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Abstract

Near-symmetric binaries - i.e., binaries with roughly same-sized partners - appear

to dominate the known population of binaries in the Kuiper-belt. Herein the mass-

and size-ratio distributions of Kuiper-belt binaries predicted by the chaos-assisted

capture formation model are investigated. The basic proposition is that capture re-

quires that two objects, initially following heliocentric Keplerian orbits, must enter

their mutual Hill sphere before binary formation becomes possible. Simulations in

the Hill problem demonstrate that a window of relative asymptotic velocities exists

outside of which Hill sphere entry is unlikely. On the other hand, equipartition

arguments, as well as coagulation calculations, suggest that a given body’s velocity

will depend on its mass. This, in turn, establishes a link between the mass - or size

(diameter) - of a body and the feasibility of it being captured into a binary. Larger

bodies moving with velocities roughly comparable to the Hill velocity are most likely

to fall within the capture window. Stabilization is then possible through gravita-

tional scattering with smaller, faster-moving intruders. Uniform and power-law

initial mass and size distributions are used to study this scenario in the four-body

Hill approximation. A velocity-size relationship similar to that obtained from coag-

ulation calculations but augmented with a gaussian spread is used. The contribution

and role of exchange reactions is also investigated. Selection for roughly same-sized

binary partners is found to arise partly from (i) the capture window that selects for

Hill sphere entry and partly from (ii) the preference for near-symmetric binaries to

be stabilized by gravitational scattering with intruders.

39



1 Introduction

The trans-Neptunian part of the Solar System - the Edgeworth-Kuiper-belt or just

“the Kuiper-belt” - is a unique laboratory for testing planetary formation models (Kenyon,

2002; Lykawa and Mukai, 2005; Noll et al., 2007). This is because this region is thought to

consist of leftovers from the accretional phase of the Solar System (Stern, 1996; Kenyon

and Luu, 1998). Consequently, trans-Neptunian objects (TNOs) potentially provide a

window into the earliest epochs of the Solar System. Ideally, one would like to under-

stand how the Kuiper-belt evolved to its present state, how (and if) orbital and spectral

properties correlate with each other (Barucci et al., 2001; Cruikshank, 2003, 2005), the

physical structure of TNOs; and the relationship between TNOs and other objects in the

Solar System - e.g., is Triton a captured TNO? (McKinnon and Leith, 1995; Cruikshank,

2005; Agnor and Hamilton, 2006). Because of their remoteness, however, knowledge of

the dynamical, physical, and chemical properties of TNOs remains quite limited. Nev-

ertheless, progress on all these fronts is being made through the recent discovery of a

significant population of binary TNOs (Noll, 2003, 2006; Brown et al., 2006; Stephens

and Noll, 2006; Noll et al., 2007).

Binaries are important in all areas of astronomy because they provide a direct way

of determining the total mass of the system under study; this information then paves

the way for determining other system properties that can, in their turn, be used to

shed light on the formation and dynamical evolution not only of the binary itself, but

possibly of other objects in its locale (Noll, 2006). For example, knowledge of the mass-

ratio distributions of stellar binaries provides a way to discriminate between different

formation scenarios. Broadly speaking, stellar binary formation models can be categorized

either as “matchmaking” or as “birth” models (Bonnell, 2001; Goldberg et al., 2003). In

matchmaking models it is assumed that the two stars were formed separately and only

later came together in a binary. On the other hand, birth models assume that the two

stars were formed together. An analogy exists in the Solar System: The regular moons

of Jupiter and Saturn are thought to have been formed alongside their parent planet

while their irregular satellites (and Triton at Neptune) are thought to have been captured

(McKinnon and Leith, 1995; Agnor and Hamilton, 2006). In the case of Solar System

binaries, a third channel - physical collisions - must be added to the list of possible binary

formation mechanisms (Stern, 1995).

Kuiper-belt binaries (KBBs) are of special interest because they have unusual physical

and orbital properties, at least when compared to the properties of near-Earth and main-

belt asteroid binaries. For example, KBBs tend to have partner mass-ratios of order unity

whereas other Solar System asteroid binaries typically have mass ratios in the range mr ∼
10−3−10−4 where mr = m2/m1 and m1 and m2 are the masses of the binary partners with
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m2 ≤ m1 (Durda et al., 2004a). Orbital peculiarities include large mutual orbit semi-major

axes (a) compared to the physical radii (r1, r2) of the binary components themselves and

moderately large eccentricities (Noll, 2003; Noll et al., 2007). The bracketing of different

KBB properties is useful because it provides constraints on Solar System formation models

as well as KBB formation models.

