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Introduction

In his treatment of the solvability of polynomial equations, Évariste Galois coined

the term group and established a connection, now known as Galois theory, between the

nascent Theory of Groups (formerly Theory of Finite Groups) and Field Theory, giving

rise to one of the main historical sources of the Theory of Groups (being the others

Number Theory and Geometry). In the well know Galois’ correspondence mentioned

above, Galois emphasized the fundamental role of some subgroups of the Galois group that

are invariant under certain automorphisms, namely its normal subgroups. If G is a group

(in its abstract form), we recall that a subgroup N of G is said to be a normal subgroup

if it is invariant under inner automorphisms (G–invariant), that is Nx := x−1Nx = N

for each x ∈ N . For example every subgroup of an abelian group is normal. In studying

number fields (finite Galois extensions of the field Q of rational numbers), R. Dedekind

[5] was able to determine the form of a non-abelian (finite) group with normal subgroups

only (Hamiltonian groups), a result extended by R. Baer [1] to the general case.

Theorem 1 Let G be a non-abelian group in which all subgroups are normal. Then

G = Q × B × D, where Q is a copy of the quaternion of order 8, B is an elementary

abelian 2–group and D is a periodic abelian group with all elements of odd order.

Here, a group is said to be periodic if their elements have finite order, and bounded

(or that has finite exponent) if these orders are bounded. Opposite to this, a torsion-free

group is a group with no non-trivial elements of finite order.
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We recall that a group G is called a Dedekind group if every subgroup of G is normal.

By Theorem 1, the class of Dedekind groups is the union of the class of Hamiltonian

groups and that of abelian groups.

It is well known that being a normal subgroup is not a transitive property, and to make

that concept transitive, it is introduced the concept of subnormality. A subgroup H of a

group G is said to be subnormal if there is a finite chain of intermediate subgroups

H = H0 ≤ H1 ≤ · · ·Hi ≤ Hi+1 ≤ · · ·Hn = G

such that Hi is normal in Hi+1 for every 0 ≤ i ≤ n−1. This is a fairly generalization of the

concept of normal subgroup. A natural extension of these concepts is that of an ascendant

subgroup. H is said to be an ascendant subgroup of G if there exists an ascending series

from H to G, that is, a chain of normal subgroups well-ordered by inclusion and indexed

by the corresponding ordinal numbers

H = H0 ≤ H1 ≤ · · · ≤ Hα ≤ Hα+1 ≤ · · · ≤ Hγ = G

with the additional stipulation that for each limit ordinal λ, Hλ is the union of all Hβ,

β < λ. The most easy way of realizing an ascending series is constructing a Prüfer group.

If p is a prime, the Prüfer p–group

Cp∞ = 〈x1, · · · , xn · · · | xp
1 = 1, xp

n = xn−1(n > 1)〉

is an infinite abelian group whose proper subgroups are all finite. In fact, the subgroups

of Cp∞ are the terms of the ascending series

〈1〉 ≤ C1 ≤ · · · ≤ Cn ≤ · · ·
⋃

n≥1

Cn = Cp∞ ,

where Cn = 〈xn〉 for every n ≥ 1. By the way, this an obvious example of a locally finite

group, a group whose finitely generated subgroups are finite.

If x, y ∈ G, then xy = yx(x−1y−1xy), and then the commutativity of x and y is

measured by the so called commutator of x and y, namely [x, y] := x−1y−1xy, because

we immediately have that xy = yx ⇔ [x, y] = 1. If H,K ≤ G and S ⊆ G, these

considerations lead to the construction of the subgroups of G,

[H,K] = 〈[x, y] | x ∈ H, y ∈ K〉 and CG(S) = {x ∈ G | [x, y] = 1 for all y ∈ S}.

