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Abstract

An uniparametric 4-DOF Hamiltonian family of perturbed oscillators in 1:1:1:1

resonance is studied. The model includes some classical cases, in particular Zeeman

and the van der Waals systems. First several invariant manifolds are identified.

Normalization by Lie-transforms (only first order is considered here) as well as geo-

metric reduction related to the invariants associated to the symmetries is used, based

on previous work of the authors. More precisely we find that crossing two of the

integrable cases, β = 1/2 and 1, the family undergoes degenerate Hopf bifurcations,

which at first order shows up as a center-cusp bifurcation. Higher order normal-

ization and singularity analysis is needed, in order to fully describe the dynamics

around those integrable cases.

1 Introduction

Continuing previous work [7, 8],[6] and [9] on perturbed isotropic oscillators in four di-

mensions (harmonic oscillators in 1:1:1:1 resonance), we consider in R8, the uniparametric

family of Hamiltonian systems defined by

Hβ(Q, q) = H2 + εH6 (1)

where

H2(Q, q) =
1

2
(Q2

1 + Q2
2 + Q2

3 + Q2
4) +

1

2
ω2(q2

1 + q2
2 + q2

3 + q2
4) (2)
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is the 4-D isotropic oscillator,

H6(−, q; β) =
(

q2
1 + q2

2 + q2
3 + q2

4

)

(

β2
(

q2
1 + q2

2 − q2
3 − q2

4

)2
+ 4

(

q2
1 + q2

2

) (

q2
3 + q2

4

)

)

and ε is an small parameter ε << 1; in what follows we take ω = 1.

The system defined by Hamiltonian function Eq. (1) has two first integrals in involu-

tion given by

I1 = q1Q2 − Q1q2 + q3Q4 − Q3q4, I2 = q3Q4 − Q3q4 − q1Q2 + Q1q2, (3)

associated to which we have ‘rotational symmetries’. In order to refer to recent previous

papers, we maintain the names I1 = Ξ and I2 = L1 given to the integrals.

Particular cases connected with problems of physical interest (Ξ = 0) are β = 0, the

Zeeman effect, and β =
√

2, which corresponds to the Van der Waals effect (see Elipe

and Ferrer [11] and references therein). For this reason we propose to name our system

as generalized Van der Waals 4-D oscillator.

Notable values of the external parameter β are those cases of the family that define

an integrable system. More precisely, in 3-D it is known that β = 1
2
, 1, 2 are those values

(see Farrelly and Howard [13]; Ferrer and Mondéjar [16]); in fact one of them is even

maximally superintegrable. In four dimensions, preliminary computations indicate that

for each of those cases there is the corresponding extended integral [10].

This paper will concentrate in some aspects, within the long list of issues which lie

behind the differential system proposed. In Section 2 we refer to some relevant invariant

manifolds of our system. In Section 3 we give a quick look to the 3-torus reduction induced

by the two symmetries and thr normalization. In Section 4 we collect the main features

of the dynamics of the normalized system. For more details of the general case see Diaz

et al. [6], in particular the Hopf bifurcations of relative equilibria. Note that only first

order normalization has been used for our study. Although some results are valid for any

value of ε, we will be more interested in the case when ε << 1, in order to compare with

the analysis done with perturbation theory.

2 Some invariant manifolds

• We begin trying to identify invariant sets of our system. First, the origin is an isolated

equilibrium. Moreover, a search for ‘rectilinear solutions through the origin’: q(t) =

γ(t) (a1, a2, a3, a4), (ai constants,
∑

a2
i = 1) as solutions of the differential system defined

by Eq. (1), leads to the conclusion that these rectilinear solutions in configuration space

have to satisfy

γ̈ + γ = −6 εβ2 γ5, a3 = a4 = 0. (4)
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and

γ̈ + γ = −6 εβ2 γ5, a1 = a2 = 0. (5)

i.e. rectilinear solutions in any direction in the planes Oq1q2 and Oq3q4. It is not difficult

to check that there are other rectilinear solutions for particular values of β, related to

the integrable cases. We will see later that among the solutions given by Eqs. (4)-(5)

some correspond to the singular points of the thrice reduced orbit space. Thus, the

Hopf bifurcations and their stability that we identify related to those points, are precisely

connected with the evolution of these solutions.

