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Abstract

The aim of this note is to report on some new additional order convergence results

for the qualocation method applied to periodic pseudodifferential operators using

splines from S
r,M
h as trial and from S

r′,M
h as test space. Here Sr,M

h denotes the space

of 1-periodic splines of order r and knot multiplicity M ≤ r on an equidistant mesh

with mesh-size h.

1 Introduction

Additional order convergence (in brief: AOC) in discretization methods has attracted

the interest of many mathematicians over decades. The AOC has the character of a

gift. With a few changes in the original method which do not increase the overall nu-

merical costs significantly a more accurate approximation is obtained. To be a little bit

more detailed, in most cases the accuracy of a method will be described by a discretiza-

tion parameter, say h, tending to zero with increasing approximation quality. The error

between the exact solution u and the numerical solution uh is measured, apart from a

h-independent constant, by some power of h as h → 0. One speaks of an AOC if an-

other approximation ũh can be calculated with comparably the same complexity or if by

measuring the error in more subtile norms a higher convergence order is exhibited.

Perhaps the oldest and structural simplest AOC is provided by Richardson extrapola-

tion. But as the mother of all AOC results the DeBoor & Swartz paper [1] on collocation

at Gaussian points can be considered. And, naturally, a wide variety of AOC results can

be found in the context of finite element methods (see for example the Lecture Note [20]

and the overview article [10]).

In this paper we concentrate on AOC obtained for spline qualocation methods applied

to elliptic periodic pseudodifferential operators (in brief: ψdos). Qualocation, introduced
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by Sloan [15], is a Petrov-Galerkin method with quadrature as a compromise between

the (full) Petrov-Galerkin and the collocation method: on the one hand it discretizes

the inner product in the Petrov-Galerkin method making the numerical implementation

easier, on the other hand it can use more mesh-points than in the collocation method

thereby stabilizing it. In accordance, the word “qualocation” means quadrature modified

collocation.

From the different principles invented for obtaining AOC we use here the principles

of parameter selection for cancelling the leading error term and duality combined with

negative norms.

Already when introducing the qualocation method in [15] and shortly after when

analyzing it in greater generality in [3] AOC was in the center of interest. The analysis of

qualocation was firstly developed for constant coefficient operators and smoothest splines

in [15], [3], [18], where straight Fourier analysis could be applied, and later generalized to

variable coefficient operators and multiple knot splines in [11], [19], [8] requiring a more

sophisticated analysis.

In this paper we report on some recent AOC results obtained by the author and

relate them to corresponding earlier results. In the first part the qualocation method is

introduced and the principle convergence result is given. The approximation power of

multiple knot splines in the Sobolev spaces Hs for s ∈ R, which serve as trial and test

spaces, are reviewed. In the last section it is shown that the conditions for additional order

convergence from the third section hold true if the basic quadrature rule is symmetric and

satisfies certain exactness properties thereby extending conditions given in [19].

2 The given problem

The given problem is of the form Lu = f , where L is a periodic ψdo and u and f

are functions in certain Sobolev spaces. In this section we provide the definition of the

function spaces and of ψdos together with some of their properties.

2.1 Periodic ψdos in the spaces Hs(T)

Denote by

v̂(n) =

∫

T

v(x)e−i2πnx dx for n ∈ Z

the n-th complex Fourier coefficient of a 1-periodic distribution v and by T := R\Z the

one-dimensional torus of length 1. Then the ψdo L is defined by

(1) L = L0 + L1,

where
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(2) L0v(x) :=
∞
∑

n=−∞

σ0(x, n)v̂(n)e
i2πnx for x ∈ T.

The symbol σ0 has the form

(3) σ0(x, ξ) := a+(x)|ξ|β + a−(x)sign(ξ)|ξ|β for x ∈ T and 0 6= ξ ∈ R

with coefficients a+ and a− in C∞(T), where β ∈ R is the order of L0. We assume σ0

to be normalised by σ0(x, 0) = 1 for x ∈ T. If a− or a+ vanishes the symbol σ0 and

the operator L0 are said to be even or odd, respectively. L is assumed to be elliptic, i.e.

σ0(x, ξ) 6= 0 for x ∈ T and |ξ| = 1, and to have index κ = 0, where

κ :=
1

2π

[

arg
a+(x) + a−(x)

a+(x)− a−(x)

]1

0

is the winding number of the closed curve (a+ + a−)/(a+ − a−) in the complex plane. It

is known that then L0 : Hs → Hs−β is a Fredholm operator with index 0 for all s ∈ R,

where Hs ≡ Hs(T) is the usual Sobolev space of periodic distributions v equipped with

the norm

(4) ‖v‖s :=

( ∞
∑

n=−∞

〈n〉2s |v̂(n)|2
)1/2

with 〈n〉 :=

{

1 if n = 0,

|n| if n 6= 0.