The most important cases are [H,G] and ζ(G) = CG(G), which are called the commutator

subgroup of H by G and the center of G, respectively. Clearly G is abelian if and only

if [G,G] = 〈1〉 if and only if ζ(G) = G. Roughly speaking, we could say that we may

construct generalizations of an abelian group making trivial commutators of higher weight
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or stabilizing the natural pre-images of the subsequent centers. By definition, the upper

central series of G is the ascending chain of subgroups

〈1〉 = ζ0(G) ≤ ζ1(G) ≤ · · · ζα(G) ≤ ζα+1(G) ≤ · · ·

given by ζi+1(G)/ζi(G) = ζ(G/ζi(G)), i ≥ 0. Note that ζ1(G) = Z(G). On the other

hand the lower central series of G is the descending chain of subgroups

G = γ1(G) ≥ γ2(G) ≥ · · · ≥ γα(G) ≥ γα+1(G) ≥ · · ·

given by γi+1(G) = [γi(G), G], i ≥ 0. Note that γ2(G) = [G,G]. A group G is said to be

nilpotent if there is some c ≥ 0 satisfying one of the following equivalent conditions: (i)

ζc(G) = G; and (ii) γc+1(G) = 〈1〉. More generally G is said to be hypercentral if there

exists an ordinal α such that ζα(G) = G. Finally the derived series of G is the descending

chain of subgroups

G = G(0 ≥ · · ·G(n ≥ · · ·

given by G(i+1 = [G(i, G(i], i ≥ 0. Here also G(1 = [G,G]. The group G is said to be

soluble if there is some d ≥ 0 such that G(d = 〈1〉. It is very easy to see that a nilpotent

group is soluble although the converse is not true. Finite soluble groups were fundamental

in the Galois’ characterization of the solvability of polynomial equations by radicals.

The next result is standard inside the Theory of Groups and is similar to Theorem 1.

It characterizes nilpotent groups in the finite case.

Theorem 2(W. Burnside) For a finite group G the following conditions are equivalent:

(1) G is nilpotent;

(2) Every subgroup of G is subnormal; and

(3) If H is a proper subgroup of G then H is properly contained in its normalizer (the

largest subgroup of G in which H is normal) NG(H) = {x ∈ G | Hx = H}.

It is worth mentioning that the implications (1) ⇒ (2) ⇒ (3) of Theorem 2 hold

for arbitrary groups though the equivalence is false in general and gives rise to several

classes of generalized nilpotent groups. The falsity holds for infinite groups as the following

example shows. If G is a hypercentral group, it is very easy to show that every subgroup

of G is ascendant. However if P is a Prüfer 2–group, we construct the infinite dihedral

group,

D = 〈P, y | y2 = 1, xy = x−1 para todo x ∈ P 〉.

The group D is hypercentral but the subgroup 〈y〉 is not subnormal.

The aim of this survey paper is to review some families of subgroups that generalize

normal subgroups as well as the classes of groups involved.
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1 Subnormal subgroups

We begin stating a result that locates the groups under consideration.

Theorem 1.1 (A. I. Maltsev [16]). A hypercental group is locally nilpotent, that is their

finitely generated subgroups are nilpotent.

A group G is said to satisfy the normalizer condition (or G is an N–group) if H 6=

NG(H) for each proper subgroup H (see Theorem 2). Since every proper ascendant

subgroup is properly contained in its normalizer, G is an N–group if and only if every

subgroup of G is ascendant.

Theorem 1.2 (B. I. Plotkin [20]). A group whose subgroups are ascendant is locally

nilpotent.

That is, an N–group is locally nilpotent. As we mentioned above, hypercentral groups

are N–groups, but the converse is far from being true. In this setting one of the most

celebrated examples in the Theory of Groups is given in the following result.

Theorem 1.3 (H. Heineken, I. J. Mohamed [11]). There exists a p–group G, p a prime,

satisfying the following properties:

(1) G contains an elementary abelian normal p–subgroup A such that G/A is a Prüfer

p–group;

(2) every proper subgroup of G is subnormal and nilpotent; and

(3) ζ(G) = 〈1〉.

In relation with subnormal and ascendant subgroups of a group, some distinguished

subgroups of the group can be constructed. That construction arises from the following

results

Theorem 1.4 (R. Baer [2], K. W. Gruenberg [9]). Let H and K be two finitely generated

nilpotent subgroups of the group G. If H and K are subnormal (respectively ascendant),

then so is 〈H,K〉.

