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Abstract

In this paper some convergence results for Runge–Kutta methods applied to

semi–linear variable coefficients differential systems with the stiffness contained in

the linear part and under some assumptions on the relative variation of the jacobian

matrix are derived. Previous results on this subject given by the authors in BIT

40, 4 (2000), pp. 611–634, are generalised. In particular, it is shown that some

non B–stable methods such as those of the Lobatto IIIA family and some DIRK

methods that have been used in practical problems are convergent of order greater

or equal than the stage order for this kind of problems. Some numerical examples

are presented to illustrate the theory.

1 Introduction

The concepts of B–stability and B–convergence introduced to study the behaviour of

Runge–Kutta (RK) methods for the numerical integration of stiff IVPs

y′(t) = f(t, y(t)), y(t0) = y0 ∈ R
m, t ∈ I := [t0, t0 + T ], (1)

where f(t, y) satisfies a one-sided Lipschitz condition with respect to y, have provided

in the last two decades a well established B–theory that allows us to identify those RK

methods that are suitable for this class of stiff systems [8], [10].

However, as remarked by Alexander [1] there exist some globally well behaved stiff

problems (i.e. IVPs whose solution is asymptotically stable) that possess strongly positive

one sided Lipschitz constants and therefore do not fit into the B–theory. In particular,
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variable coefficient linear or semi linear problems with the stiffness contained in a non

normal linear part are potential candidates to possess large one–sided Lipschitz constants

(see [1, Sec. 1.1]).

Auzinger, Frank and Kirlinger [4] extended the B–theory to a class of stiff semi linear

problems

y′(t) = f(t, y(t)) ≡ Ĵ(t) y(t) + g(t, y(t)), t ∈ I, y(t0) = y0 ∈ R
m, (2)

where g(t, y) is Lipschitz continuous with respect to y and the logarithmic norm

µ[S(t)Ĵ(t)S(t)−1] is moderately sized for some smooth non singular matrix S(t). These

authors proved that any diagonally-stable and algebraically-stable RK method (A, b) with

order p and stage order q ≤ p, is B-convergent with order ≥ q for the class of semi linear

problems (2). In the special case that Ĵ(t) = J is a constant matrix, by requiring on

the methods assumptions of linear-stability type, Burrage, Hundsdorfer and Verwer [5]

obtained optimal convergence results with orders q (or q + 1), where q is the stage order

of the method. Calvo, Montijano and Gonzalez-Pinto in [6], extended the convergence

results of [5] to the class of semi-linear problems (2), with variation of Ĵ(t) relatively

bounded.

The purpose of this paper is to extend our results of [6] to the class of problems

considered by Auzinger et al. [4], in the case that J(t) = S(t)Ĵ(t)S(t)−1 varies on t in

a relatively bounded form, when some smooth matrix S(t) is considered. It will be seen

that any A–stable RK method (A, b) with positive real part for each eigenvalue of A, is

stable and convergent. Further, these properties also hold for some stiffly accurate A–

stable methods having a first stage explicit, such as those of the Lobatto IIIA family and

some DIRK methods, that have been used e.g. by Kennedy and Carpenter for convection–

diffusion–reaction systems [11]. The paper is completed with some numerical experiments

and comments about the convergence of some SDIRK methods. It must be also noticed

that our results represent an improvement with regard to [4], in the case in which a

bounded relative variation on J(t) is assumed (see the assumption (H2) below). To keep

the presentation within a reasonable length, we have omitted the proofs of the results,

since they are based on an extension of those in [6]. An extended version of this paper

that includes the proofs of the main results and more numerical experiments is given in

[7].

2 Notations and basic assumptions

We assume that (2) possesses a unique smooth solution y(t) = y(t; t0, y0), t ∈ I, in

the sense that for a positive integer p as large as required ‖y(j)(t)‖ ≤ Mj = O(1), j =

0, . . . , p+ 1, t ∈ I, and f(t, y) has continuous partial derivatives up to order p in some
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cylinder Bδ = {(t, y); ‖y − y(t)‖ ≤ δ, t ∈ I} around the exact solution. The norm used

is induced by some inner product with µ[·] standing for the logarithmic norm associated

to the induced norm and O(1) will mean any constant (or mapping) moderately sized

independently of the stiffness.