A caveat is in order: Because Kuiper-belt objects (KBOs) are so remote and faint,

any apparent preference for near-symmetric binaries (and large semi-major axes) might

simply be the result of observational bias. For example, it might be easier to detect

binaries in the first place because two objects in a binary will typically appear brighter

than either one separately. The first KBB to be discovered (1998 WW31), in fact, was

not immediately recognized to be a binary (Veillet et al., 2002). Furthermore, if m1 and

m2 are similar in size and albedo, and are sufficiently well separated, then the object

will be more easily recognized to be a binary than if, say, m1 ≫ m2. Other sources

of uncertainties must also be considered. The brightness of a TNO is a function of its

diameter and albedo and, therefore, mass comparisons between objects based only on

visual magnitudes must necessarily make assumptions about the albedos and densities of

the binary partners. While assuming similar densities and albedos is probably reasonable,

it is worth noting that the albedoes and densities of Pluto and Charon are quite different

from each other (Reinsch et al., 1994; Person et al., 2006). In principle, individual masses

can be determined more directly (e.g., from observations of occultations) although few

if any such measurements have so far been made of KBBs. Despite these uncertainties,

based on observations using the Hubble Space Telescope, Noll et al. (2006, 2007), have

concluded that the apparent preference for near-symmetric KBBs may be real. This has

significant implications for models of their formation.

In principle, different binary formation mechanisms will produce different mass-ratio

distributions. Computed distributions will also depend on assumptions made about the

primordial mass and velocity distributions of KBOs. For example, in dynamical capture

scenarios, the simplest model might be to pair KBOs at random from some assumed initial

KBO mass distribution. In this case the mass distributions of m1 and m2 in the binary

ought to be independent of each other. However, it is unlikely that binary formation is

completely random. Indeed, studies of stellar binary formation in the three-body problem

indicate that, for example, in star clusters exchange reactions tend to produce roughly

same-sized binary partners, i.e., near-symmetric binaries (Hills, 1990; Heggie and Hut,

2003; Funato et al., 2004). Another possibility is that binaries of particular mass-ratios

are more robust to perturbations. Thus, dynamical effects need to be to considered as a

factor that determines the mass-ratio distribution of KBBs (Valtonen and Mikkola, 1991;

Valtonen, 1998).

In the recently proposed chaos-assisted capture (CAC) (Astakhov et al., 2003) scenario
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of binary formation, two potential binary partners may become trapped for long periods

of time inside chaotic layers within their mutual Hill sphere (Astakhov et al., 2005; Lee

et al., 2007). The binary is then captured permanently through gravitational scattering

with a third “intruder” body. The creation of binaries having similarly sized partners is an

ab initio prediction of the model. Recently, Iwasaki and Ohtsuki (2007) have emphasized

the possible role of long-term temporary trapping inside the Hill sphere in the capture of

irregular moons and the formation of KBBs.

The main objective of the paper is to test whether the CAC mechanism - and in

particular, its prediction of a preference for near-symmetric binaries (Astakhov et al.,

2005; Lee et al., 2007) - can survive the incorporation of more realistic mass and velocity

distributions than the uniform distributions used previously, e.g., by Lee et al. (2007).

It turns out that the dynamical mechanism by which CAC selects for binaries having

mass-ratios in the range m2/m1 ∼ 0.1−1 (i.e., near-symmetric binaries) is augmented by

a second mechanism. This mechanism relates to the initial entry into the Hill sphere and

is found to occur through a velocity window that, in turn, acts as a selector for mass.

This paper is organized as follows: Section 2 provides a brief overview of current KBB

formation models. The algorithm used is described in Sec. 3, and the results obtained

for uniform mass-ratio and power-law size-ratio distributions are presented in Sec. 4.

Conclusions are in Sec. 5, together with a brief discussion of the possible relevance of the

CAC mechanism to binary formation in the Asteroid Belt.

2 Overview of Kuiper-belt binary formation models

A number of models have been proposed to explain how KBBs formed (Weiden-

schilling, 2002; Goldreich et al., 2002; Funato et al., 2004; Astakhov et al., 2005; Lee

et al., 2007), and several discussions of the various binary formation models exist in the

literature (Weidenschilling et al., 1989; Merline et al., 2002; Noll, 2006; Noll et al., 2007;

Kern and Elliot, 2006; Cruikshank et al., 2006). Formation models can be broken down

into two broad categories: those involving physical collisions and those that rely on dy-

namical processes (e.g., gravitational scattering.) The physical and orbital properties of

KBBs seem to rule out physical collisions as a major contributing pathway. In particular,

KBBs appear to have too much orbital angular momentum to have been formed directly

through collisions (Margot, 2002; Burns, 2004; Durda et al., 2004a; Stern, 2002; Canup,

2005; Chiang et al., 2006). Their relatively large semi-major axes and large mass-ratios

also argue against this formation channel. Setting physical collisions aside leaves dynam-

ical models of the “matchmaking” variety. These models must (i) explain how two bodies

that come close to each other can lose enough energy for capture to become permanent,

and (ii) they must account for the observed compositional and orbital properties of KBBs,
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namely, large, moderately eccentric orbits and nearly same-sized partners.

