp + ∆tq arises from the standard interpolation
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Figure 1.— Solution at time t=0.12. On the top: mesh (on the left) and isolines of the

solution (on the right) from u = 0.1 to u = 0.9 at intervals ∆u = 0.1. At the bottom:

cross-section at x2 = 0.75 (on the left) and cross-section at x1 = 0.5 (on the right).

error considerations, whereas the first term, C(u)eLt, is originated by the accumulation

of local truncation errors - the errors committed at each time step of the integration -

occurring when the differential equations are solved in time; this term is an indicator of

the stability properties of the problem. The exponential form results from the application

of the Gronwall inequality that takes the worst possible rate of growth of perturbations

(Local truncation errors can be considered as a perturbation to the system). This brings

us to the issue of how to control the error in the numerical simulation of a physical

system. To do so one has to determine the influence of the local error indicators on the

target functional. This is in fact a sensitivity analysis of local perturbations to the model,

typical in optimal control theory, that uses the concept of dual (or adjoint) problem

for this purpose. Looking at the features of the behavior of the error inherent to any

approximation method, we can distinguish two processes:

1) Global error transport. The local error committed in the element Ki of the mesh

at time instant tn is strongly affected by the residuals of a distant element Kj at time

instant tm. This is the so called “pollution effect”.

2) Interaction of the error components. The error in one component of the solution

may depend, in a complicated way, on the element residuals at different time instants.

An effective method for error estimation should include all these dependencies. The

effect of the residuals at distant elements Kj at time instant tm on the residuals of the

the element Ki at time tn is governed by the Green function of the continuous problem.
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In convection-reaction-diffusion problems the error propagation depends on the charac-

teristics of the operator. Thus, we have:

The diffusion terms isotropically smooth out the error, but they may contribute to

the global error propagation from local irregularities.

The convective terms propagate the errors in the transport direction, but the errors

decay exponentially in the crosswind direction.

Reaction terms cause isotropic exponential decay, but if they are stiff the components

of the error are coupled in a complex way.

For models in which all these mechanisms take part it is almost impossible to determine

the error interaction by analytical means, instead one has to use numerical calculations.

This leads to a feed-back procedure in which error estimation and mesh adaptation are

interconnected to achieve economical and accurate calculations of quantities of interest.

Schematically, the procedure is formulated in the following steps

Calculate → Estimate → Refine/Coarsen

The estimation of error is based on the information provided by the numerical solution,

and this estimate is called a posteriori error estimate to distinguish it from the error

estimated on properties of the exact solution, as the one shown in (6), that is termed a

priori error estimate. The a posteriori error estimate provides a criterion to adapt the

mesh to the evolving features of the solution, refining both the mesh and the time step in

some regions and times intervals required by the variation of the solution, or coarsening

both the mesh and the time step in other regions and time intervals where the solution is

very regular. In many applications one is interested in estimating the error of quantities of

physical interest, rather than the error of the solution in the typical L2 or H1 norms, such

quantities are defined by a functional, called output or target functional. This leads us

to the formulation of a dual problem with respect to the functional we want to evaluate.

A rough description of the goal oriented adaptive method we present in this paper for

time dependent convection-diffusion-reaction problems, with application to combustion

models, is as follows. We split the time interval I := (0, T ] into half-open subintervals

In =: (tn−1, tn] of length ∆tn := tn − tn−1, such that, 0 = t0 < ... < tn < ... < tN = T.

In each time subinterval In, we generate a conforming triangulation T
n
h of the domain D

and calculate with a time step size ∆tn the numerical solution unh∆t. Then, an adaptive

finite element method in time could consist of successive loops as shown in Figure 2.

For each time level tn we must make a discretization of the problem and solve an

algebraic system of equations to get the numerical solution unh∆t. Using the numerical

solution we perform a posteriori error analysis to estimate, both in time and in space,

the error of the numerical solution. If the estimated errors are below given tolerances,

then the solution unh∆t, the mesh T
n
h and the time step size ∆tn are accepted; if not, all of
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Figure 2.— Scheme of the basic time-space adaptive algorithm for time-dependent

PDE’s.

them are rejected and the procedure is repeated after properly adjusting the size of the

time step and changing the mesh. Thus, rather than controlling the error for the whole

interval [0, T ] as the conventional goal oriented fully adaptive method of [13] does, what

we have now is a good local control of the error in each interval In. At this point we must

say that the method of [13] and the the method presented in this paper are both based on

the Dual Weighted Residual (DWR) method, developed by Rannacher and collaborators.

Good properties of the algorithm presented in this paper are the following: (1) it is self-

sufficient in providing a precise criterium for adaptation of both the time step ∆t and the

mesh size h; (2) it extends the idea of the space post-processing of the original (DWR) for

structured meshes to unstructured meshes made of simplices. However, a weak point of

this approach is that having a good local error control does not guarantee that the global

error will be bounded as ‖J(u)− J(uh∆t)‖ < GTOL, GTOL being a prescribed global

tolerance, for it is a well known fact that the magnitude of the global error will depend

on the stiffness of the problem. If the stiffness is low or moderate we will end up having a

small global error if we control the local error well, but if the stiffness is large the global

error may be large even if we control the local error with a reasonable tolerance.