It is at least assumed that L1 maps Hs → Hs−β+δ for some δ > 0 and all s ∈ R and hence

L is also Fredholm with index 0.

2.2 Examples for ψdos

Since the topic of the proceedings are mainly differential equations and not primarily

ψdos it may be convenient for the readers to see two standard examples for the latter

which we borrow from [16].

As first example, consider the boundary value problem

UXX + UY Y = 0 in Ω ⊂ R
2, Ω bounded , U = F on Γ := ∂Ω,

where Γ is a smooth curve. One method to solve this problem is to express U as a

single-layer potential with unknown (charge-)density W :

U(X) = VW (X) :=
1

π

∫

Γ

log
1

|X − Y |
W (Y ) dY for X ∈ Ω.

Parametrize Γ in the form X = γ(x) for x ∈ [0, 1] to obtain

(VW )(γ(x)) =
1

π

∫ 1

0

log
1

|γ(x)− γ(y)|
W (γ(y))|γ′(y)| dy
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= 2

∫ 1

0

log
1

|2r sin π(x− y)|

1

2π
W (γ(y))|γ′(y)| dy

+ 2

∫

1

0

log
|2r sin π(x− y)|

|γ(x)− γ(y)|

1

2π
W (γ(y))|γ′(y)| dy

=: V0u(x) +Ku(x),

where

u(x) :=
1

2π
W (γ(x))|γ′(x)|.(5)

V0u is the single-layer potential for a circle of radius r. For Φn := exp(i2πnx) it can

explicitely calculated that

V0Φn =







1

|n|
Φn for n 6= 0,

1 for n = 0.

Thus, applying V0 to a 1-periodic distribution

u =
∑

n∈Z

û(n)Φn ∈ Hs

yields the representation of V0 as a ψdo,

V0u = û(0) +
∑

n 6=0

1

|n|
û(n)Φn.

The symbol of V0 is even and given by

σ0(x, ξ) =
1

|ξ|
for ξ 6= 0,

the order is β = −1. Evidently, V0 maps Hs → Hs+1 ≡ Hs−β boundedly for s ∈ R.

More briefly, as second example the Hilbert transform is presented:

SU(X) :=
1

iπ

∫

Γ

1

Y −X
U(Y ) dY,

which can be transformed as in the first example to coordinates (x, y) yielding the principal

part

S0u(x) := 2

∫ 1

0

exp(i2πy)

exp(i2πy)− exp(i2πx)
u(y) dy.

The order of S0 is β = 0, the symbol is odd and given by

σ0(x, ξ) = sign(ξ) for ξ 6= 0.
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3 The qualocation method

We consider the discretisation of the given problem by qualocation using splines with

multiple knots on equidistant meshes as test and trial spaces. Let r,M,N with 1 ≤M ≤ r

be positive integers. We define the set of knots

πh := {xj = jh, j = 0, . . . , N − 1}, h ∈ H := {1/N,N ∈ N},

and denote by Sr,M
h the space of 1-periodic splines of order r with M-fold breakpoints

in πh. S
r,M
h is a subspace of Cr−M−1 of dimension MN , where Ck = Ck(T) is the space

of 1-periodic k times continuously differentiable functions (with C−1 meaning piecewise

continuity with jumps only at the knots in πh). By H1 we denote a final section of the

null-sequence of stepsizes H, not necessarily the same at different occurencies.

Qualocation is based on a composite quadrature rule

QNf = h
N−1
∑

k=0

J
∑

j=1

ωjf(xk,j), xk,j := xk + hξj ,

derived from the basic quadrature formula

Qf =

J
∑

j=1

ωjf(ξj),

where the quadrature points {ξj} and weights {ωj} satisfy

(6) 0 ≤ ξ1 < ξ2 < · · · < ξJ < 1, J ≥M,

J
∑

j=1

ωj = 1, ωj > 0.

Associated with the quadrature rule we define an inner product

(7) (vh, wh)h := QN(vhwh)

on the linear space Wh of mesh-functions vh and wh, which are functions on the set of

mesh-points

π′
h := {xk,j, k = 0, . . . , N − 1, j = 1, . . . , J}.

The inner product in (7) can be thought of as an approximation to

(v, w)0 :=

∫

1

0

v(x)w(x) dx for v, w ∈ L2(T).

In the next section we give conditions for (·, ·)h to be an inner product on Sr,M
h .

We choose splines of order r as trial space and splines of a possibly different order r′

as test space. The qualocation method for approximately solving the equation Lu = f is

to find uh ∈ Sr,M
h such that

(8) (Luh, zh)h = (f, zh)h for all zh ∈ Sr′,M
h .
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4 The spline space Sr,M
h in qualocation

For the operator formulation of the qualocation equations the so-called qualocation

projection Rh : Wh → Sr,M
h is needed which is defined by

(Rhvh, ψh)h = (vh, ψh)h for ψh ∈ Sr,M
h .

