
On the convergence of generalized polar decompositions

in Lie groups
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Abstract

We analyze the so-called generalized polar decomposition determined by an in-

volutive automorphism in a Lie group. This concept generalizes the well known

factorization of a matrix as the product of a positive semidefinite matrix and an

orthogonal matrix in linear algebra. We provide a different constructive proof of

the existence of such a decomposition in a neighborhood of the identity and obtain

several explicit bounds on the convergence domain of the series defined each factor.

1 Introduction

The polar decomposition can be seen as the matrix analog of the polar form of a

complex number z = r eiθ, r > 0. If A is any n × n matrix, then there exists a unitary

matrix U and a unique Hermitian positive semidefinite matrix H such that

A = H U.

Furthermore, if A is invertible, then H is positive definite and U is uniquely determined. If

A is real, the matrix U is orthogonal and H is symmetric. It is well known that the factors

H and U possess best approximation properties. Specifically, the polar factor U is the best

unitary (orthogonal in the real case) approximant to A in any unitarily invariant norm,

whereas H is a good Hermitian positive definite approximation to A when it is nonsingular

and Hermitian, and 1
2
(A+H) is a best Hermitian positive semidefinite approximation to

A [8].

113



The polar decomposition has been generalized to abstract Lie groups and even to

semigroups [11]. Such generalized polar decomposition has been found to be closely

related with the concept of involutive automorphism and the subspace decomposition

it induces. In this setting, the polar decomposition is equivalent to expressing a group

element as the product of a term in a symmetric subspace and a term in a subgroup of

the given Lie group.

More specifically, let G be a Lie group and σ : G −→ G an involutive automorphism.

By this we mean a one-to-one map such that σ(xy) = σ(x)σ(y), σ 6= id and σ2 = id. Let

Gσ denote the subgroup of G consisting of fixed points of σ, i.e., Gσ = {x ∈ G : σ(x) = x}

and Gσ the set of anti-fixed points of σ, Gσ = {x ∈ G : σ(x) = x−1}. The set Gσ is not

a group, but a symmetric space with the non-associative multiplication x · y ≡ xy−1x [7].

Then, the generalized polar decomposition of z ∈ G consists in writing

z = xy, x ∈ Gσ, y ∈ Gσ. (1)

Since σ induces an involutive automorphism dσ on the Lie algebra g corresponding to G

as

dσ(X) ≡
d

dt

∣

∣

∣

t=0
σ(exp(tX))

for all X ∈ g, then g can be expressed as the direct sum

g = p⊕ k, (2)

where k corresponds to the set of fixed points of dσ (dσ(X) = X) and p to the set of

anti-fixed points, dσ(X) = −X . The space k is a subalgebra of g, whereas p is a Lie triple

system: p is a vector space that is not closed under the commutator but under the double

commutator, that is, [X1, [X2, X3]] ∈ p for Xi ∈ p, whereas [X1, X2] ∈ k [7]. In general,

the sets p and k verify the following commutation relations:

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

As a result, every element Z ∈ g can be uniquely written as

Z = P +K, P ∈ p, K ∈ k (3)

with

P =
1

2
(Z − dσ(Z)) and K =

1

2
(Z + dσ(Z)).

Moreover, if K ∈ k, then exp(tK) ∈ Gσ, whereas P ∈ p implies exp(tP ) ∈ Gσ.

As a well know example, let us consider the general linear group GL(n) of real n× n

invertible matrices and the map σ(x) = (x−1)T , which is an involutive automorphism.

Now the set Gσ is the set of invertible symmetric matrices (a symmetric space), whereas
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Gσ is the set of orthogonal matrices (which is a subgroup of GL(n)). It can be checked

that dσ(X) = −XT , whence k is the classical algebra of skew-symmetric matrices and p

is the set of symmetric matrices. In consequence, the decomposition (3) is nothing but

the canonical decomposition of a matrix into its skew-symmetric and symmetric part:

P = (Z + ZT )/2, K = (Z − ZT )/2.

In a series of papers [13, 15, 16], Zanna and his collaborators have analyzed the polar

decomposition in a generic Lie group G. In particular, they provide a proof of its existence

and uniqueness in a neighborhood of the identity e ∈ G, which can be established as the

following theorem [13].

Theorem 1.1 Let z = exp(tZ) ∈ G, where Z = P + K is the decomposition of Z in

p ⊕ k, i.e., dσ(P ) = −P and dσ(K) = K. Then, for sufficiently small values of t, the

element z admits a unique generalized polar decomposition z = xy, where x = exp(X(t)),

X(t) ∈ p, and y = exp(Y (t)) with Y (t) ∈ k.