Let G be a group. Then the subgroup B(G) generated by all subnormal cyclic sub-

groups of G is called the Baer radical of G, and the subgroup Gr(G) generated by all

ascendant cyclic subgroups of G is called the Gruenberg radical of G. Clearly, both sub-

groups are locally nilpotent normal subgroups of G. A group G is called a Baer group if

G = B(G) holds, and a Gruenberg group if G = Gr(G).

We mention that every countable locally nilpotent group can be expressed as the

union of an ascending chain of finitely generated nilpotent subgroups and therefore it is a

Gruenberg group. But for uncountable groups it is not true, as the following result shows.
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Theorem 1.5 (M. I. Kargapolov [13]). There is a locally finite p–group that is not a

Gruenberg group.

Groups whose subgroups are subnormal were studied by many authors. In this area

many interesting were obtained. We mention here only certain satisfactory structural

results.

Theorem 1.6 (W. Möhres [18]). A group whose subgroups are all subnormal is soluble.

Theorem 1.7 (W. Möhres [17]). A bounded group whose subgroups are all subnormal is

nilpotent.

Theorem 1.8 (W. Möhres [19]). A hypercentral group whose subgroups are all subnormal

is nilpotent.

Theorem 1.9 (H. Smith [22]). A torsion-free group in which all subgroups are subnormal

is nilpotent.

The last results are somewhat specific but we quote for their interest.

Theorem 1.10 (C. Casolo [3], H. Smith [22]). Let G be a periodic group in which all

subgroups are subnormal. If
⋂

α γα(G) = 〈1〉, then G is nilpotent.

Theorem 1.11 (C. Casolo [3]). Let G be a periodic group in which all subgroups are

subnormal. Then G contains a nilpotent normal subgroup H such that G/H is a divisible

abelian group of finite special rank.

2 Groups with many ascendant subgroups

The condition to be an ascendant subgroup is very wide than to be a subnormal

subgroup. It is the main reason why the groups whose subgroups are all ascendant were

not studied too well. There are many partial results about these groups, but in general

its study is very difficult. There are quite a few general results on the structure of these

groups. Some authors started consider groups in which the family of non-ascendant

subgroups is not empty but it is very small. Some examples of this are

• S. N. Chernikov [4] who studied groups whose subgroups are either ascendant or

finite.

• H. Heineken and L. A. Kurdachenko [10], who studied groups whose subgroups are

either subnormal or finitely generated.

• H. Smith [24, 25], who studied groups whose subgroups are either subnormal or

nilpotent.
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as well as many others.

In studying the structure of groups whose subgroups belong to two types, there is an

interesting approach that gives rise to obtain more information. Many important types of

subgroups have their antipodes, i.e. subgroups that have diametrically opposite properties

with respect to the original. For example, if H is a subgroup of G, then H ≤ NG(H) ≤ G.

IfH is normal in G then NG(H) = G. Therefore subgroups with the property H = NG(H)

are in the antipodes to normal subgroups. These subgroups are called self-normalizing.

As we mentioned above, subnormal subgroups and ascendant subgroups cannot be self-

normalizing, so that we may conclude that self-normalizing subgroups are in the antipodes

of subnormal and ascendant subgroups. Moreover we also apply Theorem 2 to deduce

that a nilpotent group has no proper self-normalizing subgroups.

We also note that if H is a subgroup properly contained in its normalizer, that is H 6=

NG(H), then Hg = H for each g ∈ NG(H). If moreover g /∈ H , then it is trivial that g /∈

〈H,Hg〉. A subgroup H of a group G is called abnormal if g ∈ 〈H,Hg〉 for every element

g ∈ G. Therefore, we conclude that a nilpotent group has no proper abnormal subgroups,

and we see that abnormal subgroups also are in the antipodes of normal, subnormal and

ascendant subgroups. Thus in a certain sense we could say that the subgroups of a group

that have some defining properties and those that have the antipodes with respect to

these properties are located at the opposite ends of the group, while the other subgroups

have some kind of mixed intermediate positions between these two ends. If a group G

has few subgroups of mixed intermediate positions, it appears that the structure of G is

more transparent. Therefore the following question can be naturally raised: characterize

groups whose subgroups have only a certain property and its antipode. The first example

appear considering nilpotent groups. Actually a nilpotent group only has subnormal

subgroups and has neither abnormal subgroups nor self-normalizing subgroups. One

of the first investigations carrying out this approach was the paper by A. Fattahi [8],

where finite groups with normal and abnormal subgroups only were described. Later

on, G. Ebert and S. Bauman [6] studied finite groups every subgroup of which is either

subnormal or abnormal. Infinite groups with these properties and their generalizations

were described by M. de Falco, L. A. Kurdachenko and I. Ya. Subbotin [7], and later L. A.