• By direct computations from the differential Hamiltonian system defined by (1), we

identify that the phase subspaces W1 = {(q, Q) | q1 = q2 = Q1 = Q2 = 0} and W2 =

{(q, Q) | q3 = q4 = Q3 = Q4 = 0} are invariant manifolds. In fact, those subsystems are

integrable.

• We have still another path to take (R. Cushman permitting!, [4]) which is to switch, only

for a short while, to polar coordinates; in fact to the canonical extension of the double

polar transformation (ρ1, α1, ρ2, α2) → (q1, q2, q3, q4). Explicitly, the transformation is

q2i−1 = ρi cos αi, Q2i−1 = Pi cos αi −
Ai

ρi

sin αi,

q2i = ρi sin αi, Q2i = Pi sin αi +
Ai

ρi

cos αi

with i = 1, 2, where we have assumed (q1, q2) 6= (0, 0) and (q3, q4) 6= (0, 0). The Hamilto-

nian function (1) in those variables reads

Hβ =
1

2

(

P 2
1 + P 2

2 +
A2

1

ρ2
1

+
A2

2

ρ2
2

)

+
1

2
(ρ2

1 + ρ2
2) + ε (ρ2

1 + ρ2
2)[ β

2(ρ2
1 − ρ2

2)
2 + 4ρ2

1ρ
2
2 ]. (6)

We identify immediately that two of the variables α1, α2 are ignorable, with A1 and A2

the corresponding first integrals; they are linear combination of the integrals Eqs. (3)

mentioned above.

We may ask also for solutions of the differential system defined by (6)

ρ̇1 = P1, α̇1 =
A1

ρ2
1

,

ρ̇2 = P2, α̇2 =
A2

ρ2
2

,

Ṗ1 =
1

ρ3
1

(

A2
1 − ρ4

1(1 + 2ε [3β2ρ4
1 + 2(4 − β2)ρ2

1ρ
2
2 + (4 − β2)ρ4

2])
)

, (7)

Ṗ2 =
1

ρ3
2

(

A2
2 − ρ4

2(1 + 2ε [3β2ρ4
2 + 2(4 − β2)ρ2

1ρ
2
2 + (4 − β2)ρ4

1])
)

,

in the manifold satisfying P1 = P2 = 0, ρ1 = ρ0
1, ρ2 = ρ0

2 (functions of A1, A2 and

β), i.e. invariant 2-tori made of quasi-periodic orbits (Note that those solutions project
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into ‘circles’ in the principal planes Oq1q2 and Oq3q4). Under these assumptions, the

differential system leads to the following equations

A2
1 − ρ4

1(1 + 2ε [3β2ρ4
1 + 2(4 − β2)ρ2

1ρ
2
2 + (4 − β2)ρ4

2]) = 0, (8)

A2
2 − ρ4

2(1 + 2ε [3β2ρ4
2 + 2(4 − β2)ρ2

1ρ
2
2 + (4 − β2)ρ4

1]) = 0. (9)

Combining them we obtain another alternative relation

A2
1ρ

4
2 − A2

2ρ
4
1 = 8ε(β2 − 1)(ρ4

2 − ρ4
1)ρ

4
1ρ

4
2, (10)

for the computation of the invariant tori. For example, taking Eqs. (8) and (10) we may

obtain a polynomial in one of the variables, and then discuss the conditions for positive

roots. In fact, we may take a short way because in this paper we are interested only in

the case ε << 1. Indeed, by sucesive approximations, we obtain the following expressions

for ρ0
1 and ρ0

2:

(ρ0
1)

4 = A2
1 − 2εA2

1[3β
2A2

1 + 2(4 − β2)A1A2 + (4 − β2)A2
2] + O(ε2),

(ρ0
2)

4 = A2
2 − 2εA2

2[3β
2A2

2 + 2(4 − β2)A1A2 + (4 − β2)A2
1] + O(ε2).