Moreover, they derive differential equations obeyed by X(t) and Y (t) and solve them

perturbatively, thus constructing X and Y as a power series whose terms can be obtained

by a recursive procedure. These recurrences are in turn used to prove the convergence

of the series when g is a Banach algebra. In this way, the function X(t) is shown to be

analytic in a sphere of radius

ρ =
δ

2α
for some constant 0 < δ < π (4)

and α = max{‖P‖, ‖K‖} [13], although no specific value of δ is provided. On the other

hand, the radius of convergence of the series Y (t) is given implicitly as ρ = r
2β

[15],

where β = max{t‖Z‖, ‖X(t)‖} and r is related to the radius of convergence of the Baker–

Campbell–Hausdorff (BCH) series. Notice that these estimates are all of a qualitative

nature, whereas (at least up to our knowledge) no actual bounds for the convergence

domain are found in the literature.

In this paper we try to fill this gap by first proposing new computationally well adapted

recurrences for generating the series X(t) and Y (t). These recurrences are used to get

numerical estimates on the convergence of the series X(t) and also a bound on ‖X(t)‖

itself, which is then used to establish the convergence of the series Y (t). These results are

supplemented with sharper numerical estimates obtained from the BCH series.

Although of theoretical nature, generalized polar decompositions in Lie groups have

found interesting applications in numerical analysis, namely in connection with self-adjoint

numerical integrators for differential equations [10] and the numerical approximation of

the exponential of a matrix from a Lie algebra to a Lie group [16], especially in SL(n).

From a more abstract point of view, they constitute a particular instance of the Atkinson

factorization theorem for Rota–Baxter algebras [3, 5]. We believe that the convergence

results provided here will be of interest in these different settings.
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2 Recursion for the factor X

Our starting point is the factorization provided by Theorem 1.1

etZ = eX(t) eY (t), (5)

with Z = P +K. Differentiating (5) one arrives at the expression

e−X(Z − d expX(X
′)) eX = d expY (Y

′), (6)

where

d expY (Y
′) ≡

∞
∑

j=0

1

(j + 1)!
adj

Y (Y
′) ∈ k (7)

since Y, Y ′ ∈ k and k is a subalgebra of the Lie algebra g. Here adA stands for the adjoint

operator of A ∈ g, which acts according to

adAB = [A,B], adj
AB = [A, adj−1

A B], ad0
AB = B, j ∈ N, B ∈ g. (8)

Notice that the left hand side of eq. (6) also belongs to k. We therefore analyze this term

and separate the contribution in p, which has to be canceled.

First we note that

e−XZ eX = − sinh(u)(K) + cosh(u)(P ) (∈ p)

+ cosh(u)(K)− sinh(u)(P ) (∈ k)

where u ≡ adX and the functions involving u have to be understood as power series. On

the other hand,

e−Xd expX(X
′) eX =

1

u
sinh(u)(X ′) (∈ p)

+
1

u
(1− cosh(u))(X ′) (∈ k)

In consequence,

− sinh(u)(K) + cosh(u)(P )−
1

u
sinh(u)(X ′) = 0

whence, after some algebra, we arrive at the differential equation satisfied by X :

X ′ = −adXK +

∞
∑

k=0

22kB2k

(2k)!
ad2k

X P, X(0) = 0, (9)

with Bj denoting the Bernoulli numbers [1]. To solve equation (9), let us introduce a

parameter ǫ > 0 in Z and consider instead ǫZ = ǫ(K + P ), i.e., the decomposition

et ǫ Z = eX(ǫ,t) eY (ǫ,t).
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The corresponding equation satisfied by X(ǫ, t) is then

∂X

∂t
= −ǫ adXK +

∞
∑

k=0

c2kad
2k
X (ǫP ), X(ǫ, 0) = 0, (10)

where, for simplicity, c2k = 22kB2k

(2k)!
. Now we try to determine the solution X(ǫ, t) pertur-

batively as an infinite series in ǫ,

X(ǫ, t) =
∞
∑

n=1

ǫnXn(t). (11)

To do that, first we substitute expression (11) into (10), thus obtaining for each terms up

to order ǫn the expressions

∂

∂t
X(ǫ, t) =

n
∑

j=1

ǫjX ′

j(t) +O(ǫn)

adX(ǫK) =
n−1
∑

j=1

ǫj+1adXj
K +O(ǫn+1)

n−1
∑

j=1

cj ad
j
X(ǫP ) =

n
∑

l=2

ǫl
l−1
∑

j=1

cj
∑

k1+···+kj=l−1

k1≥1,...,kj≥1

adXk1
· · · adXkj

P +O(ǫn+1).