We will consider semi-linear problems (2) under the following assumptions:

(H1) There exists a matrix S(t) ∈ R
m,m such that J(t) := S(t)Ĵ(t)S(t)−1 satisfies

µ[J(t)] ≤ 0 and S(t), S ′(t), S−1(t) are O(1) for t ∈ I.

(H2) There exist a constant h∗ > 0 and a mapping E1(t,∆t), such that either

(i) J(t+∆t)− J(t)−∆t J(t) E1(t,∆t) = O(∆t),

or else

(ii) J(t +∆t)− J(t)−∆t E1(t,∆t) J(t) = O(∆t),

hold for all t, t+∆t ∈ I with |∆t| ≤ h∗.

(H3) There exists a constant λ0 = O(1) such that ‖g(t, y)− g(t, ỹ)‖ ≤ λ0‖y − ỹ‖, for all
(t, y), (t, ỹ) ∈ B.

The above assumptions imply that the stiffness of f is included in the linear term.

Moreover the condition µ[J(t)] ≤ 0 may be replaced by µ[J(t)] ≤ ν = O(1).

Observe that if Ĵ(t) can be made diagonal by a smooth matrix S(t) satisfying ‖ S(t) ‖
‖ S(t)−1 ‖= O(1), then the assumptions (H1)-(H2) are usually satisfied. This happens,

for example, if the eigenvalues λj(t) of Ĵ(t) have a non–positive real part. The assumption

(H2) is closely related to the relative Lipschitz condition used by Alexander in [1] as well

as the assumption (a.1) introduced by van Dorsselaer and Spijker in [9] to study the

convergence of Newton-type iterations in implicit RK methods. It has also been used by

Calvo et al. [6] for the convergence analysis of Runge-Kutta methods by considering that

the untransformed matrix Ĵ(t) of (2) satisfies

Ĵ(t+∆t)− Ĵ(t)−∆t Ĵ(t) Ê1(t,∆t) = O(∆t), t ∈ I, Ê1 = O(1). (3)

Assumptions similar to (H2) with J(t) replaced by Ĵ(t) have been also used by Strehmel

and Weiner [14] and Schmitt [13] in connection with the analysis of stability and conver-

gence of implicit Runge-Kutta methods and linearly implicit methods on time-dependant

partial differential equations.

Remark 2.1 For general non–linear problems (1), if f(t, y) is analytic in a cylinder Bδ

around the exact solution y = ϕ(t) of (1), then f(t, y) can be written in the semilinear

form (2) with Ĵ(t) = fy(t, ϕ(t)) and

g(t, y) := f(t, ϕ(t))− Ĵ(t)ϕ(t) +
∑

k≥2

1

k!
f
(k)
(t,ϕ(t))(y − ϕ(t), . . .(k , y − ϕ(t)),
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where f
(k)
(t,ϕ(t))(u1, . . . , uk) denotes the k-Fréchet derivative of f with respect to y at (t, ϕ(t)).

Now, if

‖f (k)
(t,ϕ(t))(u1, . . . , uk)‖ ≤ λk‖u1‖ · · · ‖uk‖, t ∈ [0, T ], k = 2, 3, . . . ,

with ‖λk‖ = O(1), then the assumption (H3) is fulfilled.

For the numerical solution of (2) we consider an s-stage RK method specified by

the Butcher matrices (A, b), A = (aij) ∈ R
s,s, b = (bi) ∈ R

s and the knot vector

c = (ci) = Ae, e = (1, . . . , 1)T ∈ R
s. The step from (t0, y0) −→ (t1 = t0 + h, y1 = Ys+1) is

defined by the equations

Yi = y0 + h

s∑

j=1

aij
[
(S−1

j JjSj)Yj + g(τj, Yj)
]
, (i = 1, . . . , s+ 1) (4)

with cs+1 = 1, as+1,j = bj and τi = t0 + cih, Si = S(τi), Ji = J(τi).