Then, replacing in the third integral, the Hamiltonian function (6), we will obtain in the

energy-momentum space (H, A1, A2) the bifurcation surface:

Φ(H, A1, A2; β, ε) = 0,

parametrized by β and ε. Fixing a value of ε, it remains to study how this tori bifurcation

surface evolves with the physical parameter β. Moreover, note that periodic solutions

within these tori are the ones satisfying

m1
A1

(ρ0
1)

2
+ m2

A2

(ρ0
2)

2
= 0, m1, m2 ∈ Z.

My guess is that they will bifurcate from the special case ρ1 = ρ2 = ρ0(Ai, β). How

these solutions relate to the relative equilibria, that to identify below, associated to the

normalized system, is part of the study of the present paper. A full analysis is given in

Dı́az et al. [6].

• Another possible invariant set is the one defined by the intersection of S 3
√

k
and the

integrals. Indeed, let us consider a solution such that ρ2
1 + ρ2

2 = k2 = constant. If this is

the case, with the help of the Hamiltonian function, we find that the following relation

ought to be satisfied

ρ2
1 + ρ2

2 = h − 4ε (ρ2
1 + ρ2

2)[ 4ρ
2
1ρ

2
2 + β2(ρ2

1 − ρ2
2)

2 ].

Then, we conclude that this is only possible when β2 = 1, with the relation k2 = h−4εk6.

Something that we already knew because this corresponds to the integrable case of the

central potential.
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3 Symmetries, normalization and the reduced orbit spaces

We have already explained [7],[8] the reduction process related to this family of Hamil-

tonian systems. Here, in order to make the paper self contained, we gather the basic steps

leading to the thrice reduced orbit space where we plan to do our bifurcation analysis.

Note that one can combine the three successive reductions into one. The composition

of the three orbit maps gives an orbit map from R8 → R8, which is an orbit map for

the three-torus action generated by the rotational flows of the three integrals H2
2, Ξ, L1,

which are independent and commute. Consequently the generic relative equilibrium (i.e.

stationary point on the reduced phase space) will correspond to a T 3. Due to the shape

of the reduced phase spaces the intersection of the Hamiltonian and these spaces will be

circles in general. Thus the generic fibre of the energy momentum map will be a T 4.

There will of course also be fibres that are a point (the origin which is a stationary point

of the original system and a fixed point for all circle symmetries), a circle (two of the circle

symmetries will have a fixed point) or a T 2 (one of the circle symmetries will have a fixed

point). The rank of the energy momentum map R8 → (H,H2, Ξ, L1) will correspond to

the dimension of the fibre.

3.1 Normalization and reduction of the oscillator symmetry H2: A choice of invariants

In order to normalize the system defined by (1) with respect to H2, and reduce the

normalized system we compute the invariants for the H2 action. There are 16 quadratic

polynomials in the variables (Q,q) that generate the space of functions invariant with

respect to the action given by the flow of H2. Explicitly they are

π1 = Q2
1 + q2

1 π2 = Q2
2 + q2

2 π3 = Q2
3 + q2

3 π4 = Q2
4 + q2

4

π5 = Q1Q2 + q1q2 π6 = Q1Q3 + q1q3 π7 = Q1Q4 + q1q4 π8 = Q2Q3 + q2q3

π9 = Q2Q4 + q2q4 π10 = Q3Q4 + q3q4 π11 = q1Q2 − q2Q1 π12 = q1Q3 − q3Q1

π13 = q1Q4 − q4Q1 π14 = q2Q3 − q3Q2 π15 = q2Q4 − q4Q2 π16 = q3Q4 − q4Q3

(11)

The invariants are obtained using canonical complex variables (see [3], [7] for more

details). The reduction is now performed using the orbit map

ρπ : R
8 → R

16; (q, Q) → (π1, · · · , π16) .