It is not trivial that Rh is well-defined, i.e. that (·, ·)h is an inner product on Sr,M
h , and

in the following subsection we give criteria for this to be the case. Then in the next

subsection we focus on the approximation power of Rh.

4.1 The qualocation projection Rh

The analysis of the approximation power and, more general, of the whole topic depends

on Fourier techniques. An important role in this analysis plays a suitable spline basis. In

the case of Sr,1
h , the space of smoothest splines of order r, a basis was found by Chandler &

Sloan [3]:

ψµ(x) :=

N
∑

j=1

exp(i2πµx)bj(x) for µ ∈ Λh :=

(

−
N

2
,
N

2

]

∩ Z,

where {bj} is the B-spline basis in S
r,1
h . A nice thing about the basis is that the qualocation

equations for the principal part L0 become diagonal if L0 has constant coefficients.

The situation withM-fold knots,M > 1, is more delicate. In their collocation analysis

McLean & Prößdorf [11] used the following characterization of splines.

Lemma 1 v ∈ Sr,M
h iff there exist trigonometric polynomials aj such that

mrv̂(m) =

M−1
∑

j=0

mjaj(mh) for m ∈ Z.

Working with this characterization makes the analysis uncomfortable. It was a step

forward when a basis in Sr,M
h was found in [7] which extends the one in [3]. Define

∆̃k(ξ, y) :=
∑

ℓ 6=0

ℓk−1

(y + ℓ)r
Φℓ(ξ) for |y| ≤

1

2
and ξ ∈ R,

Φℓ(ξ) := exp(i2πℓξ) for ℓ ∈ Z and ξ ∈ R,

∆1(ξ, y) := 1 + yr∆̃1(ξ, y), ∆k(ξ, y) := ∆̃k(ξ, y) for k = 2, . . . ,M,

ψk,µ(x) := Φµ(x)∆k

(

Nx,
µ

N

)

for k = 1, . . . ,M and µ ∈ Λh.

Then {ψk,µ} is a basis in Sr,M
h . The use of this basis makes the qualocation equations for

the principal part L0 block diagonal with blocks of size M if the coefficients are constant.

With the aid of {ψk,µ} it can be characterized whether (·, ·)h is definite on Sr,M
h .
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Proposition 1 (·, ·)h defines an inner product on Sr,M
h iff the functions {∆k(·, y), k =

1, . . . ,M} restricted to the quadrature points {ξj, k = 1, . . . , J} are linearly independent

for y = µ/N and µ ∈ Λh.

We say that Condition (R) is satisfied if the condition in Proposition 1 holds for all

|y ≤ 1/2|. It is known that Condition (R) holds in the following cases.

• [3]: M = 1

(R) holds unless J = 1 and







ξ1 =
1

2
if r is even,

ξ1 = 0 if r is odd.

• [11]: J =M = 2

ξ1 = 0, ξ2 =
1

2
: (R) holds iff r is odd,

ξ1 = ε, ξ2 = 1− ε with ε ∈ (0, 1
2
): (R) fails if r is odd.

• [7], [12]: J =M = 2

ξ1 = ε, ξ2 = 1− ε with ε ∈ (0, 1
2
): (R) holds iff r is even.

• [6]: J =M = 3

ξ1 = 0, ξ2 = ε, ξ3 = 1− ε with ε ∈ (0, 1
2
): (R) holds iff r is even,

ξ1 = ε, ξ2 =
1

2
, ξ3 = 1− ε with ε ∈ (0, 1

2
): (R) holds iff r is odd,

• [6]: for all J,M :

(R) holds if J > M .

In the remaining part of the paper it is assumed that Condition (R) and Condition

(R′) (this is Condition (R) with r replaced by r′) hold.

4.2 Approximation power of Rh

The approximation power of the qualocation projection Rh proved in [7] is the content

of the next proposition.

Proposition 2 Let 0 ≤ s < r −M + 1

2
, s ≤ t ≤ r, t > 1

2
. Then

‖Rhv − v‖s ≤ Cht−s‖v‖t for v ∈ H t.

An explanation for the given range of indices may be helpful.

• s < r −M + 1

2
: the limited smoothness of the spline ψ ∈ Sr,M

h implies ψ ∈ Hs for

s < r −M + 1

2
only,

• t ≤ r: the maximal t allowed, giving the highest error order, is determined by the

order of the splines,

• t > 1

2
: the definition of Rhv requires pointwise evaluation of v which is not well-

defined for t ≤ 1

2
since then H t 6 →֒ C(T).
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5 Principle error estimate

The application of L0 to the spline basis leads to the functions (see [8])

Ω̃k(ξ, y; x) :=
∑

ℓ 6=0

σ0(x, y + ℓ)
ℓk−1

(y + ℓ)r
Φℓ(ξ) for k = 1, . . . ,M,

Ω1(ξ, y; x) := 1 + (σ0(x, y))
−1yrΩ̃1(ξ, y; x) for y 6= 0,

Ωk(ξ, y; x) := Ω̃k(ξ, y; x) for k = 2, . . . ,M.