The stage order q of the RK method is defined as min{pj; j = 1, . . . , s+ 1} where the

positive integers pj are given by

εj ≡ y(t0 + cjh)− y(t0)− h

s∑

k=1

ajk y
′(t0 + ckh) = O(hpj+1), j = 1, . . . , s+ 1.

with cs+1 = 1, as+1,j = bj . Note that by the smoothness of y(t), the residual errors εi

satisfy ‖εi‖ ≤ O(hq+1).

To adapt the concepts of BSI-stability and BS-stability [8, Chaps. 5,7] to our class

of problems, we consider the perturbed version of (4)

Ỹi = y0 + h
s∑

j=1

aij

[
(S−1

j JjSj)Ỹj + g(τj, Ỹj)
]
+ ηi, (i = 1, . . . , s+ 1) (5)

where ηi ∈ R
m are arbitrary perturbations.

In this situation, a RK method (A, b) is said to be BSI-stable if there exist two positive

constants (independent of the stiffness) h∗ and C0 such that,

max
j=1,...,s

‖ Yj − Ỹj ‖≤ C0

s∑

i=1

‖ηi‖, whenever h ∈ (0, h∗].

Further, the RK method (A, b) will be called BS–stable if

‖ỹ1 − y1‖ = ‖Ỹs+1 − Ys+1‖ ≤ C1

s+1∑

i=1

‖ηi‖, C1 = O(1).

We often require for the Runge-Kutta method (A, b) that each eigenvalue of its coefficient

matrix A has a positive real part. This is equivalent to (see the assumption (M4) in [6])

(I − zA) is non singular for Rez ≤ 0 and sup
Rez≤0

‖z(I − zA)−1‖2 < +∞. (6)
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3 Main Results

In this section we state the main stability and convergence result whose proof has been

omitted for the sake of brevity. These proofs are similar to the ones in previous paper of

the authors [6], and can be seen in [7].

The first stability and convergence result is concerned with methods whose matrix A

satisfies (6).

Theorem 3.1 A Runge-Kutta method (A, b) satisfying (6),

i) is BSI–stable and BS–stable for the class of stiff semi linear problems (2) under the

assumptions (H1), (H2), (H3).

ii) If, moreover the method is A–stable, then it is convergent with order ≥ q (the stage

order).

An important question is whether condition (6) is essential (apart from the A-stability)

for convergence. We have found that there exist methods where A is a singular matrix

with a special structure that are convergent for fixed step sizes or even on non uniform

meshes, such that the number of given steps N multiplied by the maximum step-size is

under some prefixed constant K. In particular, we have obtained positive convergence

results for stiffly accurate methods, i.e., methods with bT = (as1, . . . , ass), with the first

stage explicit and whose matrix A has the form

A =

(
0 0T

a A

)
∈ R

s,s, (7)

where the sub-matrix A ∈ R
(s−1),(s−1) satisfies (6).

A convergence result for these stiffly accurate methods is given in the following:

Theorem 3.2 Let (A, b) be a stiffly accurate RK method with a matrix A of type (7) and

A satisfying (6), then

i) If the method is A-stable, then it is convergent of order ≥ q (stage order) on uniform

meshes for the class of stiff semi linear problems (2) under the assumptions (H1),

(H2), (H3).

ii) In addition, it is also convergent with order ≥ q on special non uniform meshes

{tj}Nj=0 provided that N max(tj − tj−1) ≤ K with K independent of the grid.

Corollary 3.1 The s-stage Lobatto IIIA method is convergent of order q ≥ s, under the

H-assumptions.
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Next result deals with AS– and ASI–stable methods. Recall (see e.g. [6]) that an s–stage

RK method is said to be AS–stable (resp. ASI–stable) if (I−zA) is a non singular matrix

on Re z ≤ 0 and

sup
Rez≤0

‖zbT (I − zA)−1‖2 < +∞
(
resp. sup

Rez≤0

‖(I − zA)−1‖2 < +∞
)
. (8)

For this case we have the weaker convergence (and internal stability) results,

Theorem 3.3 An s-stage RK method (A, b) satisfying (8),

i) is BSI–stable and BS–stable for the class of stiff semi linear problems (2) under the

assumptions (H1), (H2-i), (H3), and (3).

ii) If, moreover the method is A–stable, then it is convergent with order not lesser than

the stage order.