The image of this map is the orbit space for the H2-action. The image of the level surfaces

H2(q, Q) = n under ρπ are the reduced phase spaces. These reduced phase spaces are

isomorphic to CP3. The normalized Hamiltonian can be expressed in the invariants and
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therefore naturally lifts to a function on R16, which, on the reduced phase spaces, restricts

to the reduced Hamiltonian. Expressing the H2 normal form up to first order in ε for (1)

in those invariants we have

H = H2 + εH6 (12)

where

H2 =
1

2
(π1 + π2 + π3 + π4) = n (13)

and

H6 =
1

2

[

n (1 − 4β2)(π2
15 + π2

14 + π2
13 + π2

12)

+ 2(β2 − 1)(π2
11(π4 + π3) − π2

16(π3 + π4))

+ 5n (1 − β2)(π2
9 + π2

8 + π2
7 + π2

6) + β2n (5n2 − 3π2
11) + n(β2 − 4)π2

16

]

However, in the following we will not use the invariants πi as is done in [8], but

instead use the (Ki, Lj, Jk) invariants as introduced in [7]. That is we replace the gener-

ating invariants πi by the following set of invariants which is actually a linear coordinate

transformation on the image of the orbit map.

H2 = 1
2
(π1 + π2 + π3 + π4) K2 = π8 − π7 L2 = π12 + π15 K3 = −π6 − π9

K1 = 1
2
(−π1 − π2 + π3 + π4 J3 = π8 + π7 J7 = π12 − π15 J6 = π6 − π9

J1 = 1
2
(π1 − π2 − π3 + π4) J4 = π5 + π10 L3 = π14 − π13 Ξ = π16 + π11

J2 = 1
2
(π1 − π2 + π3 − π4) J5 = π5 − π10 J8 = π14 + π13 L1 = π16 − π11

(14)

The normal form is in these invariants is

HΞ = 1
2
[n (5 K2

2 + 5 K3
2 + 2 L1

2 + L2
2 + L3

2 + β2 (5 K1
2 + L2

2 + L3
2) )

− ((4 + β2) (K2 L2 + K3 L3) + (2 + 3 β2)K1L1) ξ]

(15)

The reduction of the H2 action may now be performed through the orbit map

ρK,L,J : R
8 → R

16; (q, Q) → (H2, · · · , J8) .

Note that on the orbit space we have the reduced symmetries due to the reduced actions

given by the reduced flows of XΞ and XL1
. Details on how the orbit space is defined are

given in [10]. The basic relation H2 = n defines the symplectic leaves for the induced

Poisson structure on this orbit space which are the reduced phase spaces. Let BK,L,J

denote the structure matrix for induced Poisson structure{ , }(K,L,J). This matrix is

given in [10]. Note that the motivation for this choice of invariants is that the reduced Ξ
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invariants are the (Ki, Lj), which makes that the second reduction is easily obtained (see

section 3.2).

A basic work to do at this stage is to deal with relative equilibria on CP3. This turns

out to be not a simple task at all (see [10]). A relative equilibrium for a Hamiltonian

system with respect to a symmetry group G is an orbit which is a solution of the system

and simultaneously an orbit of the group. In our case the relative equilibria are therefore

orbits of XH̄ as well as orbits of XH2
, where H̄ denotes the first order normal form

for H . These relative equilibria correspond to stationary points of the reduced system

obtained from XH̄ after reduction with respect to the XH2
-action, i.e. the action of the

one-parameter group given by the flow of XH2
.

The reduced system on R16 is given by the differential equations

dz

dt
= {z, H̄(z)}(K,L,J) =< z, B(K,L,J)DH̄(z) > , (16)

with z = (H2, K1, J1, J1, K2, J3, J4, J5, K3, J6, Ξ, L1, L2, J7, L3, J8), which on the reduced

phase spaces restrict to a Hamiltonian system.

3.2 Normalization and Reduction related to the rotational symmetry Ξ

Dividing out the rotational symmetry Ξ reduces CP3 to a variety made of strata of

dimension 4, and two stratum of dimension 2. In order to see that, we fix Ξ = ξ and

consider CP3/S1 where S1 is the action generated by the symmetry Ξ. We do that

expressing the second reduced system in the 8 invariants defining this action

H2 = 1
2
(π1 + π2 + π3 + π4), Ξ = π16 + π11,

K1 = 1
2
(π3 + π4 − π1 − π2), L1 = π16 − π11,

K2 = π8 − π7, L2 = π12 + π15,

K3 = −(π6 + π9), L3 = π14 − π13.