The layout of the paper is as follows. Sections 2 and 3 are devoted to the abstract

formulation of our adaptive method for nonlinear stationary and parabolic problems, re-

spectively. Based on these results we describe an adaptive strategy and give the algorithm

to carry it out in Section 5. The application of this algorithm to simulate lifted flames is

presented in Section 6.
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2 An abstract approach for nonlinear problems

Given a Hilbert space V with inner product (·, ·) and norm ‖·‖, we consider the

nonlinear form, A : V ×V → R and the output functional (possibly nonlinear), J : V → R

such that both have directional derivatives up to order 3. The aim is the evaluation of

J(u) from the solution of the variational problem

A(u)v = 0 ∀v ∈ V. (7)

The corresponding Galerkin-finite element approximation to (7) uses a finite element

space Vh ⊂ V and such that uh ∈ Vh is solution of

A(uh)vh = 0 ∀vh ∈ Vh. (8)

The idea now is to estimate the error J(u) − J(uh). To do so we employ a duality

argument introducing the dual variable z ∈ V , defining the Lagrangian

L(u, z) := J(u)− A(u)z (9)

and seeking for stationary points (u, z) ∈ V × V of L(·, ·) which satisfy

L′(u, z) =





J ′(u)ϕ− A′(u)(ϕ, z)

A(u)ψ





= 0 ∀(ϕ, ψ) ∈ V × V. (10)

Note that the u-component of the stationary point is solution of (7) and the dual variable

is a Lagrange multiplier. The finite element approximation (uh, zh) ∈ Vh × Vh to (u, z) is

the stationary point of the discrete Lagrangian

L(uh, zh) := J(uh)− A(uh)zh, (11)

which are solution of

L′(uh, zh) =





J ′(uh)ϕh − A′(uh)(ϕh, zh)

A(uh)ψh





= 0 ∀(ϕh, ψh) ∈ Vh × Vh. (12)

Again, the uh-component is a solution of the discrete variational problem (8). We

remark that the idea is the evaluation of J(u)−J(uh) in terms of computable quantities, or

in other word in terms of residuals of the approximate equation. The following proposition

[3] is an important result to achieve this goal.
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Proposition 1.

Let L(·) be a three-times differentiable functional defined in a vector space X which

has a stationary point x ∈ X , i.e.,

L′(x)y = 0 ∀y ∈ X. (13)

Suppose that the corresponding Galerkin approximation defined in a finite dimensional

subspace Xh ∈ X ,

L′(xh)yh = 0 ∀yh ∈ Xh, (14)

has a unique solution xh ∈ Xh. Then the following error representation holds true:

L(x)− L(xh) =
1

2
L′(xh)(x− yh) +R(3), ∀yh ∈ Xh, (15)

with the remainder term

R(3) =
1

2

∫ 1

0

L′′′(xh + sex)(ex, ex, ex)s(s− 1)ds, (16)

where ex = x− xh.

An immediate application of Proposition 1 to the Lagrangian functional L(u, z) with

X = V × V , x = (u, z) and xh = (uh, zh) yields the following result.

Proposition 2

For any solution of (7) and (8) we have the following error representation

J(u)− J(uh) =
1

2
ρ(uh)(z − ψh) +

1

2
ρ∗(uh, zh)(u− ϕh) +R

(3)
h (17)

for any ϕh and ψh ∈ Vh and the primal and dual residuals

ρ(uh)(·) = −A(uh)(·),

ρ∗(uh, zh)(·) = J ′(uh)− A′(uh)(·, zh).

(18)

The remainder term R
(3)
h is cubic in e = u− uh and e∗ = z − zh

R
(3)
h =

1

2

∫ 1

0

{
J ′′′(uh)(e, e, e)− A′′′(uh)(e, e, e, zh + se∗)− 3A

′′′

(uh)(e, e, e
∗)
}
s(s− 1)ds

(19)

Remark 1: The remainder term R
(3)
h is in general unknown and consequently neglected

when devising adaptive strategies; hence, for practical purposes (17) does not provide a

rigorous error estimate for the output functional. The magnitude of R
(3)
h depends on the

smoothness of the solution, the coefficients and the reaction terms, so that some times

may become large and thus yields to an unreliable adaptive method.
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Remark 2: Since the exact solutions u and z are generally unknowns, one has to guest

them in order to evaluate J(u) − J(uh). Such guesses are usually obtained from the

approximate solutions via a post-processing procedure.

Next, we apply the abstract approach to time dependent problems, specifically and

for the sake of simplicity in the presentation, we shall consider a parabolic problem with

a nonlinear reaction term.

3 Abstract approach for parabolic problems

Let the semi-linear parabolic equation





∂tu− ǫ∆u = f(u) in D × (0, T ],

u(x, 0) = u0(x) in D,

u(x, t) = 0 in ∂D × (0, T ],

(20)

where ∂t stands for
∂

∂t
, T > 0 and the diffusion parameter ǫ > 0 is assumed to be constant;

the nonlinear reaction term f : C l(R) → R, l integer ≥ 1, satisfies suitable growth

conditions and the initial condition u0(x) ∈ L2(D). Under these assumptions there is a

unique weak solution u ∈ L2(0, T ;H1
0(D))∩Lp(D× (0, T ))∩C([0, T ];L2(D)) to problem

(20), p being an integer ≥ 2. The weak solution u(x, t) satisfies for all v ∈Lp(0, T ;H1
0(D)),

∂tv ∈ Lp′(0, T ;H−1(D)) and v(x, T ) = 0,

−

∫ T

0

∫

D

u∂tvdxdt+

∫ T

0

∫

D

ǫ∇u·∇vdxdt =

∫

D

u0(x)v(x, 0)dxdt+

∫ T

0

∫

D

f(u)vdsdt. (21)

Here H−1 is the dual space of H1
0 (D) and p′ is the conjugate of p. Note the inclusions

H1
0 (D) ⊂⊂ L2(D) ⊂ H−1. To simplify the notation in the formulas and equations that

follow, we define the bilinear continuous form a : H1
0 (D)×H1

0 (D) → R as

a(u, v) =

∫

D

ǫ∇u · ∇vdx

and denote the inner product in L2(D) by (b, c)D.

Splitting the time interval I = (0, T ] into subintervals In = (tn−1, tn] of length ∆tn =

tn − tn−1, n = 1, 2, .., N , with 0 = t0 < t1 < ... < tn−1 < tn < ... < tN = T , I = {0}
⋃

n In,

and using the notation

vn(x) = v(x, tn), vn±(x) := lim
t→t±n

v(x, t), [v]n := vn+(x)− vn−(x),
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one has that for all In, with v being zero outside In, the weak solution satisfies
∫

In

{〈∂tu, v〉D + a(u, v)} dt+ ([u]n−1, vn−1+)D =

∫

In

〈f(u), v〉D dt, (22)

where 〈·, ·〉D denotes the duality pairing for H−1 and H1
0 (D).