Kurdachenko and H. Smith [15] studied groups whose subgroups are either subnormal or

self-normalizing. We quote here the main results of these papers as well as latest results

from which the previous are now a consequence.

Theorem 2.1 (L. A. Kurdachenko, J. Otal, A. Russo, G. Vincenzi [14]). Let G be a

locally finite group and suppose that G is not locally nilpotent. If every finitely generated

non-ascendant subgroup of G is self-normalizing then there exist a prime p and a nilpotent

normal subgroup A of G with no elements of order p such that the following conditions
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hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A; and

(3) P is self-centralized, that is CG(P ) = P .

Conversely, if the group G satisfies the conditions (1)-(3), then every subgroup of G is

either ascendant or self-normalizing.

This result can be put in the usual form of these results.

Corollary 2.2. Let G be a locally finite group and suppose that G is not locally nilpotent.

Then every non-ascendant subgroup of G is self-normalizing if and only if there exist a

prime p and a nilpotent normal subgroup A of G with no elements of order p such that

the following conditions hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A; and

(3) P is self-centralized, that is CG(P ) = P .

As we mentioned above we are able to obtain previous results.

Corollary 2.3 (L. A. Kurdachenko, H. Smith [15]). Let G be a locally finite group and

suppose that G is not locally nilpotent. Then every non-subnormal subgroup of G is self-

normalizing if and only if there exist a prime p and a nilpotent normal subgroup A of G

with no elements of order p such that the following conditions hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A; and

(3) P is self-centralized, that is CG(P ) = P .

Corollary 2.4 (L. A. Kurdachenko, H. Smith [15]). Let G be a locally finite group and

suppose that G is not a Dedekind group. Then every non-normal subgroup of G is self-

normalizing if and only if there exist a prime p and an abelian normal subgroup A of G

with no elements of order p such that the following conditions hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A;

(3) P is self-centralized, that is CG(P ) = P ; and
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(4) every subgroup of A is G–invariant.

Corollary 2.5. Let G be a locally finite group and suppose that G is not locally nilpotent.

Then every non-ascendant subgroup of G is abnormal if and only if there exist a prime

p and a nilpotent normal subgroup A of G with no elements of order p such that the

following conditions hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A; and

(3) P is self-centralized, that is CG(P ) = P .

Corollary 2.6 (M. de Falco, L. A. Kurdachenko, I. Ya. Subbotin [7]). Let G be a

locally finite group and suppose that G is not locally nilpotent. Then every non-subnormal

subgroup of G is abnormal if and only if there exist a prime p and a nilpotent normal

subgroup A of G with no elements of order p such that the following conditions hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A; and

(3) P is self-centralized, that is CG(P ) = P .

Corollary 2.7. Let G be a locally finite group and suppose that G is not a Dedekind

group. Then every non-normal subgroup of G is abnormal if and only if there exist a

prime p and an abelian normal subgroup A of G with no elements of order p such that the

following conditions hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A;

(3) P is self-centralized, that is CG(P ) = P ; and

(4) every subgroup of A is G–invariant.

For non-periodic groups, we have

Theorem 2.8 (L. A. Kurdachenko, J. Otal, A. Russo, G. Vincenzi [14]). Let G be a group

and suppose that every finitely generated subgroup is either ascendant or self-normalizing.

If G is not periodic, then G is a Gruenberg group.

Corollary 2.9. Let G be a group whose subgroups are either ascendant or self-normalizing.

If G is not periodic then G is a Gruenberg group.
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We apply our study to hyperabelian groups, a class of generalized soluble groups. We

recall that a group G is said hyperabelian if there exists an ascending series {Hα}α<γ from

the trivial subgroup 〈1〉 = H0 to the whole group G = Hγ such that Hα+1/Hα is abelian

for every ordinal α.