This, in turn, leads us to the orbit mapping

ρ2 : R
16 → R

8; (π1, · · · , π16) → (K1, K2, K3, L1, L2, L3,H2, Ξ)

There are 2 + 2 relations defining the second reduced space

K2
1 + K2

2 + K2
3 + L2

1 + L2
2 + L2

3 = H2
2 + Ξ2, K1L1 + K2L2 + K3L3 = H2Ξ

Ξ = ξ H2 = n
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× pt × S2
2n (ξ = −n)

×

?

S2
n+ξ × S2

n−ξ (−n < ξ < 0)

× S2
n × S2

n (ξ = 0)

×

6

S2
n+ξ × S2

n−ξ (0 < ξ < n)

× S2
2n × pt (ξ = n)

Figure 1.— Double reduced orbit space S2
n+ξ ×S2

n−ξ for different values of the integral

ξ

with n ≥ 0. In other words, those relations give a dimension 4 space in the variables

(K1, K2, K3, L1, L2, L3)

K2
1 + K2

2 + K2
3 + L2

1 + L2
2 + L2

3 = n2 + ξ2, K1L1 + K2L2 + K3L3 = nξ. (17)

Introducing a new set of coordinates (σ1, σ2, σ3, δ1, δ2, δ3) by the relations σi = Ki + Li y

δi = Li − Ki with i = 1, 2, 3 they verify that

σ2
1 + σ2

2 + σ2
3 = (n + ξ)2 δ2

1 + δ2
2 + δ2

3 = (n − ξ)2

Thus (17) is isomorphic to S2
n+ξ × S2

n−ξ. Note that when ξ = 0 the second reduced space

is isomorphic to S2
n×S2

n. This space, as we know, may be obtained normalizing perturbed

Keplerian systems by immersion in a space of dimension 4 by means of regularization and

the Kustaanheimo-Stiefel transformation [19].

Brackets for the invariants (K1, K2, K3, L1, L2, L3) defining the second reduced orbit
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space S2
n+ξ × S2

n−ξ are given in the following table

{·, ·}2 K1 K2 K3 L1 L2 L3

K1 0 −2L3 2L2 0 −2K3 2K2

K2 2L3 0 −2L1 2K3 0 −2K1

K3 −2L2 2L1 0 −2K2 2K1 0

L1 0 −2K3 2K2 0 −2L3 2L2

L2 2K3 0 −2K1 2L3 0 −2L1

L3 −2K2 2K1 0 −2L2 2L1 0

Moreover the second reduced Hamiltonian up to first order, up to constant terms, takes

the form

HΞ = 1
2
[n (5 K2

2 + 5 K3
2 + 2 L1

2 + L2
2 + L3

2 + β2 (5 K1
2 + L2

2 + L3
2) )

− ((4 + β2) (K2 L2 + K3 L3) + (2 + 3 β2)K1L1) ξ]

(18)

Thus (S2
n+ξ × S2

n−ξ, {·, ·}2,HΞ) is a Lie-Poisson system. The dynamics in S2
n+ξ × S2

n−ξ is

given by the following set of equations

dK

dt
= {K,∇KHΞ}2 (19)

with K =(K1, K2, K3, L1, L2, L3). But we do not need to give them explicitly. In what

follows we take λ = β2.

3.3 The rotational symmetry L1. The third reduced system

To further reduce from S2
n+ξ × S2

n−ξ to Vn ξ l one divides out the S1-action generated

by L1 = L1 and fixes L1 = l. The 8 invariants for the L1 action on R8 are

H2, Ξ, L1, K = K1,

X = 1
2
(K2

2 + K2
3 ), Y = 1

2
(L2

2 + L2
3), Z = K2L2 + K3L3, S = K2L3 − K3L2.