The various dynamical processes and outcomes may be summarized as follows:

{m1, m2}∗ + m3 → {m1, m2} + m∗
3

direct stabilization (1a)

{m1, m2}∗ + m3 → {m1, m3} + m∗
2

exchange stabilization (1b)

{m1, m2}∗ + m3 → m†
1
+ m†

2
+ m†

3
ionization (1c)

where {m1, m2} indicates a binary consisting of m1 and m2; the “∗” denotes excess energy

that must be extracted in order for a stable binary to result; the “†” symbol indicates

that the binary energy is distributed, not necessarily equally, between the fragments.

3 Capture inside the Hill sphere

Details of the basic CAC model are available elsewhere (Astakhov et al., 2003, 2005;

Lee et al., 2007).

The capture dynamics takes place inside the Hill sphere, i.e., the region of space lying

between the Lagrange points L1 and L2 in Hill’s problem and of radius

RH = a⊙

(

m1 + m2

3M⊙

)
1

3

(2)

where M⊙ = m0 is the mass of the Sun (Murray and Dermott, 1999). Particles entering

the Hill sphere, in the main, either enter chaotic layers or scatter out of the Hill sphere

promptly (Simó and Stuchi, 2000; Astakhov et al., 2003; Astakhov and Farrelly, 2004;

Astakhov et al., 2005). Those binaries that happen to enter chaotic layers may survive

for many heliocentric orbital periods (at 45 AU the heliocentric orbital period, T ∼ 300

years) whereas chaotic transient or quasi-binary orbits can remain trapped inside the Hill

sphere for ∼ 103−105 years or longer - see Fig. 1 (Lee et al., 2007). After the quasi-binary

has formed, it can then be stabilized by, in principle, a variety of external perturbations

that succeed in pushing the chaotic orbit into an adjacent (in phase space) regular region.

In the CAC model of KBB binary formation, it is assumed that gravitational scattering

with a series of intruder particles leads to stabilization and orbit reduction although this

is not the only possible stabilization mechanism (Astakhov et al., 2005; Lee et al., 2007).

All of the calculations are performed in either the three- or the four-body Hill approx-

imations.

3.1 Four-body Hill problem

The Hill four-body problem is the generalization of the usual three-body Hill problem,

which it contains as a special case. The basic assumption is that three small bodies,

with a mutual center-of-mass, Rc, orbit a much larger fourth body (the Sun, m0 = 1) on
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Figure 1.— Histogram showing log10 of the Hill lifetimes (THill) in years for the cohort

of chaotic quasi-binaries used in the simulations and which actually are captured. The

Hill lifetime is defined to be the total time that a given trajectory, corresponding to

a set of binary initial conditions launched from infinity, would remain within the Hill

sphere in the three-body Hill approximation, i.e., in the absence of intruder scattering,

for example. At 45 AU the orbital period is ∼ 300 years ≡ 2π in dimensionless Hill

units at 45 AU. Conversion between physical units (years) and Hill units requires

knowledge of the distance to the Sun.

a nearly circular orbit (e.g., three small Kuiper-belt objects interacting gravitationally).

The generalization of the three-body Hill problem is due to Scheeres (1998). Assume that

the total mass of the three small bodies is given by

µ =

3
∑

j=1

mj ≪ 1. (3)

Setting Rc ≃ a = (1, 0, 0) defines the motion of the three-body center-of-mass along an

almost circular orbit that defines the rotating frame. The vector equations of motion are

(Scheeres, 1998)

ρ̈i + Ω × [2ρ̇i + Ω × ρi] = −ρi + 3a(a · ρi) +
3

∑

k=1

′

αk
ρik

|ρik|3
, i = 1, 2, 3 (4)

where ρik = ρk − ρi and the summation convention
∑′

means that terms with i = k are

excluded. The αk are defined through mj = µαj where

3
∑

j=1

αj = 1 (5)
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and the coordinates ρ1, ρ2, ρ3 are related through the center-of-mass relation

3
∑

j=1

αjρj = 0. (6)

If α3 = 0, then the problem reduces to the Hill three-body problem for m1 and m2. In

this limit the problem can also be thought of as the restricted Hill four-body problem for

the mass-less test-particle, m3.