Theorem 2.10 (L. A. Kurdachenko, J. Otal, A. Russo, G. Vincenzi [14]). Let G be

a hyperabelian group whose subgroups are either ascendant or self-normalizing. If G is

locally nilpotent, then every subgroup of G is ascendant.

Corollary 2.11. Let G be a hyperabelian group whose subgroups are either ascendant or

self-normalizing. If G is not periodic, then G is locally nilpotent. In particular, every

subgroup of G is ascendant.

With some extra work we find out a little more.

Corollary 2.12 (L. A. Kurdachenko, H. Smith [15]). Let G be a group whose subgroups

are either subnormal or self-normalizing. If G is locally nilpotent, then every subgroup of

G is subnormal.

Proof. If G is finitely generated, then G is nilpotent, and the proof is over. Suppose that

G has no a finite set of generators. Let F ≤ G be a finitely generated subgroup of G.

Pick x 6∈ F . Then 〈x, F 〉 is nilpotent and so F 6= N〈x,F 〉(F ). Thus F is subnormal. Let

F = F0 � F1 � · · ·� Fn = G

be a subnormal series of F in G, that is Fn = FG, Fn−1 = F Fn, . . . , F1 = F F2, where

XY = 〈xy = y−1xy | x ∈ X, y ∈ Y 〉. Then F1 is the product of the nilpotent normal

subgroups F x, x ∈ F2, and it is known that F1 is hyperabelian. By Theorem 2.10, F1 has

no self-normalizing subgroups and thus every subgroup of F1 is subnormal. By Theorem

1.6, F1 is soluble. Now F2 is the product of the soluble normal subgroups F x
1 , x ∈ F3, and

it is known that F2 is hyperabelian. As above, we see that F3 is hyperabelian. Proceeding

in this way, after finitely many steps we see that G is hyperabelian. By Theorem 2.10, G

has no self-normalizing subgroups, and hence every subgroup of G is subnormal. 2

Corollary 2.13 (L. A. Kurdachenko, H. Smith [15]). Let G be a group whose subgroups

are either subnormal or self-normalizing. If G is not periodic, then every subgroup of G

is subnormal. In particular, if G is torsion-free, then G is nilpotent.

Corollary 2.14. Let G be a group whose subgroups are either normal or self-normalizing.

If G is not periodic, then G is abelian.

Corollary 2.15. Let G be a group whose subgroups are either subnormal or abnormal. If

G is locally nilpotent, then every subgroup of G is subnormal.
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Corollary 2.16. Let G be a group whose subgroups are either subnormal or abnormal. If

G is not periodic, then every subgroup of G is subnormal.

We mention that in [7] the latter was proved with the additional condition G 6= [G,G].

Corollary 2.17. A non-periodic group whose subgroups are either normal or abnormal

is abelian.

To finish this Section we mention the related result obtained in the paper [15].

Theorem 2.18 (L. A. Kurdachenko, H. Smith [15]). Let G be a group whose subgroups

are all subnormal. Suppose that there is n ≥ 1 such that G is generated by elements of

order at most n. Then G is nilpotent.

3 Permutable subgroups

A subgroup H of a group G is said to be permutable in G (or quasi-normal in G),

if HK = KH for every subgroup K of G. This concept arises as a generalization of

that of normal subgroup since it is immediate that a normal subgroup is permutable.

The study of the properties of the permutable subgroups started a rather long time ago

(see, for example [21]), where groups whose subgroups are all permutable were described.

Before than giving that description we recall the following result that establish a certain

connection among the concepts involved in this paper.

Theorem 3.1 (S. E. Stonehewer [26]). A permutable subgroup of a group G is ascendant

in G.

In this case, by Theorems 3.1 and 1.2, G is locally nilpotent. Application of the results

of a paper by K. Iwasawa [12] give us the following description.

Theorem 3.2. Let G be a group whose subgroups are all permutable.