We omit the argument x if L0 has constant coefficients. The stability of the qualocation

method is connected with the ellipticity of the numerical symbol D(y; x), which is a

M ×M-matrix with elements

[D(y; x)]k,ℓ := Q
(

Ωℓ(·, y; x),∆
′
k(·, y)

)

, Q(v, w) :=

J
∑

j=1

ωj(vw)(ξj).

The numerical symbol is encountered as the coefficient matrix in the linear system of

qualocation equations if L0 has constant coefficients. Ellipticity of D means that D(y; x)

is invertible for |y| ≤ 1/2 and x ∈ T.

Theorem 1 Let L be elliptic and injective. Assume that D is elliptic and that

β +M < r, s < r −M +
1

2
, β +

1

2
< t, β ≤ s ≤ t ≤ r.

Then the qualocation equations have a unique solution uh for h ∈ H1 satisfying

‖u− uh‖s ≤ Cht−s‖u‖t if u ∈ H t.

The condition β +M < r ensures the absolute convergence of the series defining Ω̃k.

The theorem has been proved under varying assumptions.

• [15]: constant coefficients, L ≡ L0, even symbol, M = 1,

• [3]: constant coefficients, even or odd symbol, M = 1,

• [18]: constant coefficients, symbol that may be neither even nor odd, M = 1,

• [11]: variable coefficients, collocation, multiple knots,

• [19]: variable coefficients, strongly and oddly elliptic L, M = 1,

• [8]: variable coefficients, multiple knots.

The proof for variable coefficient operators uses a localization technique. Such tech-

niques are known from PDEs but are considerably more intrigued to apply for integral op-

erators which themselves are non-local. The underlying abstract result is due to Prößdorf

[13]. Basic tools for applying Prößdorf’s result are the following superapproximation from

[4] and commutator property from [8]. Both provide an AOC with order 1.
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Proposition 3 Let g ∈ Cr(T) and M < r, 0 ≤ s < r −M + 1

2
, t ≤ r −M . Then

‖(I − Rh)(gvh)‖s ≤ Ch1+t−s‖g′‖r−1,∞‖vh‖t for vh ∈ Sr,M
h .

Proposition 4 Let g ∈ Cr(T) and M < r, 0 ≤ s < r −M + 1

2
, 1
2
< t ≤ r. Then

‖Rhg(I −Rh)v‖s ≤ Ch1+t−s‖g′‖r−1,∞‖v‖t for v ∈ H t.

6 Additional order of convergence

The highest error order in the principle convergence theorem is

‖u− uh‖β ≤ Chr−β‖u‖r if u ∈ Hr.

For example, if L0 is the single-layer potential, where β = −1, and choosing continuous

linear splines as trial space, this means order r = 2 and M = 1, then

‖u− uh‖−1 ≤ Ch3‖u‖2 if u ∈ H2.

This convergence order is disappointing when compared to the highest order negative

norm error bound for the Galerkin solution uGh (see [9]),

‖u− uGh ‖−3 ≤ Ch5‖u‖2 if u ∈ H2.

For the qualocation method progress to catch up with the order 5 was made by Sloan [15]

who showed that with specially designed quadrature rules one can obtain the same error

order,

(9) ‖u− uh‖−3 ≤ Ch5‖u‖4 if u ∈ H4.

The estimate requires the higher regularity u ∈ H4 compared to u ∈ H2 for the Galerkin

method. This disadvantage was overcome in [17] with the tolerant version of qualocation,

where the inner product on the right-hand side is evaluated exactly.

6.1 Constant coefficient L0

The AOC result (9) is proved by the principle of parameter selection for cancelling

the leading error term. A key idea of the proof is the following. In [3] the asymptotic

error expansion for the operator L = L+

β or L = L−
β is obtained by Fourier transform in

the form

û(µ)− ûh(µ) = D
( µ

N

)−1

E
( µ

N

)

û(µ) + higher order terms in
( µ

N

)

9



for µ ∈ Λh\{0}, where the symbol of L+
α and L−

α is σ0 = |ξ|α and σ0 = sign ξ |ξ|α,

respectively, and

E(y) :=
J
∑

j=1

ωj

(

Ω1(ξj, y)− 1
)

∆′
1(ξj, y) for |y| ≤

1

2
.

Note that due to the numerical ellipticity
∣

∣D( µ
N
)−1

∣

∣ ≤ C. For any choice of the quadrature

rule the function E behaves like

E(y) = O(|y|r−β) as y → 0.