3.1 Finite element solution and a posteriori error estimates

To calculate a numerical approximation uh∆t(x, t) to the weak solution u(x, t) we

shall consider continuous Galerkin methods for time discretization and conforming finite

elements for space discretization. Thus, for each In we generate a regular triangulation

T
n
h and define the finite element space V n

h ⊂ H1
0 (Ω) associated to it as

V n
h =

{
vh ∈ C0(Ω) : vh |K∈ P (K) ∀K ∈ T

n
h

}
,

where P (K) is a set of polynomial-like functions on the element K. To be specific about

P (K), and assuming (to avoid technicalities) that D is a polygonal (d = 2) or polyhedral

(d = 3) domain, we consider the simplex of reference K̂ ⊂ R
d and define an affine invertible

map: FK : K̂ → K, then

P (K) =
{
p(x), x ∈ K : p(x) = p̂ ◦ F−1

K (x), p̂(x̂) ∈ Pm(K̂)
}
;

here, Pm(K̂) is the set of polynomials of degree at most m defined on K̂. The methods

we present in this paper are valid for regular partitions (see [6]), i.e., there is a positive

constant µ such that for any Kj,
hj

ρj
≤ µ, where ρj denotes the diameter of the circle

inscribed in Kj and hj is the length of the largest side of Kj . Next, for fixed integers r

we consider the trial and test spaces defined as:

V
(r)
h∆t = {ϕh∆t : D × I → R : for all In, ϕh∆t(x, t) ∈ V n

h and ϕh∆t(x, ·)|In ∈ Pr(In)},

(23)

W
(r−1)
h∆t = {ψh∆t : D × I → R : for all In, ψh∆t(x, t) ∈ V n

h and ψh∆t(x, ·)|In ∈ Pr−1(In)};

(24)

Pr (resp. Pr−1) denotes the set of polynomials of degrees at most r (resp. r − 1) defined

on In.

Let P 0
h : L2(D) → V 0

h be the orthogonal L2-projection, setting

uh∆t(x, 0) = P 0
hu

0, (25)

we calculate the numerical solution uh∆t(x, t) in the time subintervals In by applying the

continuous Galerkin time-stepping scheme.
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The continuous Galerkin time-stepping scheme. For r ≥ 1 , and for n =

1, 2, .., N given T
n
h and ∆tn, find uh∆t(x, t) ∈ V

(r)
h∆t such that for all ψh∆t(x, t) ∈ W

(r−1)
h∆t

and un−1
h∆t (x) = Πn

hu
n−1
h∆t (x)

∫

In

{(∂tuh∆t, ψh∆t)D + a(uh∆t, ψh∆t)} dt =

∫

In

(f(uh∆t), ψh∆t)D dt. (26)

Here, Πn
h denotes a projection of the solution un−1

h∆t(x) ∈ V n−1
h onto the space V n

h . In

practice, this projection is either the finite element piecewise Lagrange interpolation pro-

jection or the L2- projection. uh∆t is continuous across time nodes over which there is not

mesh changes. The functions in W
(r−1)
h∆t are discontinuous across the discrete time levels,

but are taken to be continuous to the left there.

Remark 3. For continuous in time Galerkin (or finite element) time-stepping methods

see, for instance, [1] for linear parabolic problems and [2] for nonlinear parabolic problems.

In the latter reference it is proven that problem (26) has a unique solution under certain

regularity conditions satisfied by f .

With r = 1, (26) yields a version of the Crank-Nicolson scheme:

For all n, find uh∆t ∈ V
(1)
h such that for all ψh∆t ∈ W

(0)
h∆t

(unh∆t − un−1
h∆t , ψh∆t)D +

∆tn
2
a(unh∆t + un−1

h∆t , ψh∆t) =

∫

In

(f(uh∆t), ψh∆t)D dt

and

uh∆t(x, t)In = un−1
h∆t (x) +

t− tn−1

∆tn
(unh∆t(x)− un−1

h∆t (x)),

noticing that uh∆t ∈ L2(I, L2(D)).

To apply the abstract approach of the previous section to control the local error in

each In, we shall consider the auxiliary problem:

Find U(x, t) ∈ V n := L2(In;H
1
0 (D)) ∩ Lp(D × In) ∩ C(In;L

2(D)) such that for all

ψ(x, t) ∈ W n := Lp(In;H
1
0 (D))

∫

In

{〈∂tU, ψ〉D + a(U, ψ)− 〈f(U), ψ〉D} dt+ (Un−1+ − un−1
h∆t , ψ

n−1+)D = 0. (27a)

Here, V n and W n are the local restrictions of the spaces L2(0, T ;H1
0(D)) ∩ Lp(D ×

(0, T ))∩C([0, T ];L2(D)) and Lp(0, T ;H1
0(D)), respectively, to the interval In and un−1

h∆t(x)

is the solution of the discrete problems (26) at time instant tn−1. The jump term (Un−1+−

un−1
h∆t , ψ

n−1+)Ω will be identically zero in the continuous Galerkin time stepping scheme

because we shall take Un−1+ = un−1
h∆t (x). Note that (27a) is the weak formulation of the
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problem 



∂tU − ǫ∆U = f(U) in D × In,

U(x, tn−1) = un−1
h∆t (x) in D,

U(x, t) = 0 in ∂D × In.

(27b)

Next, setting Un−1− = un−1
h∆t in (27a) we define the semi-linear form A : V n×W n → R

as

A(U)(z) =

∫

In

{〈∂tU, z〉D + a(U, z)− 〈f(U), z〉D} dt+ ([U ]n−1, zn−1+)D, (28)

and choose an output functional J : V n → R, such that we can define the Lagrangian

L : V n ×W n → R as

L(U ; z) := J(U)− A(U)(z).