(1) If G is periodic, then G can be expressed as a direct product

G = DrpGp,

where Gp is the Sylow p–subgroup of G, and the following conditions holds:

(1A) if p 6= 2, then either Gp is abelian or Gp = Bp〈ap〉, where Bp is an abelian

subgroup of exponent pk, and there is a positive integer t such that t = 1+ pm,

for some m ≤ k ≤ m+ d, where pd = |Gp/Bp|, and a−1
p bap = bt for all b ∈ Bp;

and
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(1B) if p = 2, then either Gp is a Dedekind group or Gp = Bp〈ap〉, where Bp is an

abelian normal subgroup of exponent pk, and there is a positive integer t such

that t = 1 + pm, where pd = |Gp/Bp|, and a−1
p bap = bt for all b ∈ Bp.

In both cases Gp is nilpotent, and bounded in the non-abelian case; and

(2) If G is not periodic, then

(2A) the set T consisting of all elements of G having finite order is a subgroup of G;

(2B) T and G/T are abelian;

(2C) every subgroup of T is G–invariant; and

(2D) if the abelian factor-group G/T has positive torsion-free rank, then G is abelian.

If G further is torsion-free, then G is abelian.

As a consequence of Theorem 2.1, we can now obtain the following result.

Theorem 3.3. Let G be a locally finite group and suppose that G is not locally nilpotent.

Then every non-permutable subgroup of G is self-normalizing if and only if there exist a

prime p and an abelian normal subgroup A of G with no elements of order p such that the

following conditions hold

(1) G = AP and A∩ P = 〈1〉, where P = 〈x〉 is a cyclic p-subgroup and CP (A) = 〈gp〉;

(2) the commutator subgroup [G,G] = A;

(3) P is self-centralized, that is CG(P ) = P ; and

(4) every subgroup of A is G–invariant.

Applying Theorem 2.10 and with some extra work, we are able to obtain.

Proposition 3.4. Let G be a group whose subgroups are either permutable or self-normalizing.

If G is locally nilpotent, then every subgroup of G is permutable.

Proof. If G is finitely generated, then G is nilpotent, and the proof is over. Suppose that

G has no a finite set of generators. Let F ≤ G be a finitely generated subgroup of G.

Pick x 6∈ F . Then 〈x, F 〉 is nilpotent and so F 6= N〈x,F 〉(F ). Thus F is ascendant. Let

F = F0 � F1 � · · ·� Fα ≤ Fα+1 � · · ·Fγ = G

be an ascending series between F and G, and define L1 = 〈F x | x ∈ F2〉. Any F x is normal

in F1 if x ∈ F2, and it readily follows that L1 is hyperabelian. By Theorem 2.10, L1 has no

self-normalizing subgroups, and hence every subgroup of L1 is permutable. By Theorem

251



3.2, L1 is metabelian, that is an abelian extension of an abelian group. Proceeding in the

same way we see that F3 is metabelian, and applying transfinite induction we obtain that

FG is also metabelian. Hence G contains an abelian normal subgroup. Using transfinite

induction again, we deduce that G itself is hyperabelian. By Theorem 2.10, G has no

self-normalizing subgroups, and hence every subgroup of G is permutable, as required.2

Corollary 3.5. Let G be a group whose subgroups are either permutable or self-normalizing.

If G is not periodic, then every subgroup of G is permutable. If G further is torsion-free,

then G is abelian.

A subgroup H of a group G is said to be contranormal if HG = H ; it is clair that

this concept defines subgroups that are some kind of antipodes of subnormal and normal

subgroups. In the paper M. de Falco, L.A. Kurdachenko and I.Ya. Subbotin [7] the

following description of groups whose subgroups are either subnormal or contranormal

was obtained.

Theorem 3.6 (M. de Falco, L. A. Kurdachenko, I. Ya. Subbotin [7]). Let G be a group

such that G 6= [G,G]. Every non-subnormal subgroup of G is contranormal if and only

one of the following holds.

(1) Every subgroup of G is subnormal;

(2) G is a Baer group and has a normal subgroup H whose subgroups are subnormal

such that G/H is a Prüfer p–group for some prime p; or

(3) G = [G,G]P , where P = 〈g〉 is a cyclic contranormal subgroup and there is a prime

q such that every subgroup of [G,G]〈gq〉 is subnormal.
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