The qualocation method (in the case M = 1 considered here) is said to have additional

order b > 0 (see [15]) if

E(y) = O(|y|r−β+b) as y → 0.(10)

The functions Ω1 and ∆′
1 are given if L0 and the spline spaces are fixed. One can try to

obtain an additional order by selecting the quadrature rule appropriately. Sloan showed

that the choice

ξ1 = 0, ξ2 =
1

2
, ω1 =

3

7
, ω1 =

4

7

combined with linear continuous splines as test and trial space gives b = 2 for the single-

layer equation. Note that the quadrature points are from the trapezoidal rule but not the

weights.

In the case of multiple knot splines the condition for additional order b > 0 from [5] is

M
∑

k=1

D(y)−1

1,kQ
(

Ω̃1(·, y),∆
′
k(·, y)

)

= O(|y|b) as y → 0,(11)

which is in the caseM = 1 and b ≤ r′ equivalent to Condition (10) and in the case J =M

to Condition (2.12) in [11].

The general AOC result for constant coefficient L0 is stated in the following theorem.

Theorem 2 Let L = L0 +K : Hβ → H0 be elliptic and injective, where L0 has constant

coefficients and K maps Hq → Hq−β+b boundedly for q ∈ R. Assume that D is elliptic,

that Condition (11) holds and that

β +M < r, M ≤ r′, s < r −M +
1

2
, s ≤ t ≤ r, β − b ≤ s ≤ β < t−

1

2
.

Then the qualocation equations have a unique solution uh for h ∈ H1 satisfying

‖u− uh‖s ≤ Cht−s‖u‖t−s+β if u ∈ H t−s+β.
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The theorem has been proved in varying settings.

• [15]: even symbol, L ≡ L0, M = 1, quadrature rule of Simpson type,

• [3]: even or odd symbol, M = 1,

• [11]: collocation, i.e. M = J , multiple knots,

• [18]: qualocation, symbol may be neither even nor odd, M = 1,

• [5]: qualocation, multiple knots.

6.2 Variable coefficients

The analysis for variable coefficient operators L0 is technically considerably more in-

volved than for constant coefficients. In the case of variable coefficients AOC has been

proved for smoothest splines in [19]. The authors assume that L = L0 + L1 +K, where

L1 =
b−1
∑

i=1

(

a+i (x)L
+

β−i + a−i (x)L
−
β−i

)

, K : Hq → Hq−β+b+ν boundedly(12)

for q ∈ R and some ν > 1/2. The basic assumptions in [19, Th. 4 and Th. 5] are

conditions for the quadrature rule, which is supposed to be symmetric and to integrate

certain functions exactly (see Lemma 4). In [5] multiple knot splines are considered for

the same class (12) of ψdos and the following conditions for AOC in the spirit of [3] are

given:

∣

∣Q
(

Ω̃k(·, y), 1
)
∣

∣ ≤ C|y|b as y → 0 for k = 1, . . . ,M(13)

with b ∈ N satisfying β − s ≤ b ≤ min(r′, r − β), where Ω̃k has to be taken for L+

β and

L−
β ; additionally,

∣

∣Q
(

1, ∆̃′
1(·, y)

)∣

∣ ≤ C|y|r−β+b−r′ as y → 0,(14)
∣

∣Q
(

1, ∆̃′
k(·, y)

)
∣

∣ ≤ C|y|r−β as y → 0 for k = 2, . . . ,M.(15)

It may be helpful for interpreting the conditions in (13) - (15) to hint to the fact that

Q
(

Ω̃k(·, y), 1
)

can be considered as the result of the quadrature rule Q applied to the

integral (Ω̃k(·, y), 1)0, which vanishes as is immediately seen from the definition of Ω̃k.

Also (1, ∆̃′
k(·, y))0 = 0.

Theorem 3 Let L = L0 + L1 +K satisfy (12) with ν = 0 and be elliptic and injective.

Assume also that D is elliptic, that Conditions (13) - (15) hold and that

β +M < r, M ≤ r′, s < r −M +
1

2
, s ≤ t ≤ r, s ≤ β < t−

1

2
,
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β − s ≤ b ≤ min(r′, r − β).

Then the qualocation equations have a unique solution uh for h ∈ H1 satisfying

‖u− uh‖s ≤ Cht−s‖u‖t−s+β if u ∈ H t−s+β.

The operator L1 in (12) is said to be even (odd) if a−i = 0 (a+i = 0) for i = 1, . . . , b.

Remark 1 If L0 and L1 are both even or odd then it is sufficient that the qualocation

method has strong additional order b of convergence to require (13) for L+

β or L−
β only,

respectively.

6.3 Negative norm estimates are useful

A word on the significance of the negative norm estimates in the context of boundary

integral equations may be in order (see [16]). As described in Subsection 2.2, for a given

point X0 ∈ Ω the solution of the boundary value problem

UXX + UY Y = 0 in Ω ⊂ R
2, U = F on Γ,

can be written in the form

U(X0) =
1

π

∫ 1

0

1

log |X0 − γ(y)|
u(y) dy,

where u is from (5). The approximation

Uh(X0) =
1

π

∫ 1

0

1

log |X0 − γ(y)|
uh(y) dy

satisfies the error bound

|U(X0)− Uh(X0)| =
1

π
(log |X0 − γ|, u− uh)0

≤ C‖ log |X0 − γ|‖t‖u− uh‖−t for t ∈ R.