It must be remarked that if we replace in Theorem 3.2 the stiff-accuracy by the weaker

assumption

bT = dTA, for some d 6= ej , j = 1, . . . , s, (9)

ej denoting canonical vectors of Rs, then the convergence statement in Theorem 3.2 does

not necessarily hold as it will be clearly shown in the numerical experiments of the next

section. However, under condition (9), the Theorem 3.3 holds true provided that the

underlying method is also A-stable.

4 Numerical experiments

The aim of this section is to check the convergence behavior of several SDIRK methods

on some variable coefficients stiff linear systems satisfying the H–assumptions. Two of

these methods have been taken from the literature of stiff integrators and are not B–

stable, but they satisfy the assumptions of either of the above theorems. The third one

is a purposely chosen three–stage method with an A matrix of type (7) that is not stiffly

accurate. They will be denoted by SDIRKsX(p,ps) where s is the number of stages,

X is a reference to the author(s), p is the non stiff order and ps is the stage order. We

have not included nonlinear Lipschitz continuous terms g(t, y) in the problems presented

here because they do not essentially modify the convergence behaviour of the methods.

In our experiments we have used the Euclidean norm ‖ · ‖2. The Runge-Kutta methods

considered are:

• SDIRK5HW(4,1) is the five–stage SDIRK method given by Hairer–Wanner [10,

p.100]. It has standard order four and stage–order one. It is stiffly accurate and L-

stable. Since its coefficient matrix A satisfies (6), the method fulfils the assumptions

of Theorems 3.1, 3.2 and 3.3.
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• SDIRK4A(3,2) is the four–stage SDIRK method proposed by Alexander in [2,

pp.2,6-8] and it is defined by

A =




0 0 0 0

γ γ 0 0

a31 a32 γ 0

b1 b2 b3 γ




, b =




b1

b2

b3

γ




, c = Ae,

with γ = 0.43586652... and c3 = 1/2+γ/4. Since it was required to have standard or-

der three and stage order two, the remainder coefficients are univocally determined.

It is L–stable, stiffly accurate and it satisfies (8). Hence, it meets the assumptions

in Theorems 3.2 and 3.3.

• SDIRK3(3,2) is the three–stage SDIRK method defined by the coefficient matrices

A =




0 0 0

γ γ 0

a31 a32 γ


 , b =

1

88




52− 72γ

25 + 50γ

11 + 22γ


 , (10)

with

a32 =
2(1− 2

√
3)

25
, a31 = c3 − a32 − γ, γ =

3 +
√
3

6
, c3 =

4

5
.

This method is strongly A–stable (R(∞) = γ−1 − 2 = −0.732...), has stage–order

two and standard order three. It is not stiffly accurate but it satisfies (8), hence it

fulfills the assumptions of Theorem 3.3, but not the ones of Theorem 3.2.

For the problems considered below, ǫ > 0 is normally a small parameter, hence the stiffness

of the problems, i.e. the Lipschitz condition on y for f(t, y), is of order O(ǫ−1).

Problem 1.- The two dimensional variable coefficient linear system

y′(t) = Ĵ(t) [y(t)− ϕ(t)] + ϕ′(t), t ∈ [0, 4π], y(0) = (1, 0)T , (11)

where ϕ(t) = (cos t, sin t)T , Ĵ(t) = S(t)−1ΛS(t), S(t) = PQ(t), and

Λ =

(
−1 0

0 −ǫ−1

)
, P =

(
−1 0

1 1

)
, Q(t) =

(
1 ǫ

esin t esin t

)
. (12)

The exact solution y(t) = ϕ(t) is asymptotically stable and Ĵ(t), that has as eigenvalues

−1, and −1/ε, is highly non normal. In fact, its logarithmic norm behaves as ε−1 when

