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Abstract

Equations of motion for a rotating tethered satellite are derived in the Hill prob-

lem approximation. Orbital and attitude dynamics are shown to decouple for fast

rotating tethers, and the tether’s attitude appears as a time periodic perturbation of

the orbital motion, which remains as a three degrees of freedom problem. When the

tether is rotating parallel to the equatorial plane of the central body the problem

further simplifies and variations of the tether’s length may be used to stabilize the

orbital motion in certain cases of unstable motion.

Introduction

Electrodynamic tethers could be used in some missions to outer planets as an interesting

alternative to produce the required level of onboard energy. Taking Jupiter as example two

different scenarios can be found associated to the smallness of the gravity gradient due to

the small Jovian density. Close to the planet, tethers aligned with the local Jovian vertical

can be stabilized with help of the gravity gradient with tether tensions which are small but

sufficient for some applications. However, when the distance increases the contribution

of the gravity gradient to the tether tension decreases quickly and the stability of the

system is jeopardized. In such a case fast rotating tethers provide the required level of

tension due to the centrifugal forces yielded by the tether angular rate while keeping the

advantages that this technology offer in the obtaining of onboard energy.

Standard artificial satellites are relatively small structures and their attitude dynamics

can be studied independently of the orbital motion of their center of mass: for the most

important operations the corresponding equations of motion can be decoupled. On the
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contrary, for large structures as solar sails or long tethered satellites the attitude prob-

lem not always becomes decoupled from the orbital one, and the rotational-translational

motion must be studied as a whole. However, the roto-translational motion may admit

some simplification for specific problems. That is the case of fast rotating tethers.

In this paper we derive the equations of motion of a rotating tethered satellite in the

Hill problem approximation, and show how the averaged equations over the tether’s (fast)

rotation angle decouple the orbital and attitude dynamics. We discuss how the tether’s

length parametrizes the problem and modifies the position of the collinear points. Finally,

for the particular case of a tethered satellite continuously rotating in a plane parallel to

the equatorial plane of the central body, which is an equilibrium of the averaged roto-

translational problem, we show how unstable periodic orbits around the central body

could be stabilized for certain lengths of the tether.

Rotating tethered satellite’s dynamics

In the Newtonian theory, the inertial acceleration of the center of mass of a tethered

satellite under the action of two primaries of masses m1 and m is

d2R

dt2
= −

(

Gm1

R3
1

R1 − A1

)

−
(Gm

r3
r − A

)

where R1 and r are the radii of the center of mass of the tether from the primaries m1

and m, respectively, G is the gravitational constant, the terms depending on the central

inertia characteristics of a rigid tethered system of length LT are

A = −Gm

r2

{

(

LT

r

)2

a2

[

3

2

(

5 (u · r̂)2 − 1
)

r̂ − 3 (u · r̂) u

]

−O(LT /r)3

}

(1)

and A1 is formally equal to A but changing r by R1 and m by m1; u is a unit vector in

the tether’s direction,“hats” mean unit vectors and the coefficient a2 depends on the mass

distribution of the tethered satellite. Details on the derivation of Eq. (1) and following

expressions in this paper may be found in [1].

In a rotating frame (O, i, j, k) with constant velocity ω = ωk, and origin at the

primary of mass m, the acceleration of the center of mass of the tethered satellite is

d2R

dt2
= r̈ + 2ω × ṙ + ω × (ω × r) − ω2d

where dots mean differentiation in the rotating frame, and d = R − r. In the Circular

Restricted Three-Body Problem (CRTBP) approximation, d is a constant vector of mod-

ulus d = l (1 − ν) with ν = m/(m + m1), from the definition of the center of mass, and l

is the distance between the primaries.

When the motion takes place close to the origin and m1 ≫ m, a first order expansion

in powers of r/l ≪ 1 in which d/l ≈ 1, leads to the famous Hill’s equations. In the case
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of a tethered satellite A1 vanishes because of the term (LT /R1)
2, but the contribution

of A needs to be retained in some cases depending on the ratio LT /r (long tethers close

enough to the central body). Then,

ẍ−2ω ẏ = 3ω2x−xGm

r3
+A·i, ÿ+2ω ẋ = −y Gm

r3
+A·j, z̈ = −ω2z−z Gm

r3
+A·k, (2)

In the classical formulation of the Hill problem A ≡ 0 and

ẍ − 2ω ẏ = 3 ω2 x − xGm

r3
, ÿ + 2ω ẋ = −y Gm

r3
, z̈ = −ω2 z − z Gm

r3
, (3)

equations that admit two equilibria at x = ±rH, where rH = 3

√

Gm/(3ω2) is known as the

Hill radius.