Thus, the higher the order of ‖u − uh‖−t the higher the error order (U − Uh)(X0) since

log |X0 − γ| ∈ H t for all t ∈ R.

7 Symmetric quadrature rules

A basic quadrature rule Q satisfying the condition that if ξ ∈ (0, 1
2
) is a quadrature

point then so is (1 − ξ) with the same weight ω is called symmetric. In the case of

smoothest splines in [18] and [19] exactness conditions for symmetric quadrature rules

are given for AOC to hold. In this section we extend these conditions to multiple knot

splines. We always assume that
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β +M < r and M ≤ r′.

We need the following functions Gα for α > 0 and ξ ∈ (0, 1) which have been studied

in [2]:

Gα(ξ) := 2

∞
∑

ℓ=1

1

ℓα
cos 2πℓξ.

For symmetric quadrature rules the Conditions (13) - (15) can be further elaborated.

Recall that

Ω̃k(ξ, y) =
∑

ℓ 6=0

σ0(y + ℓ)
ℓk−1

(y + ℓ)r
Φℓ(ξ) for k = 1, . . . ,M,

where we consider these functions for the operators L+

β and L−
β . As shown in [3], Ω̃k(ξ, ·)

has a Taylor expansion with respect to y = 0, where the coefficients for the real part are

easily determined to be equal to

ck,m(ξ) :=
1

m!
Re

∂mΩ̃k(ξ, 0)

∂ym
=

(

β−r
m

)

∑

ℓ 6=0

σ0(ℓ)ℓ
k−1−r−m cos 2πℓξ

=
(

β−r
m

)

∑

ℓ>0

ℓk−1−r−m(σ0(ℓ) + σ0(−ℓ)(−1)k−1−r−m) cos 2πℓξ

for m ∈ N0 and σ0(ξ) = |ξ|β or σ0(ξ) = sign ξ |ξ|β. It follows that

ck,m =







Gr−β−k+1+m if σ0 and r − k + 1 +m have like parity,

0 otherwise.
(16)

In the next two lemmas we give the Conditions (13) - (15) another form.

Lemma 2 If L0 is even (odd) then Condition (13) is equivalent to

J
∑

j=1

ωjGr−β+ℓ(ξj) = 0 for even (odd) ℓ ∈ [−M + 1, b− 1](17)

if σ0 and r have like (opposite) parity. If L0 is neither even nor odd then (13) is equivalent

to the equation in (17) for all even and odd ℓ ∈ [−M + 1, b− 1].

P r o o f . Since Im Ω̃k(1− ξ, y) = −Im Ω̃k(ξ, y) and Im Ω̃k(0, y) = 0 (needed in the

case ξ1 = 0) it follows by virtue of the symmetry of Q that Q(Im Ω̃k(·, y), 1) = 0 and

Condition (13) is equivalent to

Q(Re Ω̃k(·, y), 1) = O(|y|b) as y → 0 for k = 1, . . . ,M.
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This relation holds iff the coefficients of ym in the Taylor series of Q(Re Ω̃k(·, y), 1), given

by Q(ck,m, 1), vanish for m < b. If σ0 and r have like parity then, in view of (16), this

is equivalent to −k + 1 +m to be even and Q(Gr−β−k+1+m, 1) = 0 for m = 0, . . . , b − 1.

Since k ∈ [1,M ] the equivalence of (13) with (17) is proved. If σ0 and r have opposite

parity the proof is similar. The last assertion is then implied. 2

Lemma 3 Condition (14) is equivalent to

J
∑

j=1

ωjGℓ(ξj) = 0 for even ℓ ∈ [r′, r − β + b− 1](18)

and Condition (15) is void if M = 1 and if M > 1 equivalent to

J
∑

j=1

ωjGℓ(ξj) = 0 for even ℓ ∈ [−M + 1 + r′, r − β + r′ − 2].(19)

P r o o f . Note that ∆̃′
k is obtained as a special case of Ω̃k for the (even) operator L+

β

with β = 0 and r replaced by r′. Taking (16) into account it is seen that (14) is equivalent

to Q(1, Gr′+m) = 0 for even r′ +m and m = 0, . . . , r − β + b − r′ − 1. Similarly, (15) is

equivalent to Q(1, Gr′−k+1+m) = 0 for even r′ − k + 1 +m and m = 0, . . . , r − β − 1 and

the equivalence of (19) follows. 2

Sufficient conditions for (17) - (19) can be derived by noting that Gα is for even

α a multiple of the Bernoulli polynomial Bα (see [3]). From this observation the next

corollary follows easily from Lemmas 2 and 3. In its formulation we use the notation

of an extended symmetric quadrature formula Q. By this we mean a modification of

Q, which is symmetric for periodic functions only, into a general symmetric formula Q̃.