Then, by equating successive powers of ǫ, we get

X ′

1 = P

X ′

l = −adXl−1
K +

l−1
∑

j=2

cj
∑

k1+···+kj=l−1

k1≥1,...,kj≥1

adXk1
· · · adXkj

P, l ≥ 2.

From the initial condition, it is clear that Xl(0) = 0 for all l ≥ 1, so that finally we arrive

at the recursion

X1(t) = tP (12)

Xl(t) = −

∫ t

0

adXl−1
K ds+

l−1
∑

j=2

cj
∑

k1+···+kj=l−1

k1≥1,...,kj≥1

∫ t

0

adXk1
· · · adXkj

P ds, l ≥ 2.

If this recurrence is worked out explicitly, one gets for the first terms

X2(t) = − t2

2
[P,K], X3(t) = − t3

6
[K, [P,K]],

X4(t) =
t4

24
([P, [P, [P,K]]]− [K, [K, [P,K]]])

3 Recursion for the factor Y

By considering the projection of equation (6) into k we have

cosh(u)(K)− sinh(u)(P ) +
cosh(u)− 1

u
(X ′) = d expY (Y

′), (13)
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where, as before, u ≡ adX . Inserting equation (9) into (13) results in

d expY (Y
′) = K +

1− cosh(u)

sinh(u)
(P ).

Taking into account that

d exp−1
Y (Y ′) =

∞
∑

j=0

Bj

j!
adj

Y (Y
′)

and the power series of the function (1− cosh(u))/ sinh(u), we get finally

Y ′ =
∞
∑

j=0

Bj

j!
adj

Y

(

K − 2
∞
∑

k=2

(2k − 1)Bk

k!
adk−1

X (P )

)

, Y (0) = 0. (14)

Notice that solving for Y (t) requires to previously compute X(t). In spite of that, in the

sequel we show that it is indeed possible to construct a power series for Y (t) by recurrence.

We proceed in a similar way as for the X factor: introduce the parameter ǫ > 0 in Z and

determine the successive terms in the expansion

Y (ǫ, t) =

∞
∑

n=1

ǫnYn(t) (15)

by inserting it into the corresponding differential equation

∂Y

∂t
= ǫ d exp−1

Y D, Y (ǫ, 0) = 0, (16)

where

D ≡ K − 2
∞
∑

k=2

dk ad
k−1
X (P ) and dk =

(2k − 1)Bk

k!
.

It can be shown after some elementary algebra that the r.h.s. of equation (16) can be

written as

ǫ d exp−1
Y D = ǫK + A+B + C +O(ǫn+1)

with

A = −2
n
∑

l=2

ǫl
l−1
∑

j=1

dj+1

∑

k1+···+kj=l−1

k1≥1,...,kj≥1

adXk1
· · · adXkj

P

B =
n
∑

l=2

ǫl
l−1
∑

j=1

Bj

j!

∑

k1+···+kj=l−1

k1≥1,...,kj≥1

adYk1
· · · adYkj

K (17)

C = −2

n
∑

l=3

ǫl
l−1
∑

j=2







j−1
∑

m=1

Bm

m!

∑

k1+···+km=j−1

k1≥1,...,km≥1

adYk1
· · · adYkm













l−j
∑

p=1

dp+1

∑

r1+···+rp=l−j

r1≥1,...,rp≥1

adXr1
· · · adXrp

P
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Equating powers of ǫ leads one to the recursion

Y1(t) = tK

Yn(t) =

n−1
∑

j=1

Bj

j!

∑

k1+···+kj=n−1

k1≥1,...,kj≥1

∫ t

0

adYk1
· · · adYkj

K ds

−2

l−1
∑

j=1

dj+1

∑

k1+···+kj=n−1

k1≥1,...,kj≥1

∫ t

0

adXk1
· · · adXkj

P ds (18)

−2

n−1
∑

j=2

∫ t

0

dτ







j−1
∑

s=1

Bs

s!

∑

k1+···+ks=j−1

k1≥1,...,ks≥1

adYk1
· · · adYks













n−j
∑

p=1

dp+1

∑

r1+···+rp=n−j

r1≥1,...,rp≥1

adXr1
· · · adXrp

P






n ≥ 2

which allows us to get the explicit expression of the first terms as

Y2(t) = 0, Y3(t) = −
t3

12
[P, [P,K]], Y4(t) = 0.