There are 3 + 3 relations defining the third reduced phase space

H2 = n, Ξ = ξ, L1 = l,

K2 + 2X + L2
1 + 2Y = H2

2 + Ξ2, KL1 + Z = H2Ξ, 4XY = Z2 + S2

However, it is more convenient to use the following invariants

H2, Ξ, L1, K = K1,

M = X + Y, N = X − Y, Z = K2L2 + K3L3, S = K2L3 − K3L2
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with relations
K2 + L2

1 + 2M = H2
2 + Ξ2

Kl1 + Z = H2Ξ

M2 − N2 = Z2 + S2

L1 = l, Ξ = ξ, H2 = n

Consequently we may represent the third reduced phase space Vn ξ l in (K, N, S)-space by

the equation

(n2 + ξ2 − l2 − K2)2 − 4(nξ − lK)2 = 4N2 + 4S2. (20)

If we set

f(K) = (n2 + ξ2 − l2 − K2)2 − 4(nξ − lK)2 = [(n + ξ)2 − (K + l)2][(n − ξ)2 − (K − l)2]

then our reduced phase space is a surface of revolution obtained by rotating φ(K) =
√

f(K) around the K-axis.

The reduced phase spaces as well as the Hamiltonian are invariant (see Eq. (22)) under

the discrete symmetry S → −S. Furthermore the reduced phase space is invariant under

the discrete symmetry N → −N . We choose not to further reduce our reduced phase

space with respect to these discrete symmetries because the three dimensional picture

makes it easy to access information about the reduced orbits and this way one does not

introduce additional critical points (fixed points) which need special attention. We will

make use of the fact that all the critical point will be in the plane S = 0.

The shape of the reduced phase space is determined by the positive part of f(K). The

polynomial f(K) can be written as

f(K) = (K + n + ξ + l)(K − n − ξ + l)(K − n + ξ − l)(K + n − ξ − l),

thus, the four zeroes of f(K) are given by

K1 = −l − n − ξ , K2 = l + n − ξ , K3 = l − n + ξ , K4 = −l + n + ξ .

So f(K) is positive (or zero) in the subsequent intervals of K:

l < ξ , −l < ξ K1 < K3 < K2 < K4 K ∈ [K3, K2] (21)

l > ξ , −l < ξ K1 < K3 < K4 < K2 K ∈ [K3, K4]

l < ξ , −l > ξ K3 < K1 < K2 < K4 K ∈ [K1, K2]

l > ξ , −l > ξ K3 < K1 < K4 < K2 K ∈ [K1, K4]
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Figure 2.— Graph of f(K). From left to right: l 6= ξ 6= n, l = −ξ, l = ξ, l = ξ = 0

See figure (2). When we have a simple root of f(K) which belongs to one of the above

intervals, we have that the intersection of the reduced phase space with the K-axis is

smooth. f(K) has four different roots in the following two cases: (i) l 6= ξ and ξ, l 6= 0;

(ii) l 6= ξ and ξ = 0 or l = 0. In these cases the reduced phase space is diffeomorphic to

a sphere. A point on this sphere corresponds to a three-torus in original phase space.

To find the the double zeroes of f(K) we compute the discriminant of f(K) = 0. It is

(l − n)2(l + n)2(l − ξ)2(l + ξ)2(n − ξ)2(n + ξ)2 .

Thus there are double zeroes at l = ±n, l = ±ξ and ξ = ±n. If we have just one double

zero the reduced phase space is a sphere with one cone-like singularity at the intersection

point given by the double root (l = ±ξ 6= 0). If we have two double zeroes the reduced

phase space is a sphere with two cone-like singularities at the intersection points given

by the double roots (l = ξ = 0). In the other cases the reduced phase space is just one

singular point. The singular points correspond to two-tori in original phase space.

Triple zeroes occur when |l| = |ξ| = n. The reduced phase space is just a point which

corresponds to a circle in original phase space.

Quadruple zeroes only occur when l = n = ξ = 0, which corresponds to the origin in

original phase space and is a stationary point. See figure 3. More details on this analysis

can be found in [7].

The cone-like singularities of the reduced phase space are candidates for the occurrence

of Hamiltonian Hopf bifurcations, therefore in the following we restrict ourselves to the

case a = ζ in which case we have a cone-like point at K = n.
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Figure 3.— The thrice reduced phase space over the parameter space. K is the sym-

metry axis of each surface.