ε → 0. In this case Ĵ(t) does not fulfill the assumptions of the B–theory. However, the

assumption (H1), (H2-i) and (H3) are clearly satisfied.
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It can be seen that for a matrix Ĵ(t) of type Ĵ(t) = S(t)−1JS(t), with a non singular

J , condition (3) holds if and only if ‖ J−1MJ −M ‖ can be bounded independently of

the stiffness, where M = (∆t)−1(S(t)−1S(t+∆t)− I). In this case we have that

J−1MJ −M =

(
0 −ν(t)

−ν(t) 0

)
with ν(t) =

a(t+∆t)− a(t)

a(t)∆t
,

and therefore (3) is satisfied independently of ǫ.

Problem 2.- The variable coefficient linear problem similar to that one considered by

Kreiss in [12],

y′ = Ĵ(t)y ≡ S(t)−1 Λ S(t) y, t ∈ [0, 4π], (13)

where P and Λ are given by (12), S(t) = PΩ(t), and

Ω(t) =

(
cos(t) sin(t)

− sin(t) cos(t)

)
. (14)

Since y → S(t)y transforms (13) into a constant coefficient linear system, the general

solution of (13)-(14) can be written in the form

y(t) = S(t)−1

(
1 1

λ+ λ−

)(
C+e

λ+t

C−e
λ
−
t

)
, (15)

with λ+ = −2ǫ+O(ǫ2) and λ− = −ǫ−1−1+O(ǫ). Moreover, all solutions tend quickly,

after the initial transient layer, to the smooth stationary solution, which corresponds

to the parameter C− = 0. We have chosen C− = 0 and C+ = 1 for our numerical

experiments. For the logarithmic norm, it can be shown that µ2[Ĵ(t)] = O(ǫ−1) ≫ 1.

However, the assumptions (H1), (H2), (H3) are satisfied. In this case, the condition (3)

is not accomplished.

Problem 3.- The linear system of partial differential equations of parabolic type,

ut = a11(t)uxx + a12(t)vxx + r1(x, t)

vt = a21(t)uxx + a22(t)vxx + r2(x, t)

}
(16)

where u = u(x, t) and v = v(x, t) represent the unknowns, the space variable x ranges in

[0, 1], the functions ri(x, t), (i = 1, 2) are given by

r1(x, t) = 2 cos t− φ(x) sin t, r2(x, t) = −(2 sin t+ φ(x) cos t), φ(x) = x(1− x).

and aij(t) are defined by

A(t) =

(
a11(t) a12(t)

a21(t) a22(t)

)
≡ Ω(t)(−Λ)Ω(t)−1, (17)
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where Ω(t) and Λ are given by (14) and (12) respectively.

Taking as initial–boundary conditions

u(x, 0) = φ(x), v(x, 0) = 0, u(0, t) = u(1, t) = 0, v(0, t) = v(1, t) = 0,

the exact solution of (16) is u(x, t) = φ(x) cos t, v(x, t) = −φ(x) sin t, independent of

the parameter ǫ (only ǫ > 0 gives stable solutions).

Taking a uniform grid xj = j∆x, j = 0, 1, . . . ,M + 1, in the spatial variable with

∆x = 1/(M + 1), and using second order centered differences, the semi discretization of

(16) can be written as

u′
j = a11(t)

uj−1 − 2uj + uj+1

(∆x)2
+ a12(t)

vj−1 − 2vj + vj+1

(∆x)2
+ r1(xj , t),

v′j = a21(t)
uj−1 − 2uj + uj+1

(∆x)2
+ a22(t)

vj−1 − 2vj + vj+1

(∆x)2
+ r2(xj, t),

j = 1, 2, . . . ,M,

(18)

where uj(t) = u(xj , t) and vj(t) = v(xj , t), j = 0, . . . ,M +1. The initial conditions imply

that uj(0) = φ(xj), vj(0) = 0, j = 1, . . . ,M . It must be observed that the discrete exact

solutions of (18) and (16) are the same.

By introducing the matrix

W =
1

(∆x)2




−2 1

1 −2 1
. . .