As a matter of fact, it is not difficult to prove that Y (t) is and odd function of t, so that in

general Y2n(t) = 0 for all n. Notice that it is necessary to previously generate the terms Xi

through recurrence (12) to obtain the series Y (t) by (18). Although it is indeed possible

to derive another recursion involving only terms Yi, we have found the recursion (18)

more convenient not only from a computational point of view (the implementation in a

symbolic package is rather straightforward) but also for establishing explicit convergence

domains for the series.

4 Convergence of the expansions

We next analyze the convergence of the previous series. For that purpose we assume

that g is a complete normed Lie algebra endowed with a norm compatible with associative

multiplication, i.e., such that ‖AB‖ ≤ ‖A‖ ‖B‖ for all A, B in g. Then it is true that

‖[A,B]‖ ≤ 2‖A‖ ‖B‖.

First we consider the series

v(ε, t) =

∞
∑

j=1

ǫj‖Xj(t)‖. (19)

From (12) it is clear that for l ≥ 2

‖Xl(t)‖ ≤ 2‖K‖

∫ t

0

‖Xl−1‖ds+ ‖P‖

l−1
∑

j=2

|cj|2
j

∑

k1+···+kj=l−1

k1≥1,...,kj≥1

∫ t

0

‖Xk1(s)‖ · · · ‖Xkj(s)‖ds
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and thus

N
∑

l=2

ǫl‖Xl(t)‖ ≤
N
∑

l=2

2ǫl‖K‖

∫ t

0

‖Xl−1‖ds

+ ǫ‖P‖

N−1
∑

j=1

|cj |2
j

N−1
∑

l=p

εl
∑

k1+···+kp=l

k1≥1,...,kp≥1

∫ t

0

‖Xk1(s)‖ · · · ‖Xkj‖ds,

where we have interchanged the order of summation in the second term.

Let us denote vN(ǫ, t) =
∑N

l=1 ǫ
l‖Xl(t)‖. Then it is easy to show that

(vN(ǫ, t))
p =

pN
∑

l=p

ǫl
∑

k1+···+kp=l

k1≥1,...,kp≥1

‖Xk1‖ · · · ‖Xkp‖

so that, in the last inequality,

N−1
∑

l=p

ǫl
∑

k1+···+kp=l

k1≥1,...,kp≥1

‖Xk1‖ · · · ‖Xkp‖ ≤ (vN(ǫ, t))
p

and therefore

vN(ǫ, t) ≤ 2ǫ‖K‖

∫ t

0

vN−1(ǫ, s)ds+ ǫ‖P‖
N−1
∑

j=0

|cj|2
j

∫ t

0

vN(ǫ, s)
j ds.

Taking the limit N → ∞ in the last expression we have

v(ǫ, t) ≤ 2ǫ‖K‖

∫ t

0

v(ǫ, s)ds+ ǫ‖P‖

∫ t

0

g(2v(ǫ, s))) ds (20)

since
∞
∑

j=0

|cj| (2x)
j =

∞
∑

j=0

|Bj |

j!
(2x)j = 2 + x(1− cot x) ≡ g(x). (21)

We proceed now as follows. Let us denote k = ‖K‖ and p = ‖P‖ and introduce the

function G(x) = βx+ g(x), with β = k/p ≥ 0. Then (20) can be written as

v(ǫ, t) ≤ ǫ p

∫ t

0

G(2v(ǫ, s))ds ≡ F (ǫ, t).

In this way
∂F (ǫ, t)

∂t
= ǫ pG(2v(ǫ, t)) ≤ ǫ pG(2F (ǫ, t))

since G is a non-decreasing function on the domain [0, π). In fact G(z) is analytic for

|z| < π with positive coefficients in the power series and has no zeros in the ball |z| < π.

The last inequality can be expressed as

∂F (ǫ, t)

∂t

1

G(2F (ǫ, t))
≤ ǫ p

120



so that, by integrating, we get

H(2F (ǫ, t)) ≤ 2 ǫ p t

where H(t) ≡
∫ t

0
1

G(x)
dx. Now H(z) is also analytic in |z| < π and H ′(z) = 1

G(z)
6= 0.

Then y = H(z) has an inverse function z = H−1(y) for y in the ball |y| < H(π), which is

also analytic there. In consequence,

v(ǫ, t) ≤ F (ǫ, t) ≤
1

2
H−1(2 ǫ p t)

for t such that 2 ǫ p t belongs to the domain of H−1, i.e.,

2 ǫ p t < H(π) =

∫ π

0

1

G(x)
dx ≡ ξ(β).