In some simulations the elliptical three-body Hill problem (EHP) will be used. The

EHP contains the three-body circular Hill problem (CHP) as a special case. Setting

m1 + m2 = ν with ν ≪ m0 = 1 (using the slightly non-standard definitions of Scheeres

(1998)) the Hamiltonian is the following (Szebehely, 1967; Ichtiaroglou, 1980; Moons et al.,

1988; Llibre and Pinol, 1990; Brumberg and Ivanova, 1990; Astakhov and Farrelly, 2004;

Astakhov et al., 2005; Palacian et al., 2006):

H = E =
1

2
(p2

x + p2

y + p2

z) +
1

2
(x2 + y2 + z2) − (x py − y px)

− 1

(1 + e⊙ cos f⊙)

(

3x2

2
+

1

|ρ|

)

+
81

1

3

2
+ O(ν

1

3 ). (7)

Here E is the energy, (x, y, z) = r defines the relative position of the binary members

m1 and m2, and (px, py, pz) = p is the corresponding momentum vector. The coordinate

system (x, y, z) is rotating with constant heliocentric angular frequency Ω⊙ = (0, 0, 1) in

the x− y plane. The eccentricity and true anomaly of the heliocentric orbit of the binary

barycenter are e⊙ and f⊙ respectively. In this coordinate system the barycenter of the

two small bodies is located at the origin. The additive constant is chosen such that the

Lagrange saddle points (Murray and Dermott, 1999) in the circular (e⊙ = 0) limit occur

at E = 0.

3.2 Monte Carlo simulations

Figure 4 provides a general overview of the approach taken. Apart from the selection

of initial mass distributions, the approach is identical to that described by Lee et al.

(2007).

3.3 Velocity window at infinity

The two potential binary partners - the primaries - are initially assumed to be following

heliocentric orbits with semi-major axes a1 and a2 with some velocity dispersion, V ,

around a Keplerian orbit lying in the invariant plane with semi-major axis a⊙. The

asymptotic orbital elements of the relative motion are (Hénon and Petit, 1986; Petit and
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Figure 2.— Histograms showing the distributions of asymptotic random velocities, v,

-see eq. (11) - which lead to penetration of the Hill sphere in (a) the circular and (b) the

elliptic three-body problems. In (b) heliocentric eccentricties were chosen randomly in

the range e⊙ ∈ (0, 0.3). Velocities are scaled by the Hill velocity, vH - see eq. (10)

Hénon, 1986, 1987)

x = a − e cos(t − τ)

y = −3

2
a (t − φ) + 2 e sin(t − τ)

z = i sin(t − ω)

ẋ = e sin(t − τ)

ẏ = −3

2
a + 2 e cos(t − τ)

ż = i cos(t − ω)

(8)

where a, e, and i are the Hill, or “reduced,” orbital elements: Here b = |a| is the impact

parameter, e is the eccentricity and i is the inclination in Hill units while τ, φ, and ω

are phase angles. Explicitly, the reduced elements are related to the semi-major axis

(a∗), eccentricity (e∗) and inclination (i∗) in the circular restricted three-body problem as

follows (Nakazawa and Ida, 1988; Nakazawa et al., 1989; Ohtsuki and Ida, 1990; Wetherill

and Stewart, 1989; Greenzweig and Lissauer, 1990, 1992; Wetherill and Stewart, 1993).

a =
(a∗ − a⊙)

RH

e =
a⊙ e∗

RH

i =
a⊙ sin(i∗)

RH

(9)

It is useful to scale velocities by the Hill velocity, vH , which is the orbital velocity

around a large body at the Hill sphere radius assuming no solar perturbations (Goldreich
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et al., 2004; Rafikov, 2003; Murray-Clay and Chiang, 2006), i.e.,

VH =

[

G(m1 + m2)

RH

]
1

2

∼ Ω⊙ RH . (10)

where G is the gravitational constant and Ω⊙ is the heliocentric orbital frequency. In Hill

units, the Hill velocity vH = 3−1/6 ∼ 1.2, or, in physical units, VH ∼ 0.9 m/s (lower case

symbols will be used for velocities expressed in Hill units) at a⊙ ∼ 45 AU. Conversion

between physical and scaled velocities requires knowledge of a⊙ and the mass of the binary.

At large separations the random component of the relative velocity is defined, in Hill

units (Safronov, 1972; Weidenschilling, 1989; Greenzweig and Lissauer, 1990; Shiidsuka

and Ida, 1999; Stern, 1995; Shiidsuka and Ida, 1999),

vrand =
RH

a⊙

√
e2 + i2 vK (11)

where a⊙ is the heliocentric semi-major axis and vK is the local circular Keplerian velocity,

also in dimensionless Hill units. The shear velocity is defined to be vshear = |3
2
a|.

The random velocity has been used as a metric to distinguish the shear and dispersion

dominated regimes, e.g., by comparing it to the Hill velocity. Various workers have

employed slightly different definitions of the random velocity, e.g., Wetherill and Cox

(1984) differ from Safronov (1972) and these differ from Greenzweig and Lissauer (1990).

It is generally the random component of the asymptotic approach velocity that is used in

comparisons with, e.g., the Hill velocity, and this quantity is used, in particular, in the

coagulation calculations of Kenyon and Luu (1998).

