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Abstract

In this paper we consider different racional identities in which appear the num-

bers (Bn,p)n,1≤p≤n given by

Bn,p :=
p

n

(

2n

n− p

)

, n, p ∈ N, p ≤ n.

The set of numbers (Bn,p)n,1≤p≤n is known as the Catalan triangle due to the

Catalan numbers (Cn)n∈N,

Cn =
1

n+ 1

(

2n

n

)

, n ∈ N,

appear in the first column. These identities have been recently proved and some of

them are connected with the dynamic behavior of certain iterative methods applied

to quadratic polynomials. In the last section we conjeture some new identities which

involve this family of numbers (Bn,p)n,1≤p≤n.

1 Introduction

The Catalan number Cn is defined by the expression

Cn =
1

n + 1

(

2n

n

)

, n ∈ N.
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The first ten values of Cn are 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796. Note that Catalan

numbers have more than 165 different combinatorial interpretations, see for example [15,

p. 219] and

http://www-math.mit.edu/∼rstan/ec/catadd.pdf

In particular, the number Cn is the solution to the Euler problem: how many different

ways you can divide a convex polygon of n+ 2 sides in triangles using diagonals ([3]),

They also gives the number of binary bracketings of n letters (Catalan’s problem) or

the solution to the ballot problem [6].

In 1976, L. W. Shapiro introduced in [11], the following triangle of numbers

n \ p 1 2 3 4 5 6 . . .

1 1

2 2 1

3 5 4 1

4 14 14 6 1

5 42 48 27 8 1

6 132 165 110 44 10 1

. . . . . . . . . . . . . . . . . . . . . . . .

(1)

which entries are given by

Bn,p :=
p

n

(

2n

n− p

)

, n, p ∈ N, p ≤ n.

These numbers (Bn,p)1≤n,n∈N also satisfy a recurrence relation,

Bn,p = Bn−1,p−1 + 2Bn−1,p +Bn−1,p+1, p ≥ 2.

Note that Bn,1 = Cn for n ≥ 1.

Although the numbers Bn,k are not as famous as Catalan numbers, they have also

several applications (see [2, 11, 13] for more details). As a sample, we cite some of them:
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• Bn,p is the number of leaves at level p+ 1 in all ordered trees with n+ 1 edges

• Bn,p is the number of walks of n steps, each in direction N , S, W or E, starting at

the origin, remaining in the upper half-plane and ending at height p.

• Bn,p denote the number of pairs of non-intersecting paths of length n and distance

p (see the definitions in [11, p.84]).

In this short note, we present some of the main results given in [5, 8, 9] which involve

(Bn,p)1≤p≤n,n∈N. For example, we give the explicit expressions of the moments (Ωm)m≥0,

Ωm(n) :=

n
∑

p=1

pmB2
n,p, n ∈ N

for 1 ≤ m ≤ 7 and general expressions for arbitrary m. Other formulae which appear

in the dynamical study of certain iterative problem are also given. This collection of

results have been considered and studied by other mathematicians, [1, 4, 12]. In the

last section, we present two conjectures about new identities in which appear the num-

bers (Bn,p)1≤p≤n,n∈N; the second one is connected with the values of some determinants

associated to the triangle (1).

2 Main results

Different techniques are used in the proof of the following results: Chu-Vandermonde

convolution formula; W-Z theory and Newton interpolation formula. Details of the power

W-Z theory may be found in the monographic [10] and in [16].

Theorem 2.1 [8] Let n ∈ N. Then

(i) Ω0(n) :=

n
∑

p=1

(Bn,p)
2 = C2n−1.

(ii) Ω2(n) :=

n
∑

p=1

p2(Bn,p)
2 =

(3n− 2)n

4n− 3
C2n−1.

(iii) Ω4(n) :=
n

∑

p=1

p4(Bn,p)
2 =

(15n3 − 30n2 + 16n− 2)n

(4n− 3)(4n− 5)
C2n−1.

(iv) Ω6(n) :=
n

∑

p=1

p6(Bn,p)
2 =

(105n5 − 420n4 + 588n3 − 356n2 + 96n− 10)n

(4n− 3)(4n− 5)(4n− 7)
C2n−1.

Theorem 2.2 [8] Let n ∈ N. Then
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(i) Ω1(n) :=
n

∑

p=1

p (Bn,p)
2 = (n+ 1)Cn(2n− 3)Cn−2.

(ii) Ω3(n) :=
n

∑

p=1

p3(Bn,p)
2 = (n + 1)Cnn(2n− 3)Cn−2.

(iii) Ω5(n) :=

n
∑

p=1

p5(Bn,p)
2 = (n + 1)Cnn(3n

2 − 5n+ 1)Cn−2.

(iv) Ω7(n) :=

n
∑

p=1

p7(Bn,p)
2 = (n + 1)Cnn(6n(n− 1)2 − 1)Cn−2.

Remarks. Note that the polynomials which appear in the Theorem 2.1 and 2.2 do not

belong to any known classical family. In the following theorem we give the moments of

arbitrary order although a explicit expression is unknown.

Theorem 2.3 [9] Let n ∈ N. Then there exist P3m+1, Q2m+2, R3m−1 polynomials of

integer coefficients and degree at least 3m+ 1, 2m+ 2 and 3m− 1 respectively such that

Ω2m(n) =
P3m+1(n)

m
∏

l=1

(4n− (2l + 1))

C2n−1, m ≥ 0,

Ω2m+1(n) = Q2m+2(n + 1)CnCn−2, m ≤ 3,

Ω2m+1(n) =
R3m−1(n)

m−3
∏

l=1

(2n− (2l + 3))

(n+ 1)CnCn−2, m ≥ 4.