Then, we calculate the stationary point (U, z) ∈ V n ×W n of L(U ; z) which is solution of

L′(U ; z)(ϕ, ψ) = 0,

for any (ϕ, ψ) ∈ V n ×W n . This means that we have to find the pair (U, z) ∈ V n ×W n

that satisfies

−

∫

In

{〈∂tU, ψ〉D + a(U, ψ)− 〈f(U), ψ〉D} dt− ([U ]n−1, ψn−1+)D = 0 (29)

and

J ′(U)(ϕ)−

∫

In

{〈∂tϕ, z〉D + a(ϕ, z)− 〈f ′(U)ϕ, z〉D} dt− (ϕn−1+, zn−1+)D = 0. (30)

Noting that
∫

In

〈∂tϕ, z〉Ω dt = −

∫

In

〈∂tz, ϕ〉Ω dt+ (ϕn−, zn−)Ω − (ϕn−1+, zn−1+)Ω,

then (30) yields

J ′(U)(ϕ)−

∫

In

{− 〈∂tz, ϕ〉D + a(z, ϕ)− 〈f ′(U)ϕ, z〉D} dt− (ϕn−, zn−)D = 0. (31)

Problems (29) and (31) are termed primal and dual problems respectively. Note that

the primal problem is the weak formulation (27a) of the auxiliary problem (27b). More-

over, when the continuous Galerkin time stepping scheme is applied to find the numerical

solution the jump term ([U ]n−1, ψn−1+)D = 0 in (29) because U ∈ V n. The dual problem

is the weak formulation of a backwards in time problem for z from tn, where the initial

data is given, to tn−1.
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The approximate solution, (Uh∆t, zh∆t) ∈ V
(r)
h∆t ×W

(r−1)
h∆t , to the primal and dual prob-

lems by time-space finite elements in each slab (tn−1, tn]×Ω satisfies for all (ϕh∆t, ψh∆t) ∈

V
(r)
h∆t ×W

(r−1)
h∆t the equation

L′(Uh∆t; zh∆t)(ϕh∆t, ψh∆t) = 0;

that is, (Uh∆t, zh∆t) are the unique solution of the following problems:

For each In, find (Uh∆t, zh∆t) ∈ V
(r)
h∆t ×W

(r−1)
h such that for all (ϕh∆t, ψh∆t) ∈ V

(r)
h∆t ×

W
(r−1)
h∆t , (r ≥ 1),

−

∫

In

{(∂tUh∆t, ψh∆t)Ω + a(Uh∆t, ψh∆t)− (f(Uh∆t), ψh∆t)Ω} dt = 0; (32a)

and {
J ′(Uh∆t)(ϕh∆t)−

∫
In
{(−∂tzh∆t, ϕh∆t)Ω + a(zh∆t, ϕh∆t)} dt+∫

In
(f ′(Uh∆t)ϕh∆t, zh∆t)Ω dt− (ϕn−

h∆t, z
n−
h∆t)Ω = 0.

(32b)

Since (32a) coincides with (26) in each interval In, then the solution Uh∆t is precisely the

finite element solution uh∆t to problem (22) for the time interval In. Applying Proposition

2 to (32a) and (32b) we obtain the following result.

Proposition 3

For each In, let (U, z) and (uh∆t, zh∆t) be the solutions of ((29)-(31)) and ((32a)-

(32b)) respectively. Assume that the functional J : V n → R and the semi-linear form

A : V n × W n → R have directional derivatives up to order three. Then we have the

following error representation

J(U)− J(uh∆t) =
1

2
ρ(uh∆t)(z − ψh∆t) +

1

2
ρ∗(uh∆t, zh∆t)(U − ϕh∆t) +R

(3)
h∆t, (33a)

where the primal residual ρ(uh∆t)(·) and the dual residual ρ∗(uh∆t, zh∆t)(·) are given in

terms of the element residuals, Rh∆t and R∗
h∆t, and the edge residuals, rh∆t and r∗h∆t, as :





ρ(uh∆t)(·) =
∑

K∈Tn
h

∫
In

{(Rh∆t, ·)K + (rh∆t, ·)∂K} dt− ([uh∆t]
n−1, (·)n−1+)K ,

Rh∆t = f(uh∆t)− ∂tuh∆t + ǫ∆uh∆t and rh∆t =





ǫ

2
[∂nuh∆t]Γ if Γ ⊂ ∂K\∂Ω,

0 if Γ ⊂ ∂Ω

(33b)

and




ρ∗(uh∆t, zh∆t)(·) =
∑

K∈Tn
h

∫
In

{(R∗
h∆t, ·)K + (r∗h∆t, ·)∂K} dt− J ′(uh∆t)(·)K − (znh∆t, (·)

n−)K ,

R∗
h∆t = f ′(uh∆t)zh∆t + ∂tzh∆t + ǫ∆zh∆t and r∗h∆t =





ǫ

2
[∂nzh∆t]Γ if Γ ⊂ ∂K\∂Ω,

0 if Γ ⊂ ∂Ω,

(33c)

where [uh∆t]
n−1 vanishes for the continuous Galerkin, and [∂nuh∆t]Γ (resp. [∂nzh∆t]Γ)

denotes the jump of gradient ∇uh∆t (resp. ∇zh∆t) across the inter-element edges, i.e.,
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for two neighboring elements K and K ′ with common edge Γ and normal unit vector n

pointing from K to K ′ we set

[∂nuh∆t]Γ = [n · ∇uh∆t]Γ := n · (∇uh∆t|K ′∩Γ −∇uh∆t|K∩Γ) .

The reminder term

R
(3)
h∆t =

1
2

∫ 1

0
{J ′′′(uh∆t + se)(e, e, e) + A′′′(uh∆t + se)(e, e, e, zh + se∗)−

−3A′′(uh∆t + se)(e, e, e∗)}s(s− 1)ds,

where e = U − uh∆t and e∗ = z − zh∆t.