It is common to scale time so that t = τ/ω, and length so that r = ρ (Gm/ω2)1/3.

Then,

ξ′′ − 2 η′ = 3 ξ − ξ

ρ3
, η′′ + 2 ξ′ = − η

ρ3
, ζ ′′ = −ζ − ζ

ρ3
, (4)

where primes mean derivation in the new time scale, showing that the Hill problem does

not depend on any parameter. The Hill radius of the non-dimensional equations is simply

ρH = 3−1/3. Note that ω2 (l − d) = Gm/l2 from the circular motion of the primaries.

Then, Gm/ω2 = l3 ν, and r = ρ l ν1/3 in the Hill problem scaling.1

After scaling and canceling the factor ν1/3 that appears in both members of Eq. (2),

we found that

A = −3 λ2

T

1

ρ4

{[

5 (u · r̂)2 − 1
]

r̂ − 2 (u · r̂) u
}

where we introduced the non-dimensional parameter

λT =

√

a2

2

LT /l

ν1/3
, (5)

that we call the tether’s characteristic length —the factor 1/
√

2 introduced for conve-

nience.

The tether’s attitude dynamics is described by the angular momentum equations, that

lead to
du1

dt
= Ω⊥ u2,

du3

dt
=

M · u2

Ω⊥ Is

u2,
dΩ⊥

dt
=

M · u3

Is

where Is is the moment of inertia of the tethered satellite, M is the resultant torque

applied to its center of mass, u1 ≡ u, u3 = u× u̇/‖u̇‖ is a unit vector in the direction of

the angular momentum vector, u2 = u̇/‖u̇‖ completes a direct frame, and Ω⊥ = ‖u̇‖.
For tethers evolving close to a plane parallel to the orbital plane of the primaries, we

found convenient to use Tait-Bryant rotations (or Cardan angles)

(i, j, k) = R1(−φ1) R2(−φ2) R3(−φ3) (u1, u2, u3)

1This scaling enables the usual elegant derivation of Hill’s equations directly from the non-dimensional

(l = ω = 1) CRTBP equations by simply scaling lengths by ν
1/3 and performing a first order expansion

in powers of ν after which the limit ν → 0 is applied [2].
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to find the scalar equations of the attitude dynamics. Thus,

φ′
1

= −M · u2

ω2 Ω Is

cos φ3

cos φ2

, φ′
2

= −M · u2

ω2 Ω Is
sin φ3, φ′

3
= Ω − φ′

1
sin φ2, Ω′ =

M · u3

ω2 Is
,

where Ω = Ω⊥/ω in the non-dimensional time scale.

A further simplification can be made in the case of fast rotating tethers, “fast” meaning

that the rotation rate of the tether φ′
3

is much higher than the rotation rate of the system

ω. Averaging over φ3 is, then, appropriate since the dynamics evolves in a time scale

proportional to ω. After averaging,

A = −λ2

T

ρ5

[

3 δ (sin φ2 i − cos φ2 sin φ1 j + cos φ2 cos φ1 k) − 3

2

(

5
δ2

ρ2
− 1

)

ρ

]

,

where the auxiliary distance

δ = ξ sin φ2 − (η sin φ1 − ζ cos φ1) cos φ2,

has been introduced. Then, the non-dimensional Hill equations of motion of a fast rotating

tethered satellite are

ξ′′ − 2 η′ = 3 ξ − ξ

ρ3
+

λ2

T

ρ5

[

3

2

(

5
δ2

ρ2
− 1

)

ξ − 3 δ sin φ2

]

,

η′′ + 2 ξ′ = − η

ρ3
+

λ2

T

ρ5

[

3

2

(

5
δ2

ρ2
− 1

)

η + 3 δ cos φ2 sin φ1

]

,

ζ ′′ = −ζ − ζ

ρ3
+

λ2

T

ρ5

[

3

2

(

5
δ2

ρ2
− 1

)

ζ − 3 δ cos φ2 cos φ1

]

,

equations that must be complemented with the attitude ones that, after averaging over

φ3, are

φ′
1

= cos φ1 tan φ2, φ′
2

= − sin φ1.