The modification is necessary only in the case that ξ1 = 0. To obtain Q̃ the additional

quadrature point ξJ+1 := 1 is introduced with weight ωJ+1 := ω1/2 and the weight for

ξ1 = 0 is changed to be also equal to ω1/2.

Corollary 1 Let σ0 and r have like parity and r−β be even or let σ0 and r have opposite

parity and r − β be odd. Then the conditions (17) - (19) are satisfied if the extended

symmetric quadrature rule Q has at least order 2q of exactness, where q = [(r−β+b−1)/2]

unless M > 1 and b < r′ − 1, where q = [(r − β + r′ − 2)/2]. Here [x] denotes truncation

of x to the next integer not larger than x.

In the case of a general operator L observe that by our index assumptions we have

r′ ≥ 1,−M + 1 + r′ ≥ 1 and r − β > 0 and the following corollary can be derived from

Lemmas 2 and 3.
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Corollary 2 If the symmetric quadrature formula Q satifies

J
∑

j=1

ωjBℓ(ξj) = 0 for even ℓ ∈ [2, r − β + b− 1],(20)

J
∑

j=1

ωjGℓ(ξj) = 0 for odd ℓ ∈ [r − β −M + 1, r − β + b− 1](21)

and, additionally, if M > 1 and b < r′ − 1

J
∑

j=1

ωjBℓ(ξj) = 0 for even ℓ ∈ [r − β + b, r − β + r′ − 2](22)

then Conditions (17) - (19) hold true for general variable coefficient operators L.

If M = 1 these conditions coincide with (1.15) and (1.20) in [19].

In [18] a list of symmetric quadrature formulas with various exactness properties is

provided. In the following table we collect those formulas which satisfy the conditions

of Corollary 1 for certain choices of the parameters and, additionally, the formulas from

Table 2. We keep the notation in [18]. A useful information for us is the first index

indicating the number J .

M r − β b r′ Formula

2 3 1 2 G3,2,2, L3,2,2

2 4 1 2 G4,3,2, L4,3,2

2 3 2 2,3 G4,3,2, L4,3,2

3 4 1 3 G4,3,2, L4,3,2

3 4 2 3 G5,3,3, L5,3,3

Table 1.— Quadrature formulas from [18] and Table 2 providing additional order b of

convergence for general variable coefficient operators L

As an example how to determine the parameters of quadrature formulas like in Table

1 we derive Formula G5,3,3 by an application of Corollary 2. With the parameters given

in the last line in Table 1 Condition (20) is satisfied if all even polynomials of degree

ℓ ∈ [2, 5] are integrated exactly (here we took into account that due to the normalization

(6) constant functions are always integrated exactly). By applying the formulas to the

polynomials (ξ − 0.5)2 and (ξ − 0.5)4 these two conditions take the form

ω1(2ξ1 − 1)2 + ω2(2ξ2 − 1)2 = 1/6,

ω1(2ξ1 − 1)4 + ω2(2ξ2 − 1)4 = 1/10,
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where the symmetry relations ω5 = ω1, ω4 = ω2, ξ5 = 1 − ξ1, ξ4 = 1 − ξ2, ξ3 = 0.5 were

taken into account. The index ℓ in Condition (21) is odd and runs in [2, 5] providing the

two further equations

2ω1(Gn(ξ1)−Gn(0.5)) + 2ω2(Gn(ξ2)−Gn(0.5)) = Gn(0.5) for n = 3, 5.

Condition (22) is void. Solving numerically the equations for the unknowns ω1, ω2, ξ1 and

ξ2 yields the parameters for G5,3,3 in Table 2. The parameters for L5,3,3 are obtained

similarly.

J ξj ωj Rule name

5 0.03675444410510 0.09796641612174 G5,3,3

0.20980173750308 0.24512752237399

0.5 0.31381212300853

0.79019826249692 0.24512752237399

0.96324555589490 0.09796641612174

5 0.0 0.04767138349495 L5,3,3

0.09758560632523 0.17451387385978

0.34287284360121 0.30165043439274

0.65712715639879 0.30165043439274

0.90241439367477 0.17451387385978

Table 2.— Quadrature formulas providing for M = 3 additional order b = 2 of conver-

gence

Remark 2 The stability of the formulas from [18] has been numerically checked there

for strongly and oddly elliptic operators with integer β ∈ [−1, 1]. For some of the rules

stability was proved analytically in [14].

We conclude this section with some remarks concerning constant coefficient operators

L0 and the collocation method.