The terms (z − ψh∆t) and (U − ϕh∆t) are the so called weights. The term R
(3)
h∆t will

be neglected when Proposition 3 is used for mesh adaptation because it is usually very

small; nevertheless, there are problems in which R
(3)
h∆t may become large, but the DWR

theoretical approach is still valid and must be applied with care

Note that the a posteriori error representation (33a) involves the exact primal and dual

solutions through the weights (z − ψh∆t) and (U − ϕh∆t). Since z and U are unknown,

in practice they have to be estimated from their corresponding numerical solutions via a

post-processing procedure.

4 Post-processing procedure to evaluate the weights of the residuals

In time dependent problems where the goal is to adapt both the space and time

partitions (meshes), it is convenient to evaluate the contributions of time and space dis-

cretizations to the error J(U) − J(uh∆t) in each interval In. Here, we shall give a brief

description of the procedure presented in [4] to do so. The idea of such a procedure goes

as follows. Since the main purpose of the a posteriori error analysis is to estimate the

numerical errors in both time and space, which are used for the formulation of criteria

to adapt the meshes, then it will be sufficient to substitute z(x, t) and U(x, t) in (33a)

by approximations, say z̃h∆t and ũh∆t(x, t), sufficiently close to z(x, t) and u(x, t) as to

have the error estimates (in both time and space) ‖z̃h∆t − zh∆t‖ = O (‖z − zh∆t‖) and

‖ũh∆t − uh∆t‖ = O (‖U − uh∆t‖) respectively. Such approximations will be obtained by

some post-processing procedure of the numerical solutions zh∆t and uh∆t as, for instance,

higher order methods for both time and space, which may be prohibitively expensive, or

the so-called patch-wise higher order interpolation recovery procedure in both time and

space presented in [4]. To implement such a procedure we need to introduce the auxiliary

semidiscrete primal and dual functions uh(x, t) and zh(x, t) defined as follows.
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Definition 1.

(A) For t = 0, uh(x, 0) is the L2-projection of u(x, 0) onto V 0
h , and for all In, uh ∈

L2(In;V
n
h ) ∩ L

p(Ω× In) ∩ C(In;L
2(Ω)) satisfies ∀ψh ∈ V n

h

−

∫

In

{(∂tuh, ψh)Ω + a(uh, ψh)− (f(uh), ψh)Ω} dt− ([uh]
n−1, ψh)Ω = 0. (34a)

(B) For all In, zh ∈ Lp(In;V
n
h ) satisfies ∀ϕh ∈ V n

h ,

J ′(uh)(ϕh)−

∫

In

{− (∂tzh, ϕh)Ω + a(zh, ϕh)− (f ′(uh)ϕh, z)Ω} dt− (ϕh, z
n−
h )Ω = 0. (34b)

Note that (uh, zh) is solution of

L′(uh; zh)(ϕh, ψh) = 0

Next, we consider z − zh∆t and U − uh∆t, which are split as




z − zh∆t = (z − zh) + (zh − zh∆t),

U − uh∆t = (U − uh) + (uh − uh∆t),

and note that the terms z − zh (resp. U − uh) and zh − zh∆t ( resp. uh − uh∆t) measure

respectively the space and time discretization errors in the approximation to z (resp. U)

by zh∆t (resp. uh∆t). Based on this simple observation and recalling that we can set

ψh∆t = zh∆t and ϕh∆t = uh∆t in (33a), it follows that

ρ(uh∆t)(z − zh∆t) = ρ(uh∆t)(z − zh) + ρ(uh∆t)(zh − zh∆t)

and

ρ∗(uh∆t, zh∆t)(U − uh∆t) = ρ∗(uh∆t, zh∆t)(U − uh) + ρ∗(uh∆t, zh∆t)(uh − uh∆t).

Hence, collecting these results we have the following proposition.

Proposition 4.

Assuming that the hypotheses of Proposition 3.1 hold, then the a posteriori error esti-

mate representation for the functional J(U) in each In is given by

J(U)− J(uh∆t) = ens + ent +R
(3)
h∆t, (35a)

where the time component of the error is

ent = 1
2
ρ(uh∆t)(zh − zh∆t) +

1
2
ρ∗(uh∆t, zh∆t)(uh − uh∆t) (35b)

and the space component of the error is

ens = 1
2
ρ(uh∆t)(z − zh) +

1
2
ρ∗(uh∆t, zh∆t)(U − uh). (35c)
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Notice that ens and ent involve the unknown terms zh(x, t), z(x, t), U(x, t) and uh(x, t).

For practical use of this error representation we shall approximate such terms by a patch-

wise higher order interpolation recovery technique applied to the numerical solutions

uh∆t and zh∆t. The basic idea of recovering by patch-wise higher order interpolation

is as follows. If the numerical solution approximates the exact solution in space by a

polynomial of degree, say m, we shall construct from the numerical solution a space

approximation that is a piecewise polynomial of degree 2m; likewise, if the numerical

solution approximates the time dependence of the exact solution by a piecewise polynomial

of degree, say r, then we shall use the numerical solution to construct an approximation in

time that will be a piecewise polynomial of degree r + 1. So that, the recovery technique

consists of two stages, namely, recovery in space and recovery in time. In the space

recovery we have the approximations





z(x, t)− zh(x, t) ≈ I2m2h zh∆t(x, t)− zh∆t(x, t),

U(x, t)− uh(x, t) ≈ I2m2h uh∆t(x, t)− uh∆t(x, t),

(36a)

where I2m2h : V n
h → V n

2h denotes the interpolation operator of degree 2m and V n
2h is the

finite element space associated with the partition T
n
2h. In the time recovery, for r = 1 and

s = 0, we have the approximations





zh(x, t)− zh∆t(x, t) ≈ Ĩ1∆tzh∆t(x, t)− zh∆t(x, t),

uh(x, t)− uh∆t(x, t) ≈ I22∆tuh∆t(x, t)− uh∆t(x, t),

(36b)

where for each n




Ĩ1
∆t

zh∆t(x, t) = zn+

h
(x) + 2

(
zn
h
(x) − zn+

h
(x)

) tn − t

∆tn
,

I2
2∆tuh∆t(x, t) =

t− tn−1

∆tn−1

t− tn

∆tn−1 +∆tn
un−2

h∆t
+

t− tn−2

∆tn−1

tn − t

∆tn
un−1

h∆t
+

t− tn−2

∆tn−1 +∆tn

t− tn−1

∆tn
un
h∆t

.