Figure 3 is a scatter-plot showing the lifetime of trajectories inside the Hill sphere as

a function of the ratio vrand/vshear. The trajectories that have very long lifetimes inside

the Hill sphere - i.e., those that are important in the CAC mechanism - lie, roughly, at

the interface between the clearly shear-dominated and the clearly dispersion-dominated

regimes. In order to make comparison with other work and the simulations of Kenyon and

Luu (1998). asymptotic velocities will be defined as in eq. 11. However, in all simulations

the initial conditions are computed using the orbital elements.

In simulations in the planar CHP, Hénon and Petit (1986) and Petit and Hénon (1986)

have shown that ranges of impact parameter exist within which encounters inside the Hill

sphere are most probable. Lee et al. (2007) have considered a similar problem in the

spatial (3D) EHP and find that, similarly, ranges of “optimal” orbital elements exist that

are favorable for penetration of the Hill sphere. It should be noted that simply selecting

orbital elements within such a range does not guarantee entry into the Hill sphere. In

essence an orbital element or, equivalently, a “velocity window” at infinity exists in both

the circular and elliptical Hill problems.

The velocity windows in the circular and elliptical Hill problems are shown in Fig.

2 (a) and Fig. 2 (b), respectively. Two observations can be made: (i) The range of
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Figure 3.— (colour online) Kernel smoothed scatterplot showing log10(THill) where

THill is the Hill lifetime (in years) in the circular Hill problem as a function of the

ratio of the magnitudes of the random and shear asymptotic velocities, vrand and

vshear, respectively. In Hill units 300 years ∼ 2π; i.e., the Hlll unit of time ∼ 50

years at a⊙ ∼ 45 AU. Scale runs from low [red (online), light grey (print)] to high

[blue (online), dark grey (print)]. In this representation smoothed point densities are

computed using a kernel density estimator (Gentleman et al., 2006; Carr et al., 1987;

Gentleman, 2007). This plot differs from Fig. 1 in that all trajectories that enter the

Hill sphere are shown, not just those that end up captured into a binary.

asymptotic random velocities is quite limited in the circular case, being on the order of a

few m/s, while (ii) in the elliptical problem the distribution is much wider, which allows

for penetration of the Hill sphere by particles that have significantly higher velocities than

in the circular case.

4 Results

The mass-ratio of any binary that results from intruder scattering is defined using eq.

(5), i.e.,

mR =
αj

αk
< 1 (12)

where αj < αk and j, k = 1, 2, 3 are the indices of the two objects that remain bound

after intruder scattering.

Two different initial mass distributions were used.

4.1 Uniform mass distribution

As in earlier work, a uniform distribution of masses for m1 and m2 is used, mainly to

provide a comparison with the results obtained using a power-law distribution. However,
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Generate cohort of primary initial 

conditions (ics) at infinity

Velocity distribution as in Fig. 2 (a)

Generate cohort of 

intruder ics at infinity

Velocity distribution as 

in Fig. 2 (a) or (b)

Integrate set of primary ics

Penetrate Hill sphere?

IF (no more ics) STOP

Launch 

Intruder

direct stabilization?

 exchange stabilization? 

ionization?

1000 Intruders 

launched?

Yes

No

Yes

Yes

Figure 4.— Flow diagram of the algorithm used in the scattering simulations in the

four-body Hill approximation. This plot provides a general overview only. Full details

can be found in Lee et al. (2007)
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two differences from earlier work exist (Astakhov et al., 2005; Lee et al., 2007): (i) In

previous simulations it was assumed that the mass of the intruder did not exceed 50% of

the total binary mass. In the current simulations, a uniform mass distribution is used for

all three particles, i.e., αi ∈ (0, 1) and, (ii) exchange reactions are examined.

Figure 5.— Ternary scatterplot showing the initial distribution of masses in α1, α2, α3

space where “Primary 1” and “Primary 2” refer to α1, α2, respectively, and α3 corre-

sponds to the intruder.

Because of the relationship in eq. (5), it is possible to display the three relative masses

in a ternary scatterplot diagram. A ternary diagram is a triangle, with each of the three

apexes representing, in this case, the mass-fraction of one of the three objects, i.e., its α-

value. The density of points in the scatterplot shows the relative importance of particular

sets of α-values. Figure 5 shows the initial set of mass-factor (α) values used in the

simulations. The highest density surrounds the point α1 = α2 = α3 because each mass-

factor was picked uniformly ∈ (0, 1) and the three α-values sum to unity. Three “legs”

radiate symmetrically from this point and correspond to αi = αj with αk < 1/3, and

i, j, k = 1, 2, 3.