Lemma 4 Let M = 1, b ≤ r′ and D be elliptic. Then Condition (11) to hold for both L+

β

and L−
β is equivalent to

J
∑

j=1

ωjGr−β+ℓ(ξj) = 0 for ℓ = 0, . . . , b− 1,(23)

and thus is identical with [18, Condition (4.13)] for AOC of order b.
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The lemma follows from the observation that Condition (11) for M = 1 and b ≤ r′ is

equivalent to

Q(Ω̃1(·, y), 1) = O(|y|b) as y → 0,

which, as in Lemma 2, is equivalent to (23).

For collocation with double knot splines the following conditions for AOC have been

given in [11].

Lemma 5 Assume that the symbol (3) has constant coefficients satisfying a+ = 0 or

a− = 0 and that M = 2. If the quadrature points are

ξ1 = 0, ξ2 =
1

2
and σ0 and r have opposite parity,(24)

or

ξ1 = ǫ, ξ2 = 1− ǫ and σ0 and r have like parity, where Gr−β(ǫ) = 0,(25)

then (11) holds with b = 1 or b = 2, respectively.

It is shown in [3] that Gr−β has a unique zero in (0, 1/2).

P r o o f . For J = M the collocation method is a special case of the qualocation

method if Condition (R′) is satisfied. With the quadrature points in Lemma 5 and the

choice r′ = 3 or r′ = 2 in the case of (24) or (25), respectively, (R′) has been proved in [7,

Prop. 5.1 and 5.2].

In both cases the quadrature rules are symmetric. The numerical symbol D is elliptic,

which follows from a slight generalization of [7, Prop. 5.1 and 5.2] in combination with

[8, Lemma 3.1] (in the case of opposite parity also from [11, Lemma 5.1]). The conditions

Q
(

Ω̃1(·, y), 1
)

= O(|y|b) and D−1

1,2(y)Q
(

Ω̃1(·, y),∆
′
2(·, y)

)

= O(|y|b)(26)

are seen to be sufficient for (11), where for the first condition the boundedness of D−1

and the form ∆′
1(·, y) = 1+ yr

′

∆̃′
1(·, y) with r

′(≥ 2) ≥ b was taken into account. Consider

the case of like parity. With the aid of (16) we conclude for the Taylor coefficients c1,m(ξ)

of Re Ω̃1(ξ, ·) that c1,0(1 − ǫ) = c1,0(ǫ) = Gr−β(ǫ) = 0. The relation (16) yields also

c1,1 = 0. Consequently, Re Ω̃1(ξ1, y) = Re Ω̃1(ξ2, y) = O(|y|2) and the first relation in

(26) holds with b = 2. In the case of opposite parity, (16) yields c1,0 = 0 and, consequently,

Re Ω̃1(ξ, y) = O(|y|). Thus the first relation in (26) holds with b = 1.

For the proof of the second relation in (26) first note that, due to

Re Ω̃1(1− ξ, ·) = Re Ω̃1(ξ, ·), Im Ω̃1(1− ξ, ·) = −Im Ω̃1(ξ, ·), Im Ω̃1(0, ·) = 0,

the corresponding relations for ∆′
2 and the symmetry of the quadrature formulas, we have

D−1
1,2(y)Q

(

Ω̃1(·, y),∆
′
2(·, y)

)

= D−1
1,2(y)Q

(

Re
(

Ω̃1(·, y)∆
′
2(·, y)

)

)
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= D−1
1,2(y)Q

(

Re Ω̃1(·, y)Re∆
′
2(·, y)

)

+D−1
1,2(y)Q

(

Im Ω̃1(·, y)Im∆′
2(·, y)

)

.(27)

¿From the first part of the proof follows that the first term in (27) has the correct order

since D−1

1,2 is bounded. For the second term note that in the case of opposite parity

Im Ω̃1(ξ1, 0) = Im Ω̃1(ξ2, 0) = 0 (see (28)), which implies order b = 1 of the second term

in (27). Consider the case of like parity. It is not difficult to check that for k = 1, 2

Re Ω̃k(·,−y) = (−1)k−1Re Ω̃k(·, y), Im Ω̃k(·,−y) = (−1)kIm Ω̃k(·, y).(28)

The functions ∆′
k satisfy the same relations since their symbol σ0 = |ξ|0 and r′ = 2 have

like parity. Then calculating the matrix element D−1

1,2 with Cramer’s rule it is seen to be

odd. It follows also from (28) that Im Ω̃1(ξ, 0) = 0 and that Q
(

Im Ω̃1(·, y)Im∆′
2(·, y)

)

is odd with respect to y. Thus the second term in (27) is even and vanishes for y = 0

implying the required order b = 2. 2

Remark 3 Due to the general assumption β + M < r, which is equally made in [18]

(case M = 1), [11] and [5] it is not allowed in the case M = 2 to set r − β = 2 although

the quantities in Lemmas 2 and 3 are well-defined for this choice and would lead to the

same additional order b = 1 or b = 2 as in Lemma 5 for even or odd variable coefficient

operators L (with weights ω1 = 1/3, ω2 = 2/3 for the rule (24)). The reasons for this

restriction may be of technical nature.
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