. . .

1 −2 1

1 −2




∈ R
M,M ,

and the vectors

U(t) =




u1(t)
...

uM(t)


 , V (t) =




v1(t)
...

vM(t)


 , y(t) =

(
U(t)

V (t)

)
,

R̃1(t) =




r1(x1, t)
...

r1(xM , t)


 , R̃2(t) =




r2(x1, t)
...

r2(xM , t)


 , g(t) =

(
R̃1(t)

R̃2(t)

)
,

we get the initial value problem

y′(t) = Ĵ(t)y + g(t), y(0) = (φ(x1), . . . , φ(xN), 0, . . . , 0)
T , (19)

with Ĵ(t) = A(t)⊗W.
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Since Ĵ(t) = (Ω(t) ⊗ I) (−Λ ⊗ W )(Ω(t)−1 ⊗ I), the assumption (H1) is satisfied for

J(t) = S(t)Ĵ(t)S(t)−1 = −Λ ⊗W because it is a constant matrix that fulfills µ2[J(t)] ≃
−π2. Further (H2) and (H3) are clearly accomplished.

For the smoothness of the exact solution y(t), it is enough to consider the weighted

Euclidean norm ‖ · ‖ = M−1/2 ‖ · ‖2. Thus, it follows that ‖ y(j)(t) ‖≤ maxx∈[0,1] |φ(x)| =
1/4, j = 0, 1, 2, . . . , t ∈ R. Observe that for any matrix B, both norms are identical,

i.e., ‖ B ‖=‖ B ‖2. In conclusion, this problem fulfills the H–assumptions. For our

numerical experiments we have selected M = 20, so that the dimension of the linear

system is 40. In this case, unlike of the problems 1 and 2, the stiffness comes from two

sources, from the small parameter ǫ and from the discretization in space.

For each problem and method we have carried out integrations for t ∈ [0, 4π] with fixed

step sizes h = 4π/N for N = 100, 200, 400, 800, 1600. Note that, since in all problems

the initial conditions have been taken on a stationary (smooth) solution, a fixed step size

strategy can be used in the integrations. We have computed the global error at the end

point GE(N) = ‖y(tN)− yN‖ and also the numerical order of convergence pN defined by

pN =
1

log(2)
log

(
GE(N)

GE(2N)

)
.

Concerning the method SDIRK5HW(4,1) observe that Th. 3.1 implies that it is con-

vergent for all problems with order greater or equal that the stage order q = 1. This can

be checked in Table 1, where the global errors GE(N) and numerical orders pN obtained

for the Problems 1 and 2, have been displayed for several values of the parameter ǫ. Sim-

ilar results, not included here, were encountered for Problem 3. From these results we

follow:

• GE(N) → 0 when N → ∞ for a wide range of values of ǫ, i.e., the method is

convergent also for the considered stiff problems.

• For the non–stiff case ǫ = O(1), the computed numerical orders agree with the

classical order of convergence p = 4 as expected.

• For small ǫ-values the observed orders range, in most cases, between the stage order

and the classical order. Hence, the lower order of convergence can not be improved

in general.

• In Problem 1, for fixed step-sizes, the GE(N) decreases when ǫ → 0. For this

problem, it can be shown that the local error tends to zero when ǫ → 0 and this

property is also reflected in the global error behaviour.

• It must be also remarked that the first–order of convergence above cannot be ex-

plained from the ǫ–theory (see Corollary 3.10, pp. 402-403 in [10, Chap. VI.3]),
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since from that theory global errors of size O(h4 + ǫh) are expected, and this is not

the case as it can be observed from the results in Table 1, when moving either on

rows (fixed h) or on columns (fixed ǫ).