Figure 6 shows the corresponding distribution of α-values for all scattering events that

lead to a stable binary. Although some hint of the structure in the initial distribution of
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Figure 6.— As for Fig. 5 but for all binaries that end up stabilized, whether that

occurred through direct stabilization or exchange. For intruders of all sizes the density

is greatest close to the line along which the primaries have equal masses, i.e., α1 = α2.

masses persists, it is apparent that density along the line α1 = α2 is significantly enhanced,

which reflects the tendency of the CAC model to favor near-symmetric mass binaries.

The corresponding plot when only exchange reactions are included is shown in Fig. 7.

It is apparent that exchange reactions also have a significant tendency to produce near-

symmetric binaries. Certainly this might be expected from simulations of star-binary

scattering, but it should be noted that the present simulations differ from star-binary

scattering (Heggie and Hut, 2003) in that the binary is actually quasi-bound and the

scattering simulations include the effects of solar tides, i.e., the scattering is essentially

four-body rather than three-body. By comparing Fig. 7 with Fig. 6 several conclusions

can be drawn:

1. Exchange reactions are most likely when α3 > 1/3, i.e., is larger than one of the

primaries.

2. Exchange reactions almost never happen when the primaries have exactly equal

masses and α3 < 0.4.
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Figure 7.— Same as Fig. 6 except that only exchange reactions are included.

3. If α3 > 0.4, then exchange reactions are somewhat favored if α1 = α2. In these

cases, the intruder is larger than either primary.

4. Surprisingly, even if the intruder is larger than either primary, there remains a

tendency to produce a near-symmetric binary even if exchange does not occur.

This is evidenced by the strong line of density for α1 = α2 with α3 > 0.4 in Fig. 6.

The corresponding region in Fig. 7 is much less pronounced.

4.2 Power-law size distributions

The computations utilizing a uniform initial distribution of masses demonstrate that

the CAC capture mechanism tends to select dynamically for near-symmetric binaries.

However, the primordial distribution of TNOs almost certainly followed a power-law

size distribution (Kenyon and Luu, 1998, 1999a,b; Kenyon, 2002; Kenyon and Bromley,

2004b,a; Bromley and Kenyon, 2006). Obviously, the nature of the mass (or size) distri-

bution of the particles in the early Kuiper-belt will affect the predictions - and possibly

the mechanism - of any KBB formation model. The objective here is not to try to model

in any detail the size distribution in the accretional phase of the Kuiper-belt; rather, it
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is an attempt to understand how various assumptions about this distribution affect the

predictions of the CAC model.

The following differential size-distribution is used

n(r) = N/r4dr (13)

where r is the radius of the TNO, assuming that r ≥ 1km; n(r) is the number of objects

with radius between r and r + dr, and N is a normalization factor. This distribution is

based on the broken power-law distribution of Kenyon and Bromley (2004b). Clearly this

size distribution is skewed very sharply in favor of the smallest objects. Simply drawing

primaries and intruders randomly from such a distribution would swamp the simulations

with binaries consisting of the very smallest partners. However, coagulation calculations

suggest that in ∼ 10 − 12 Myr bodies having radii in the 100 - 300 km range may have

formed in the Kuiper-belt with velocities on the order of a few m/s. According to the

results presented by Kenyon and Luu (1998) (Fig. 8) and Kenyon and Luu (1999a) (Fig. 8),

the velocities of ∼ 10 km sized bodies are, as expected, somewhat larger, i.e., on the order

of 10 - 15 m/s. Of course, the velocity distributions of 10 km and 100 km sized-bodies

may be quite different at different stages of the Kuiper-belt’s evolution. Nevertheless,

these rather rough estimates of velocities coincide rather well with the velocity windows

apparent in Fig. 2.

Assuming that the larger bodies are moving more slowly is equivalent to them moving

in less eccentric, less inclined orbits that the smaller bodies. Velocities of a few m/s fall

in the velocity window that is necessary for two (relatively) large bodies to penetrate

their mutual Hill sphere. On the other hand, smaller, more eccentric bodies will be

moving faster, and the velocity distribution in Fig. 2 (b) is more appropriate. Because

the time scale for intruder scattering tends to be significantly less than the Hill lifetime

of a quasi-bound binary a hybrid approach is used in which (i) the cohort of binary initial

conditions is generated in the circular Hill problem, whereas (ii) the cohort of intruder

initial conditions is generated in the EHP.

The following algorithm was adopted in simulating intruder scattering using a power-

law size distribution for all three bodies.

1. Initial conditions at infinity were selected, as usual, from the cohort of stored initial

conditions for the primaries.

2. The relative asymptotic random velocity of the primaries, vrand, was computed and

stored.

3. The radius of one of the primaries was arbitrarily fixed at 100 km. The radius of

the second primary, r2, was drawn randomly from the power-law distribution in eq.