(36c)

5 Strategies for the adaptation of the mesh and the length of the time step

To design a fully adaptive strategy as the solution progresses in time we shall make

use of the error estimators ẽns and ẽnt , which are derived from ens and ent , respectively, by

applying (36a)-(36c). Specifically, let ẽnsK := ẽnt |K and ẽntK := ẽnt |K be the respective

values of ẽns and ẽnt in the element K, then we define

ẽnsK := 1
2
ρ(uh∆t)(I

2m
2h zh∆t − zh∆t)K + 1

2
ρ∗(uh∆t, zh∆t)(I

2m
2h uh∆t − uh∆t)K ,

ẽns =
∑

K∈Tn
h

ẽnsK .

(37a)
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and

ẽntK := 1
2
ρ(uh∆t)(Ĩ

1
∆tzh∆t − zh∆t)K + 1

2
ρ∗(uh∆t, zh∆t)(I

r
(r+1)∆tuh∆t − uh∆t)K ,

ẽnt =
∑

K∈Tn
h

ẽntK .

(37b)

The error indicators ηns and ηnt , which are used for practical adaptation, are obtained

from the error estimators ẽns and ẽnt by the formulas

ηnsK =
|ẽnsK |

|J(uh∆t)|
, ηns =

∑

K∈Tn
h

ηnsK (38a)

and

ηntK =
|ẽntK |

|J(uh∆t)|
, ηnt =

∑

K∈Tn
h

ηntK . (38b)

Prescribing tolerances Tols and Tolt to check time and space errors, respectively, the

primal solution uh∆t is acceptable at each time level tn if

ηns ≤ Tols and ηnt ≤ Tolt.

On the contrary, if one of these inequalities is not satisfied, then unh∆t is rejected and we

shall proceed to calculate a new ∆tn and a new mesh T
n
h, and to recalculate the primal

and dual solutions unh∆t and z
n
h∆t as well as the error indicators ηnt and ηns .

The strategy for mesh and time step adaptation is based on optimization problems.

Thus, for space adaptation, the idea is to calculate at each time level tn a mesh with the

smallest number of elements NE able to yield a solution unh∆t, such that ηns ≤ Tols; in

other words

NE(h) = min! such that ηns (h) ≤ Tols. (39a)

Notice that both NE and ηns depends on the mesh parameter h. The solution of this

problem is obtained using Lagrange multipliers, for details, see [3] and [5]. Similarly for

time step adaptation, one adjusts at each time level tn the length ∆tn of the time step such

that at time T one gets an upper bound on the error E(T ) with the minimum number of

time steps; that is, let ηT and N be a temporal error estimator and the number of time

steps to reach T respectively, these parameters depend on the length of the time step ∆t,

then given a TolT we have the optimization problem

N(∆t) = min! such that ηT ≤ TolT . (39b)

The solution of this problem via Lagrange multipliers implies that the error estimator

ηnt at time instant tn satisfies ηnt ≤ Tolt, where Tolt is a given tolerance for the local

truncation error.
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5.1 Mesh adaptation: Mesh-optimization strategy

Let ηnK = ηns |K be the value of ηK in the element K, the solution of (39a), assuming

that the the space error is O(hα), is then of the form [5]

hoptK = hK

(
Tol

W

) 1
α

(ηnK)
− 1

α+d , (40)

where d is the spatial dimension, W =
∑

K(η
n
K)

d
α+d , Tol = Tols when we use hoptK to

refine, and Tol = Tolcoarsen = θ · Tols in the coarsening case, θ being a real number to be

chosen by the user. (40) gives a criterion to refine or coarsen the element K. Specifically,

comparing the size hK of our actual triangle with the optimal size hoptK we obtain the

number of times that this element needs to be refined or coarsened. We need to refine

a triangle twice if we want to reduce its size by two, and analogously for the coarsening

procedure, because we use the bisection criterion by the largest edge to divide triangles

(following the philosophy of [14]).

Refining criterion.

If hoptK /hK ≤ 1, mark the element K to refine nr times:

nr = Integer part

[
1 + 2

log(hK/h
opt
K )

log 2

]
. (41a)

Coarsening criterion.

If hoptK /hK > 1, mark the element K to coarsen nc times:

nc = Integer part

[
2
log(hoptK /hK)

log 2
− 1

]
. (41b)

At this point several remarks are in order.

Remark 4. For a general functional J(u) the value of α in (40) is not known; however,

from numerical experiments it seems that it is convenient to take values for α which are

larger than the theoretical order of the a priori error estimate of finite elements in the

H1-norm (or in the L2-norm). In the numerical tests that follow we have chosen α = 4

for linear elements and α = 6 for quadratic ones. Our numerical experience is that taking

α = 2 for linear elements, which is the theoretical order of the a priori error estimate for

linear elements in the L2-norm, and α = 3 for quadratic elements yield a larger number

of elements than the values of α = 4 and α = 6 respectively.

Remark 5. In the numerical experiments shown below we have limited the number of

refinements nr = 5 and coarsenings nc = 2 in each iteration. The purpose of limiting the
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number of refinements and coarsenings in each iteration is to guarantee the existence of

smooth transition regions, thus avoiding the existence of patches in the mesh.