Table 1.— Method SDIRK5HW(4,1) for Problems 1 and 2

Problem 1

ǫ = 0.5 ǫ = 10−2 ǫ = 10−4 ǫ = 10−6 ǫ = 10−8

N GE(N) pN GE(N) pN GE(N) pN GE(N) pN GE(N) pN

50 3.1e-5 1.3e-3 1.8e-5 3.7e-6 3.9e-6

100 2.4e-6 3.68 3.9e-4 1.78 1.0e-5 0.78 2.0e-7 4.26 2.8e-7 3.80

200 1.7e-7 3.85 7.2e-5 2.44 5.2e-6 0.98 3.7e-8 2.41 1.9e-8 3.93

400 1.1e-8 3.93 8.9e-6 3.02 2.6e-6 1.02 2.5e-8 0.54 1.0e-9 4.21

800 7.1e-10 3.96 8.4e-7 3.40 1.2e-6 1.04 1.3e-8 0.95 7.1e-11 3.82

1600 4.5e-11 3.98 6.7e-8 3.65 5.8e-7 1.09 6.5e-9 1.00 6.1e-11 0.21

Problem 2

50 4.9e-9 1.1e-3 2.4e-4 2.7e-4 2.7e-4

100 3.3e-10 3.91 2.2e-4 2.37 1.0e-5 4.55 1.8e-5 3.88 1.8e-5 3.87

200 2.1e-11 3.95 2.7e-5 2.99 9.6e-7 3.41 1.2e-6 3.95 1.3e-6 3.82

400 1.3e-12 3.97 2.8e-6 3.26 4.8e-7 1.01 7.2e-8 4.03 9.8e-8 3.73

800 8.5e-14 3.99 2.8e-7 3.36 1.3e-7 1.85 4.0e-9 4.17 4.0e-8 1.28

1600 5.3e-15 3.99 2.4e-8 3.52 3.2e-8 2.05 5.7e-10 2.81 1.3e-8 1.61

Numerical experiments with the method SDIRK4A(3,2) for the three problems are

presented in Table 2. Note that Theorem 3.1 can not be applied to this method but it

meets the assumptions of Theorem 3.2. From the displayed results, apart from conver-

gence behaviour for all problems, it can be observed that

• For the non–stiff case ǫ = O(1), the computed numerical orders agree with the

classical order of convergence p = 3.

• For small ǫ the order reduction is not observed in Problems 1 and 2. However, for

Problem 3 numerical orders lower than 3 are found, therefore the stage order q = 2,

seems to be the guaranteed order of convergence.

• In all problems, for a fixed stepsize h, the GE(N) seem to be non-dependent on ǫ.

This fact is explained because the local errors are practically independent on ǫ.
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Table 2.— Method SDIRK4A(3,2) for Problems 1, 2 and 3