(13) with 10 km ≥ r2 ≤ 200 km.
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Figure 8.— Distribution of the intruder mass parameter α3 for the simulations using

the power law distribution in eq. (13). This is the initial distribution used in the

power-law simulations and results from the procedure described in Sec. 13

4. Using the stored value of vrand, the velocity of the second primary, v2 was computed.

5. A velocity-radius relationship of the following form was assumed;

V (r2) = V0 exp [−γ(r2 − r0)
2] (14)

where V0 = 15 m/s, r0 = 10 km and γ = 0.0005 km−2. This function was chosen to

be (very) roughly comparable to interpolating the results in Fig. 8 of Kenyon and

Luu (1999a) at ∼ 15 Myr. However, actual velocity dispersions are not expected to

be gaussian, and the choice of fitting function used should not be taken to imply

anything about the actual functional form of physical velocity dispersions (Goldreich

et al., 2004) - it is a simply a numerical fit.

6. If

|v2| < |v′
2
| + σ (15)

where σ is a gaussian random number with a mean of zero and a standard deviation

of 4 m/s, then r2 was rejected and a new radius tried. The velocity dispersion of
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Figure 9.— Results of scattering simulation using a power-law distribution as described

in the text. The histograms show the probability density of initial (white) and captured

(grey) primary binary diameter ratios D2/D1 where, by definition, D1 ≥ D2.

4 m/s was chosen somewhat arbitrarily but seems roughly comparable to what is

suggested by coagulation calculations. Choosing smaller values for this dispersion

tightens the relationship between the radius of a body and its velocity predicted by

eq. (14).

7. The same procedure was used to select intruder radii except that the initial condi-

tions were generated in the elliptical Hill three-body problem and, therefore, their

velocity distribution is as in Fig. 2 (b).

The idea is to exclude, in some reasonable way, values of v′
2

that lie outside the

window shown in Fig. 2 (a) for primaries and Fig. 2 (b) for intruders. Obviously, this

means unusually fast (small) or slow (large) objects will be rejected. The distribution

of intruders chosen in this way and which lead to stabilization is shown in Fig. 8 and is

sharply skewed in favor of small intruders. Figure 9 shows the initial and final binary

size-ratio distributions - in terms of partner diameters - and there is a clear preference for

size-ratios on the order of unity. However, this preference is not solely the result of the

dynamical preference for near-symmetric quasi-binaries to be captured, although that is
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apparent. In addition, the velocity window that governs entry into the Hill sphere also

selects for binary partners of comparable size.

Of course, the results will vary if different assumptions or parameters are used. For

example, if a smaller velocity dispersion for the gaussian distribution in eq. (15) is used

then the preference for order-unity size ratios can be made more pronounced and the peak

at very small size-ratios apparent in Fig. 9 can be made virtually to disappear. Using a

larger velocity dispersion has the opposite effect.

5 Conclusions

The basic proposition of this article is that capture in the Hill problem requires that

two objects in heliocentric Keplerian orbits first enter their mutual Hill sphere. This

places constraints on the orbital elements “at infinity” and, more particularly, constraints

on the range of velocities that allow entry into the Hill sphere. Equipartition arguments

as well as coagulation calculations suggest that a given body’s relative velocity will be

linked to its mass. This establishes a link between the mass - or size - of a body and its

ability to become captured in a binary. Because larger bodies are moving more slowly,

two such bodies are more likely to become caught up in the Hill sphere. Stabilization is

possible through gravitational scattering with smaller, faster moving intruders.

The main point of the simulations reported here is not to make specific predictions

about KBB size-ratios but to investigate how dynamical effects in the CAC model interact

with assumptions made about initial mass or size distributions of objects in the early

Kuiper-belt. The results suggest that, while dynamical effects tend to select for roughly

same-sized binaries, the Hill sphere itself serves to screen out bodies which have relative

velocities that do not fall into the window for Hill sphere entry. The actual velocity

window itself depends on the heliocentric eccentricities of the particles involved and,

therefore, indirectly, on their size.

It is interesting to speculate on the relevance of the CAC mechanism to binary forma-

tion in the Asteroid Belt. Main-belt binaries (MBBs) tend to have secondaries that are

significantly smaller than their primary, i.e, few MBBs would be considered to be near-

symmetric (Noll, 2006). In addition, MBBs generally have much smaller mutual orbit

semi-major axes (Noll, 2006). The physical properties of MBBs, and the fact that there

appears to be a higher incidence of binaries in collisional families, all point to a collisional

formation mechanism (Noll, 2006; Richardson and Walsh, 2006; Durda et al., 2004b; Mer-

line et al., 2004). While this observation does not preclude the operation of CAC as a

MBB formation mechanism, the lack of MBBs having KBB-like orbital and compositional

properties implies either that CAC didn’t function at all in the primordial Asteroid Belt

or that any binaries formed by this mechanism have subsequently been destroyed. Given
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that the census of main-belt asteroids is compete down to at least diameters of ∼ 20 km,

it is unlikely that the lack of KBB-like MBBs is the result of incomplete surveys of the

belt (Chapman, 2005).