Note that the averaging procedure has decoupled the orbital and attitude motion. The

attitude can be integrated to give

sin φ2 = sin β0 sin(α0 − τ),

cos φ2 =
√

cos2 β0 + sin2 β0 cos2(α0 − τ),

sin φ1 =
sin β0 cos(α0 − τ)

√

cos2 β0 + sin2 β0 cos2(α0 − τ)
,

cos φ1 =
cos β0

√

cos2 β0 + sin2 β0 cos2(α0 − τ)
,

where the integration constants α0, β0, may be expressed unambiguously as function of

the initial conditions by making τ = 0 in the equations above.
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Furthermore, φ1 = φ2 = 0 is an equilibria of the averaged attitude problem, which

dramatically simplifies the orbital equations of motion to

ξ′′ − 2 η′ = 3 ξ − ξ

ρ3
− 3

2
λ2

T

ξ

ρ5

(

1 − 5
ζ2

ρ2

)

,

η′′ + 2 ξ′ = − η

ρ3
− 3

2
λ2

T

η

ρ5

(

1 − 5
ζ2

ρ2

)

,

ζ ′′ = −ζ − ζ

ρ3
− 3

2
λ2

T

ζ

ρ5

(

3 − 5
ζ2

ρ2

)

.

Remark that these are the well known equations of the Hill-oblate problem: a Hill’s

problem perturbed by the oblateness (harmonic coefficient J2) of a central body with

equatorial radius α. In the fast-rotating tether problem, the role of the oblateness is

played by λ2

T ≡ J2 α2.

Hill-oblate long-term dynamics

The Hill-oblate problem is usually formulated as a perturbed two-body problem with

perturbing function R = 1

2
ω2 (3x2 − r2) + 1

2
(Gm/r) J2 (α/r)2 [1 − 3 (z2/r2)] or, in orbital

elements,

R =
ω2

2
r2
{

3 [cos(N − ω t) cos(g + f) − sin(N − ω t) sin(g + f) cos I]2

+
Gm

4r
J2

(

α

r

)2 [

2 − 3 sin2 I + 3 sin2 I cos(2g + f)
]

}

where N is the longitude of the ascending node, g the argument of the periapsis, f the

true anomaly, I orbital inclination, and the scaling factor α is the equatorial radius of the

central body. Time periodic terms in the perturbing function are usually averaged and

the secular dynamics is then studied from Lagrange planetary equations. Alternatively,

perturbation theory may be used to reduce the number of degrees of freedom of the

problem.

Using Hamiltonian formulation, the Hill-oblate problem is H =
∑

k≥0(ǫ
k/k!) Hk, where

H0 = −1

2
(Gm)/L2 is the Keplerian term, H1 = 2H0 (ω/n) (H/L) with |n| = (Gm)2/L3 is

the Coriolis contribution due to the rotating frame, and

H2 = H0

(

ω

n

)2 (r

a

)2
{[

1

2
+ β2

(

a

r

)5
]

(

2 − 3 s2 + 3 s2 cos 2θ
)

+
3

4

[

2s2 cos 2h + (1 − c)2 cos(2h − 2θ) + (1 + c)2 cos(2h + 2θ)
]

}

where the ratio

β =
√

J2

α/a

ω/n
, 0 ≤ β ≤ ∞ (6)
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manifests how the balance between oblateness and third-body perturbations depends on

the semimajor axis a.

Delaunay elements (ℓ, g, h, L, G, H) are commonly used to eliminate the mean anomaly.

After doing so, averaging the argument of the node, and truncating up to the second order

in the small parameter, the averaged Hamiltonian is

〈H〉 =
Gm

2L2

{

1 + 2ǫ c η +
ǫ2

8

[(

4β2

η3
+ 2 + 3e2

)

(2 − 3s2) + 15e2s2 cos 2g

]}

of one degree of freedom in the angular momentum and the argument of the periapsis,

because ǫ = ω/n and β are constant after averaging. Then, Hamilton equations give

dG

dt
=

Gm

2L2

15

4
ǫ2e2s2 sin 2g (7)

dg

dt
= −Gm

2L2

6

8L η
ǫ2

[(

1 +
2β2

η3

)

(4 − 5s2) + e2 + 5 (s2 − e2) cos 2g

]

(8)

As far as g is not defined when G = L (e = 0), the proper discussion of the averaged system

must be done in invariants instead of Delaunay elements. However, for our purposes it

is enough to mention that circular orbits are always equilibria of the averaged system,

and the discussion of the case G < L can be done from Eqs. (7)-(8). Without paying

attention to equatorial solutions, we concentrate orbits with periapsis at g = 0, ±π/2, π,

which make null the derivative of G.

Case g = 0, π

Then, Eq. (8) evaluates to 2η7 − β2η2 + 5β2σ2 = 0, whose real roots will depend on

physical and dynamical parameters. The solution in σ = c η shows that 1 ≥ 5 cos2 I ≥
(1−2/β2) and elliptic, equilibria solutions with “frozen” perigee at g = 0, π only exist for

cos2 I ≤ 1/5 (the critical inclination in the Artificial Satellite Theory), further requiring

β >
√

2.