Remark 6. Following the ideas of ALBERTA [14] and starting with a regular macro-

triangulation, the refinement of marked elements is made bisecting the largest edge by

joining its midpoint with the opposite vertex and taking the vertices thus created as the

vertices of a new refinement. To maintain the regularity of the mesh in the refinement

procedure, an edge may be bisected only if it is the longest edge of both its adjacent

elements. The coarsening procedure is more or less the inverse of the refinement procedure;

the basic idea is to collect all those elements that were involved in the refinement process

at the same time. The elements must be coarsened only if all involved elements are marked

for coarsening; i.e., if one element is marked for coarsening and one of its neighbors is

not, then this element will not be coarsened. Kossaczký [11] proves that this procedure

maintains the regular shape of all elements at all levels if the macro-triangulation is

regular.

5.2 Adaptation of the time step size

The solution of (39b) is further corrected by using the control-based approach of

Gustafsson, Lundh, and Söderlind [10] in order to avoid undesirable behavior of the time

step, in particular, in stiff problems. The formula we use in our calculations is then as

follows

∆tnew = min(5,max(0.2, fac))∆told,

fac =





((
ηn−1
t

ηnt

)1/βn

∆tn
∆tn−1

)(
0.7Tolt
ηnt

)1/βn

when unh∆t is accepted,

(
0.7Tolt
ηnt

)1/βn

when unh∆t is rejected.

(42)

The coefficient βn is not known a priori, but we calculate it by the following recursive

procedure. Let β0 be the theoretical order of the truncation error of the time discretization

scheme, then for each In calculate βn as

β∗ := log

(
ηn−1
t

ηnt

)/
log

(
∆tn−1

∆tn

)
,

βn =

{
β∗ if 1 < β∗ < 8,

βn−1 otherwise.

These formulas give good results in the numerical examples of this paper. Similar formulas

for fac and β are used by other authors [12].
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6 Numerical experiment. The problem of the lifted flames

To illustrate the performance of the adaptive algorithm proposed in this paper we

present a combustion problem that consists of the simulation of the lift-off and blow-

off of a diffusion flame generated in a stream of fuel (methane diluted with nitrogen)

interacting with an air stream emerging from porous walls. To do so, we consider the

systems of equations composed by the compressible Navier-Stokes equations at low Mach

number and the convection-diffusion-reaction equations for temperature and species plus

the state equation in a bounded domain D ⊂ R
2 with appropriately smooth boundary

∂D = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, where ΓD and ΓN are the pieces of ∂D for Dirichlet and

Neumann boundary conditions, respectively. The variables of the problem are the density

of fluid ρ, the hydrodynamic correction of pressure p, the flow velocity u = (u1, u2),

the temperature T and the species mass fractions Yi=F,O2,N2,P , where F , O2, N2 and P

stand for fuel, oxygen, nitrogen and products of combustion respectively. The system of

equations of the model is

∂ρ

∂t
+∇ · (ρu) = 0,

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · (µ∇u)−∇p





u = uD en ΓD
u

, µ∂u
∂n − pn = 0 en ΓN

u

ρ

(
∂T

∂t
+ u · ∇T

)
= ∇ · (ρDT∇T )− HF

cp
wF

}
T=TD en ΓD

T , ρDT
∂T
∂n=0 en ΓN

T

ρ

(
∂Yi

∂t
+ u · ∇Yi

)
= ∇ · (ρDi∇Yi) + wi

}
Yi = Y D

i en ΓD
Yi

, ρDYi

∂Yi

∂n =0 en ΓN
Yi

YN2
= 1− YF − YO2

− YP

ρ =
M

T

ρoTo

Mo

(43)

where the subscript A stands for air. To make the model more realistic we shall consider

that the dynamic diffusion coefficients (namely, the viscosity µ, the thermal diffusivity

ρDT , the mass diffusivity of each species ρDF , ρDO2
, ρDP ) depend upon the temperature

according to the power law.

µ

µo

=
ρDi

(ρDi)o
=

(
T

To

)σ

with σ = 0.7,

where µ0, (ρDi)o and To denote a referent or initial value in D.

The burning process of a typical hydrocarbon in air involves dozens of chemical species

and hundreds of elementary chemical reactions. Although a detailed account of the chem-

istry is for instance necessary for the description of production of combustion pollutants,
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such as carbon monoxide and oxides of nitrogen, many aspects of the combustion process

can be understood by assuming that the chemical reaction between the fuel and the oxy-

gen of the air takes place in a single overall step [9], and this is the approach adopted in

this paper. Thus, we consider that the fuel, F , reacts with the oxygen of the air, O2, to

produce combustion products according to the irreversible global reaction

F + rO2 → (1 + r)Products + (HF )

where r and HF represent, respectively, the mass of oxygen burnt and the amount of

heat released per unit mass of fuel consumed. HF = q/MF , where q = q0 when φ ≤ 1

and q = q0(1 − 0.21(φ − 1)) when φ < 1, here q0 denotes molar heat of reaction that

depends on the temperature, and φ is the local equivalence ratio defined in terms of the

mass fractions of fuel and oxygen in the upstream fresh mixture as φ = rYF,u/YO2,u. φ is

approximated as {
φ = S Z

1−Z
with

Z = (SYF/YF,0 − YO2
/YO2,A + 1) /(1 + S)

In this example, both q0 and cp are calculated by NASA polynomial formulae. Let YF,0

be the mass fraction of the inflow stream of fuel, the stoichiometric ratio is defined as

S =
rYF,0
YO2,A

; S physically represents the mass of air needed to mix with the unit mass of

fuel stream to generate a stoichiometric mixture.

It is assumed that the local rate at which the overall combustion process takes place

depends on the fuel and oxygen mass fractions YF and YO2
, and on the temperature T ,

with a dependency represented by the Arrhenius law of the form

w = ρ2B
YF
MF

YO2

MO2

e−Ta/T ,

where B = 8.4 × 108m3/(mol · s) is the so called preexponential factor and Ta is the

activation temperature modeled by the expression

Ta
Ta0

=





1 + 8.250(0.64− φ)2 for φ < 0.64,

1 for 0.64 ≤ φ ≤ 1.07,

1 + 1.443(φ− 1.07)2 for φ > 1.07,

with Ta0 = 15900oK. wi denotes the he amount of mass fraction of the species i per

unit time and can be expressed as

wi = νiMiw,

where νi is the molar stoichiometric coefficient of the species in the global reaction.