The evolution of the main-belt has been the subject of a number of recent studies,

and an overview can be found in Petit et al. (2001). The basic idea, first formulated by

Wetherill (1992), is that the asteroid belt started out dynamically cold and contained

several hundred roughly Mars-sized planetary embryos. These embryos heated up the

asteroid belt - thereby explaining the observed dynamical excitation of the belt. After a

short period of strong collisional evolution, most planetesimals were ejected from the main

belt through gravitational interactions with Jupiter and also between embryos W. F. Bot-

tke et al. (2005). These simulations suggest that the asteroid belt, during this period, can

not be well modeled in the three- or four-body Hill approximations since the perturbers -

Jupiter and Mars-sized embryos - were all much larger than the diameter, D & 120 km,

sized asteroids which remain in the asteroid belt and that are thought to be relics from

primordial times. Because quasi-bound binaries in the CAC scenario are rather delicate

Lee et al. (2007) it seems unlikely that any that formed could be stabilized during this pe-

riod of intense dynamical evolution. For example, the preference for stabilization through

small-intruder scattering found in the simulations of Astakhov et al. (2005) and Lee et al.

(2007) suggests that the presence of strong gravitational perturbing bodies destabilizes

any quasi-bound binaries that might have formed. A more quantitative investigation of

these ideas is underway.

For KBBs, a logical next step would be to integrate the CAC model directly with,

e.g., coagulation calculations, in order to gain a more quantitative understanding of the

interplay between the various dynamical processes that operated in the early Kuiper belt.
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Merline, W. J., Tamblyn, P. M., Nesvorný, D., Durda, D. D., Chapman, C. R., an A. D. Storrs,

C. D., Feldman, B., Owen, W. M., Close, L. M., Menard, F., 2004. Discovery of binaries

among small asteroids in the Koronis dynamical family using the HST Advanced Camera for

Surveys. In: 36th DPS Meeting. p. 46.01.

Merline, W. J., Weidenschilling, S. J., Durda, D. D., Margot, J.-L., Pravec, P., Stoers, A. D.,

2002. Asteroids do have satellites. In: Bottke, W. F., Cellino, A., Paolicchi, P., Binzel, R. P.

(Eds.), Asteroids III. No. pp. 289-312. University of Arizona Press.

60



Moons, M., Delhaise, F., Depaepe, E., 1988. Elliptical Hill’s problem (large and small impact

parameters). Cel. Mech. 43, 349–359.

Murray, C. D., Dermott, S. F., 1999. Solar System Dynamics. Cambridge University Press.

Murray-Clay, R. A., Chiang, E. I., 2006. Brownian motion in planetary migration. AJ 651,

1194–1208.

Nakazawa, K., Ida, S., 1988. Hill’s approximation xxx. Prog. Theor. Phys. Suppl. 96, 167–174.

Nakazawa, K., Ida, S., Nakagawa, Y., 1989. Collisional xxx. Astron. Astrophys. 220, 293–300.

Noll, K. S., 2003. Transneptunian binaries. Earth, Moon, and Planets 91, 395–407.

Noll, K. S., 2006. Solar System Binaries. In: Lazzaro, D., Ferraz-Mello, S., Fernández, J. A.

(Eds.), Asteroids, Comets, and Meteors (IAU S229), Proceedings of the International Astro-

nomical Union Symposia and Colloquia. Cambridge University Press, pp. 301–318.

Noll, K. S., Grundy, W. M., Chiang, E. I., Margot, J.-L., Kern, S. D., 2007. The

Kuiper Belt. Space Science Series. University of Arizona Press, (to be published)

http://arxiv.org/abs/astro-ph/0703134, Ch. Binaries in the Kuiper Belt (to be pub-

lished).

Noll, K. S., Grundy, W. M., Levison, H. F., Stephens, D. C., 2006. The relative sizes of Kuiper

Belt binaries. Bull. Amer. Astron. Soc. 38, 34.03.

Ohtsuki, K., Ida, S., 1990. Runaway planetary growth with collision rate in the Solar gravita-

tional field. Icarus 85, 499–511.

Palacian, J. F., Yanguas, P., Fernandez, S., Nicotra, M. A., 2006. Searching for periodic orbits of

the spatial elliptic restricted three-body problem by double averaging. Physica D 213, 15–24.

Person, M. J., Elliot, J. L., Gulbis, A. A. S., Pasachoff, J. M., Babcock, B. A., Souza, S. P.,

Gangestad, J., 2006. Charon’s radius and density from the combined data sets of the 2005

July 11 occultation. AJ 132, 1575–1580.
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