Case g = ±π/2

Now, Eq. (8) results in 3η7 − 5σ2η3 + β2η2 − 5β2σ2 = 0, and elliptic frozen orbits may

exist in 1 ≤ 5 cos2 I ≤ (3 + β2)/(1 + β2), always above the third body critical inclination

of the three-body problem cos2 I = 3/5 and never surpassing the critical inclination in

the Artificial Satellite Theory.

Bifurcation lines of circular orbits

The limit case for the elliptic equilibria above is their bifurcation from circular orbits at

η = 1. For this case σ ≡ c and the equilibria equations convert in the bifurcation lines of
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circular orbits cos2 I = 1

5
(1 − 2/β2) and cos2 I = 1

5
(3 + β2)/(1 + β2) that, to the order

reached in the averaging show a symmetric behavior of direct and retrograde inclination

orbits.

Flow in the reduced phase space

The qualitative description of the averaged dynamics is illustrated in Fig. 1. We are

only interested in bifurcations of circular orbits; that is why we present the parametric

plane (L, H) in terms of β = β(L) and I = arccos(H/L). We distinguish three different

regions with different flow, in each of which we present an eccentricity vector diagram

(e cos g, e sin g): Close to the equatorial plane we only find one fixed point corresponding

to stable circular orbits, and closed curves corresponding to elliptic orbits with rotating

pericenter. For higher inclinations a bifurcation occurs: the behavior of circular orbits

changes to unstable (hyperbolic point at the origin of the eccentricity vector diagram) and

two elliptic points appear, corresponding to stable elliptic orbits with “frozen” pericenter

either at π/2 or at −π/2. Finally, far from the origin (β small) a new bifurcation happens:

circular orbits return to stability and two new hyperbolic points appear corresponding to

unstable elliptic orbits with frozen pericenter at 0 or π.
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90

100
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Figure 1: Flow, (e cos g, e sin g) projection, in different regions of the (I, β) plane.

For a complete description of the phase space, including the behavior of highly elliptic

orbits, the interested reader is referred to [3] or the more recent [4].
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Stabilization with rotating tethers

By stablishing the analogy between the Hill-oblate and the fast rotating tether problems,

we demonstrate that β is a control parameter that can be used to stabilize unstable, low-

eccentricity, high-inclination orbits of the Hill problem. Thus, Eq. (6) may be rewritten

as

β =
λT /a

ω/n
, (9)

where we can modify β because the dependence of λT on the tether’s physical length LT .

This will allow to stabilize a tethered satellite in an unstable orbit close to a central body

by simply lengthening the tether until reaching the required β value.

This important theoretical result may be useful or not in practical situations, because

the dependence of λT on several parameters, as noted in Eq. (5). On one hand LT ≪ l,

and realistic tether’s lengths will not make possible β values in the order of one unless

ν will be very small. Favorable cases of interest for future science missions might be

the Jupiter-Europa system, with ν ≈ 2.5 × 10−5, or the Saturn-Enceladus system with

ν ≈ 1.9 × 10−7.

On the other side, because the dependence of β on other physical or dynamical param-

eters, cf. Eq. (9), the condition ν very small is not the unique possibility for increasing β

to the required values. Thus, we can find systems where ν is not very small, as the Sun-

Mercury system, but where orbits of interest enjoy long instability scales, as programed

science mission to Mercury. In these cases ω/n ≪ 1, and very small variations of the

tether’s characteristic length may be enough to stabilize the orbit.

Conclusions

The natural dynamics of fast rotating tethered satellites in binary systems is revealed after

averaging the equations of motion over the tether’s fast rotating angle. Formulation of

the problem in non-dimensional variables shows that there is only one relevant parameter,

which we call the tether’s characteristic length. This parameter plays an analogous role

to the oblateness of the central body, and we demonstrate that may be used to stabilize

high-inclination low-eccentricity orbits that are known to be unstable because of the Kozai

resonance. In order to asses the practical interest of this result further investigation is

required. A follow-up to this research could include massive numerical explorations in

a variety of binaries in the solar system. A straightforward approach for this task is

the computation of families of periodic orbits for variations of the tether’s characteristic

length, from which stability results are easily obtained. Among the possible binaries

to investigate, the systems formed by the gas giants and their satellites offer favorable

conditions, but other choices as the Sun-Mercury system should not be undervalued.
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