Therefore the series X(t) is assured to be convergent for 0 ≤ t ≤ tc, with

tc ≡
1

2 ǫ p
ξ(β) =

1

2 ǫ p

∫ π

0

1

2 + (1 + β)x− x cot x
dx. (22)

If we take ǫ = 1 in (19), then

v(ǫ = 1) = ‖X(t)‖ =
∞
∑

n=1

‖Xn(t)‖ <
1

2
H−1(ξ(β)) =

π

2
(23)

in the convergence domain defined by (22).

For illustration, we collect next the values of ξ(β) for several values of β:

β 0 1 10

ξ(β) 1.08687 0.83751 0.31228

If instead of using the norm ratio β we work with α = max{k, p} then a similar argument

shows that the series ‖X(t)‖ is convergent for 0 ≤ t ≤ tc with

tc =
ξ(1)

2α
≃

0.83751

2α
. (24)

Notice that we have obtained a numerical value for the constant δ in (4).

A enlarged convergence domain can indeed be established by means of the Baker–

Campbell–Hausdorff (BCH) formula. As is well known, the BCH formula deals with the

expansion of Z in eX1 eX2 = eZ in terms of nested commutators of X1 and X2 when they

are assumed to be non-commuting operators. Specifically,

Z = X1 +X2 +
∞
∑

n=2

Gn(X1, X2), (25)

where Gn(X1, X2) is a homogeneous Lie polynomial in X1 and X2 of grade n; in other

words, Gn can be expressed in terms of X1 and X2 by addition, multiplication by rational
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numbers and nested commutators. This result proves to be very useful in various fields of

mathematics (theory of linear differential equations [12], Lie group theory [4], numerical

analysis [6]) and theoretical physics (perturbation theory, transformation theory, Quan-

tum Mechanics and Statistical Mechanics. In particular, in the theory of Lie groups, with

this theorem one can explicitly write the operation of multiplication in a Lie group in

canonical coordinates in terms of the Lie bracket operation in its algebra and also prove

the existence of a local Lie group with a given Lie algebra [4].

The following theorem concerning the convergence of the BCH series has been proved

(see [2]).

Theorem 4.1 Let X1 and X2 be two bounded elements in a Hilbert space H with dimH ≥

2. Then the BCH formula in the form (25), i.e., expressed as a series of homogeneous

Lie polynomials in X1 and X2, converges absolutely when ‖X1‖+ ‖X2‖ < π.

Here the norm is taken as the 2-norm induced by the scalar product in H. This result

can be generalized, of course, to any number of non commuting operators X1, X2, . . . , Xq.

Specifically, the series

Z = log(eX1 eX2 · · · eXq),

converges absolutely if ‖X1‖+ ‖X2‖+ · · ·+ ‖Xq‖ < π.

We next show how this result can be used to get a sharper bound on the convergence

domain of X . As usual, we set z = exp(tZ) with Z = P + K the decomposition of Z

into p ⊕ k, and denote w ≡ (σ(z))−1 = σ(z−1). Then it is true that w = exp(tW ), with

W = P −K. Now, since σ(x) = x−1 and σ(y) = y in the generalized polar decomposition

z = xy, it is clear that

zσ(z)−1 = xyσ(xy)−1 = xyy−1x = x2

so that

e2X(t) = etZ etW . (26)

As a matter of fact, it is possible to apply the algorithm proposed in [2] to generate the

series X(t) = 1
2
log(exp(tZ) exp(tW )) in an arbitrary generalized Hall basis of the free Lie

algebra generated by P and K. Applying now Theorem 4.1 we conclude that the series

X(t) is convergent as long as t(‖Z‖+ ‖W‖) < π or equivalently, when 0 ≤ t < tbch, with

tbch =
π

‖P +K‖+ ‖P −K‖
. (27)

This estimate can be compared with (24) by taking into account that

‖P +K‖ ≤ p+ k ≤ 2α, ‖P −K‖ ≤ 2α
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where, as before, α = max{p, k}. In consequence, tbch > π/(4α) and the convergence of

X(t) is guaranteed for

t ≤
π

4α
.

Unfortunately, no bound for ‖X(t)‖ in this domain can be obtained from the BCH series,

contrarily to the estimate (23), valid when t < tc.

Once x = exp(X(t)) is known, one has y = x−1z, or

eY = e−X(t) etZ .

Therefore, the series Y (t) converges if ‖X(t)‖ + t‖Z‖ < π. For t < tc, we have shown

that ‖X(t)‖ < π/2, so that one has convergence if t‖Z‖ < π/2 or

t <
π

2‖P +K‖
,

which is also greater than π/(4α). We then conclude that the generalized polar decom-

position (5) exists with analytic functions X(t) and Y (t) at least for t < tc = ξ(1)/(2α),

whereas the series X(t) is absolutely convergent for 0 ≤ t < tbch.
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