This figure is a schematic representation of the physics of the phenomenon modelled by

(43). The air stream is flowing in with velocity UA and temperature T0 through a porous
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Figure 3.— A sketch of a laminar lifted flame in a planar diffusion jet.

wall, whereas the fuel stream flows in with velocity U0 and temperature T0 through a hole

of diameter 2a. As we move into the interior of D we first encounter a region of length

scale δN =
DTA

U0

known as the Navier-Stokes region, and it is in this region where the

mixing layers originate. Further downstream, at a distance x ≫ δN , the Navier-Stokes

region evolves to a slender mixing layer of thickness δm =
(

DTAx
U0

)1/2
, δm ≪ x. We may

ignite a flame in the mixing layer by an external source such that the flame front becomes

rapidly elongated by the action the flow and a quasi-planar premixed flame is generated.

When the jet Reynolds number is large the configuration of laminar jet diffusion flames

is a slender jet with a developed length Ld ≫ a, and the characteristic thickness of the

quasi-planar premixed flame is δL = DTA

SL
, where SL is the planar flame velocity and

δL ≪ a. For typical hydrocarbons, δL ≃ 10−4m. The premixed flame moves upstream

and downstream along the stoichiometric surface. When the ratio
U0

SL
is below a critical

value, the diffusion flame will be anchored in the Navier-Stokes region near the injector.

As
U0

SL
grows the flame will be lifted at a distance xf such that δN < xf < Ld. When

U0

SL
goes beyond a critical value the flame will be blown-off and leave the domain D. After

the description of the phenomenology of lifted flames, it is clear that a good choice for

numerical simulations should be an adaptive approach.

In the numerical experiments that follow (see [7] for further details) the values of

the different parameters for the reaction with methane F (≡ CH4) are: YO2,A = 0.23,

r = 4 and T0 = 300K. The non-dimensional parameters used are the Prandtl number,

Pr =
µ

ρDT
and the Lewis numbers Lei =

DT

Di
; the values of these parameters are:

Pr = 0.75, LeCH4
= 0.97, LeO2

= 1.11, LeH2O = 0.83 and LeCO2
= 1.33; H2O and CO2

are the combustion products. For the ideal gas law we have:

1

M
=

[
YF
16

+
YO2

32
+
YP
80

+
(1− YF − YO2

− YP )

28

]
× 103,

ρ0T0
M0

= 11000
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The output functional used in this problem to adapt the mesh and the time step is

J(Y n) =
∫
Ω

(
Y n
CH4

· Y n
O2

)
dΩ and the tolerances are Tols = Tolt = 10−4. This output

functional is useful to capture well the main features of the mixing layer and the flame

front.

We solve (43) by combining a quasi-monotone semi-Lagrangian scheme for time dis-

cretization along the Characteristics of the operator

D

Dt
:=

∂

∂t
+ u · ∇

with P2 finite elements for space discretization of the convection-reaction-diffusion equa-

tions for temperature and species equations, P1 finite elements for the density equation

and P2 −P1 Taylor-Hood elements for the Navier-Stokes equations. Dividing the interval

[0, T ] into N-1 subintervals In := [tn−1, tn], n = 1, 2, ...N − 1, the application of semi-

Lagrangian schemes to solve convection-diffusion equations on each interval In can be

viewed as a two stage procedure. The first stage consists of calculating the value of the

solution at the feet of the Characteristics at time tn−1, this value will play the role of

initial condition for the second stage that consists of solving a parabolic problem along

the Characteristics in the interval In. It is in the second stage where we apply the local

DWR adaptive algorithm of Section 3 to adapt both the spatial mesh and the time step

using for this purpose the output functional given above. For further details see [7].

To validate the solution achieved by our numerical method, we have compared our

results with those provided by [8] in a mixing layer between two parallel streams of fuel

and air. Figure 4 shows the lifted distance xf/δL as function of the injection velocity

U/SL and the concentration of the fuel feed stream YCH4,0. The solid lines represent the

numerical results of [8] using asymptotic techniques and a non-adaptive finite difference

scheme, whereas the results of our method are represented by circles. We can observe

that there is a good agreement for values of YCH4,0 ≥ 0.2, although remarkable differences

arise for YCH4,0 = 0.1.

Figure 5 shows the evolution of the number of nodes and the time step size versus the

number of time steps. We can see the sudden increase of the number of nodes and the

drop of the time step size when the ignition is provoked. The distribution of the CPU time

is the following: the semi-Lagrangian adaptive stage 3%, the diffusion-reaction equation

for temperature and chemical species 44%, the Stokes problem 31% and the calculation

of the a posteriori error estimator consumes 22%.

Other configurations which there are few results in the literature can be studied with

our fully adaptive procedure. One of them is the planar jet, where a fuel feed stream goes

into the computational domain normal to an injector of width 2a, with uniform velocity

U/SL; the air emerges from porous walls located above and below the injector, with the
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Figure 4.— Lifted length xf/δL versus velocity U/SL and the concentration YCH4,0.

0 500 1000 1500 2000 2500
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

time steps 

Number of nodes 

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

time steps 

∆ t S
L
2/D

TA

Figure 5.— Number of nodes and time step size ∆t against the number of time steps.

same velocity U/SL. When we provoke the ignition symmetrically in both mixing layers,

the flame fronts move together and reach an apparent symmetric steady solution, but

that situation is not stable and the interaction of the flames breaks the symmetry of

the configuration and an asymmetric steady solution is reached (on the top of Figure 6

we show the two steady configurations for a planar jet). Symmetry breaking has been

observed in laboratory experiments of coaxial jet flames, as we show in the photograph

(at the bottom of Figure 6) taken by Pablo Martinez and Jean-Marie Truffaut.
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