Theorem 2.4 [5, 8] Let n ∈ N, and 1 ≤ i ≤ n. Then

(i)

i
∑

p=1

Bn,pBn,n+p−i(n + 2p− i) = (n+ 1)Cn

(

2(n− 1)

i− 1

)

.

(ii)

i
∑

p=1

Bn,pBn,n+p−i(n + 2p− i)3 = (n+ 1)Cn

(

2(n− 1)

i− 1

)

(

n2 + 4n− 2ni+ i2
)

.

3 An application to Newton-like iterative methods

The application of some iterative methods for solving nonlinear equations to a poly-

nomial equation could give raise to rational iteration functions which dynamics are not

well-known.
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We present in the complex plane a study of the dynamical behavior of the following

Newton-like methods






















zm+1 = Rn(zm) = zm −Hn(Lf (zm))
f(zm)

f ′(zm)
, m ≥ 0,

Hn(z) =

n
∑

j=0

1

2j
Cjz

j , n ≥ 0, Lf(z) =
f(z)f ′′(z)

f ′(z)2
,

(2)

which are written in terms of the Catalan numbers.

These methods give rise to rational functions defined in the extended complex plane,

C∞ = C ∪ {∞}. In particular, we prove that these rational root-finding algorithms are

generally convergent for quadratic polynomials.

The idea of general convergence of a method for polynomials of a given degree was

introduced by Smale [14] and McMullen [7] and it means that the method converges to a

root for almost every starting point and for almost every polynomial of a given degree.

The conjugated rational map of Rn, Sn := MRnM
−1, via the Möbius map M(z) =

(z − a)/(z − b), is given by

Sn(z) = zn+2Pn(z)

P̂n(z)
, (3)

where Pn(z) =
n

∑

p=0

Bn+1,p+1z
p and P̂n(z) =

n
∑

p=0

Bn+1,n+1−pz
p.

A rational map R, divides C∞ in two subsets, that are known as Fatou set and Julia

set. The Fatou set, denoted F(R) is defined as the set of points z0 ∈ C∞ such that the

family of iterates Rn is a normal family in some neighborhood Uz0 of z0. That is, every

infinite sequence of Rn contains a subsequence Rnk that converges locally uniformly on

Uz0 to some continuous function f ∈ C(C∞). Recall that Rnk → f locally uniformly on

Uz0 if for all z ∈ Uz0, R
nk → f uniformly on some neighborhood of z. The Julia set,

J (R), is the complement of the Fatou set, J (R) = C∞ − F(R).

Roughly speaking, the Fatou F(R) set includes the points whose orbits are predictable

after iteration and the Julia set includes the points whose dynamical behaviour is com-

plicated with independency of the number of iterations.

Applying item (i) of Theorem 2.4, we obtain

S ′
n(z) =

(n + 2)Cn+1z
n+1(1 + z)2n

P̂n(z)2
.

Hence, we can describe the Fatou components associated to Sn, n ≥ 0, and we can

conclude that the rational map Rn is generally convergent for quadratic polynomials.

In fact, we have that the rational map Sn(z), (n ≥ 0), defined in (3), has precisely

two forward invariant Fatou components: a superattracting component where iterates

converge to ∞ and a superattracting component where iterates converge to 0. The unit
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circle S1(z) = {z ∈ C; |z| = 1} is forward invariant and it is contained in J (Sn) and

moreover, m(J (Sn)) = 0, where m is the Lebesgue measure on C.

Finally, we show the basins of attraction associated to the two roots of a quadratic

polynomial f(z) = (z − a)(a − b) when we apply S2 and S3. The basins of attraction

clarify the structures of the universal Julia sets associated to the corresponding iterative

methods R2 and R3.

-3 -2 -1 0 1

-2

-1

0

1

2

-3 -2 -1 0 1

-2

-1

0

1

2

Plot of the basins of attraction under S2 and S3 applied to quadratic polynomial

f(z) = (z − a)(z − b).

4 Two open problems

Now we come back to the triangle (1). Note that if we multiple the figures in the row

n by the figures in the next row n+ 1, we obtain the Catalan number C2n, for example

C6 = 132 = 5 · 14 + 4 · 14 + 1 · 6.

In fact, this result looks like true if we multiply two different rows: multiply the row n and

n + j, we obtain the Catalan number C2n+j−1. To check this conjeture, take the second

and fifth rows and

C6 = 132 = 42 · 2 + 48 · 1.

Then it is natural to conjeture that

Ci+j−1 =

min(i,j)
∑

k=1

Bi,kBj,k, i, j ≥ 1.

From the triangle (1), we traslade the figures in each column p-th, p−1 steps to obtain
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the new table,

n \ p 1 2 3 4 5 6 . . .

1 1 1 1 1 1 1

2 2 4 6 8 10 12

3 5 14 27 44 65 90

4 14 48 110 208 350 544

5 42 165 429 910 1700 2907

6 132 572 1638 3808 7752 14364

. . . . . . . . . . . . . . . . . . . . . . . .

(4)

We denote by (Mn)n≥1 the main minors of order n in the table (4); we obtain that

n Mn

1 1=20

2 2=21

3 8=23

4 64=26

5 1024=210

6 32768=215

(5)

Taking into account (5), it is natural to conjeture that Mn = 2
n(n−1)

2 for n ≥ 1.
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