Problem 1

ǫ = 0.5 ǫ = 10−2 ǫ = 10−4 ǫ = 10−6 ǫ = 10−8

N GE(N) pN GE(N) pN GE(N) pN GE(N) pN GE(N) pN

50 2.7e-4 3.7e-4 4.0e-4 4.0e-4 4.0e-4

100 4.4e-5 2.63 4.6e-5 2.98 5.3e-5 2.90 5.3e-5 2.90 5.3e-5 2.90

200 6.4e-6 2.76 5.5e-6 3.08 6.9e-6 2.95 6.9e-6 2.95 6.9e-6 2.95

400 8.8e-7 2.87 6.2e-7 3.16 8.7e-7 2.98 8.8e-7 2.97 8.8e-7 2.97

800 1.2e-7 2.93 6.7e-8 3.21 1.1e-7 3.00 1.1e-7 2.99 1.1e-7 2.99

1600 1.5e-8 2.97 7.3e-9 3.20 1.4e-8 3.01 1.4e-8 2.99 1.4e-8 2.99

Problem 2

50 5.6e-8 6.8e-3 9.1e-3 9.1e-3 9.1e-3

100 7.7e-9 2.87 8.6e-4 2.99 1.2e-3 2.95 1.2e-3 2.96 1.2e-3 2.96

200 1.0e-9 2.92 1.0e-4 3.11 1.5e-4 2.98 1.5e-4 2.98 1.5e-4 2.98

400 1.3e-10 2.96 9.7e-6 3.36 1.9e-5 2.99 1.9e-5 2.99 1.9e-5 2.99

800 1.7e-11 2.98 6.5e-7 3.89 2.4e-6 2.99 2.4e-6 2.99 2.4e-6 2.99

1600 2.1e-12 2.99 1.0e-8 6.03 3.0e-7 2.99 3.0e-7 3.00 3.0e-7 3.00

Problem 3

50 2.0e-5 9.8e-7 1.5e-7 1.5e-7 1.5e-7

100 3.3e-6 2.58 2.4e-7 2.06 2.8e-8 2.48 2.7e-8 2.49 2.8e-8 2.47

200 5.0e-7 2.70 5.5e-8 2.11 7.0e-9 1.98 6.2e-9 1.98 6.6e-9 2.07

400 7.2e-8 2.81 1.2e-8 2.19 1.1e-9 2.63 1.1e-9 2.63 9.2e-10 2.85

800 9.7e-9 2.89 2.5e-9 2.28 1.6e-10 2.80 1.6e-10 2.84 1.5e-10 2.57

1600 1.3e-9 2.94 4.7e-10 2.38 2.3e-11 2.81 2.2e-11 2.85 1.8e-10 -0.24

Finally, the method SDIRK3(3,2) meets the assumptions of Theorem 3.3 and therefore

it is convergent with order greater or equal than the stage order (q = 2) for Problem 1.

This fact agrees with the numerical results displayed in Table 3, where a third–order

convergence is observed for that problem. However, SDIRK3(3,2) satisfies neither the

assumptions of Theorem 3.1 nor those of Theorem 3.2, hence the convergence on Problems

2 and 3 is not guaranteed. In fact, the numerical experiments in Table 3 (Problem 2) show

that the method is not B-convergent on the whole class of Problems 2 with 0 < ǫ ≤ 1.
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Similar results of not B-convergence were encountered for Problem 3 when considering

small values for ǫ.

5 Conclusions

New theoretical results on stability and convergence for stiff semi–linear problems

that extend previous results on the subject [4], [6] have been derived. The new results

support the use of some SDIRK formulas [2], [10], [11] that have been designed taking into

account their linear stability properties and efficient implementation in practical codes.

Numerical experiments show that the assumptions on the theorems and stiff orders can

not be improved for the class of problems under consideration.

Table 3.— Method SDIRK3(3,2) for Problems 1 and 2

Problem 1

ǫ = 0.5 ǫ = 10−2 ǫ = 10−4 ǫ = 10−6 ǫ = 10−8

N GE(N) pN GE(N) pN GE(N) pN GE(N) pN GE(N) pN

50 6.9e-4 1.1e-3 1.1e-3 1.1e-3 1.1e-3

100 1.1e-4 2.64 1.5e-4 2.87 1.6e-4 2.84 1.6e-4 2.84 1.6e-4 2.84

200 1.7e-5 2.67 2.0e-5 2.97 2.1e-5 2.91 2.1e-5 2.91 2.1e-5 2.91

400 2.5e-6 2.80 2.4e-6 3.05 2.7e-6 2.95 2.7e-6 2.95 2.7e-6 2.95

800 3.4e-7 2.89 2.7e-7 3.12 3.4e-7 2.98 3.5e-7 2.98 3.5e-7 2.98

1600 4.4e-8 2.94 3.0e-8 3.17 4.3e-8 2.99 4.4e-8 2.99 4.3e-8 2.99

Problem 2

50 2.0e-7 3.3e-2 4.8e+65 1.9e+163 – 1.8e+261 –

100 2.7e-8 2.87 3.4e-3 3.25 7.7e+59 – 3.0e+251 – 1.4e+303 –

200 3.5e-9 2.92 3.4e-4 3.35 6.0e+10 – 4.9e+303 – 2.4e+304 –

400 4.6e-10 2.95 3.0e-5 3.49 8.2e-04 – 7.8e+303 – 1.8e+304 –

800 5.8e-11 2.97 2.0e-6 3.90 5.7e-05 3.84 5.0e+154 – 6.3e+303 –

1600 7.3e-12 2.99 2.8e-8 6.14 4.0e-06 3.83 3.0e-004 – 1.2e+303 –
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