3.3.1 The third reduced space Vn ξ l is a Lie-Poisson manifold

The Poisson structure for M, N, Z, S, K, L1 is given

{·, ·}3 M N Z S K L1

M 0 4KS 0 −4KN 0 0

N −4KS 0 −4L1S −4(KM − L1Z) 4S 0

Z 0 4L1S 0 −4L1N 0 0

S 4KN 4(KM − L1Z) 4L1N 0 −4N 0

K 0 −4S 0 4N 0 0

L1 0 0 0 0 0 0

The Hamiltonian on the third reduced phase space is

HΞ,L1
=

3n

4
(3λ − 2) K2 + ξl(1 − λ)K +

n

2
(4 − λ)N + n3(

3

2
+

λ

4
) − (l2 + ξ2) (

λ

2
+ 1)

n

2
(22)

In (K, N, S)-space the energy surfaces are parabolic cylinders. Note that for λ =

2/3, the function H in the variable space (K, N, S) is a plane. Likewise for λ = 1, we

note that H is independent of ξ and l. Moreover when λ = 4, H is only function of

K. The intersection with the reduced phase space give the trajectories of the reduced

system. Tangency with the reduce phase spaces gives relative equilibria that generically

will correspond to three dimensional tori in the original phase space.

Thus (Vn ξ l, {·, ·}3,HΞ,L1
) is a Lie-Poisson system. The corresponding dynamics is
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given by

dK

dt
= 2n(λ − 4) S,

dN

dt
= 2[3n(3λ − 2)K + 2ξl(1 − λ)] S, (23)

dS

dt
= n(λ − 4)(K3 − (ξ2 + l2 + n2)K) − (3λ − 2)[6nKN + 4ξl(λ − 1)N + 2ln2ξ].

It is easy to see that this system can be integrated by means of elliptic functions, but

we do not plan o follow that path. We intend to classify the different types of flows as

functions of the integrals and parameter of the system. Only then we will ready for the

integration of a specific initial value problem; for details see Dı́az et al. [6]. In the rest of

the paper we focus on the dynamics in manifold Ξ = 0, particularly in the ‘polar case’.

4 Case Ξ = 0: Generalized van der Waals problem

The dynamics of the generalized van der Waals potential [1] corresponds to our model

(1) in the manifold Ξ = 0, with the integral L1 = l as the axial symmetry. As it is well

known, when we consider in (1) the parameter ε to be small, the reduced space for Ξ = 0

relates to normalized 3-DOF perturbed Keplerian systems.

At this point to check the classical Cushman’s survey [2] (see also [21]) on this is-

sue is due. Indeed, although he does not mention the van der Waals model, from the

generic study done about the first order double reduced Hamiltonian, one notices that

the generalized van der Waals family for Ξ = 0 falls (see below) in the class of systems

studied by him, defined by Eq. (8), in Section 6 of his survey. Nevertheless, we plan on

developing this Section because, in particular, what we are after is the evolution of the

flow with the physical parameter λ and the connection of integrable cases to degeneracy

of the normalized flow, an aspect of the problem was not tackled in the generic study

done by Cushman. In fact, to our knowledge, what we report below was considered first

by Elipe and Ferrer [11, 12] using symplectic Delaunay variables.

4.1 Pitchfork bifurcations in the normalized 3-D case

In this case the reduced space (20) is defined by

[ (n + l)2 − K2 ][ (n − l)2 − K2 ] = 4N2 + 4S2. (24)

which is diffeomorphic to an S2 sphere if l 6= 0 as we have shown in Section 3. Thus, if

l > 0, the domain is −|n − l| ≤ K ≤ |n − l|. When l < 0, will be −|n + l| ≤ K ≤ |n + l|.
When l = 0 it has two singular points, and we will study it separately. The Hamiltonian
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function (22) reduces to

HL1
=

3n

4
(3λ − 2) K2 +

n

2
(4 − λ) N. (25)

which is, in general, a parabolic cylinder.

0.25 1

1
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4

0 1 2 3 4 5 6
0.0

0.2
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0.8

1.0

Λ

l

Figure 4.— Bifurcation lines of relative equilibria for the Van der Waals family. For

details see [11]

From the work by Elipe and Ferrer [11], now recovered in invariants, we reproduce

here Fig. 4 with the plane (λ, l) defined by the external parameter λ and the distinguished

parameter l, with the pitchfork bifurcations lines related to families of circular orbits at

critical inclinations and equatorial orbits at critical eccentricities.

Farrelly and collaborators [13, 14] showed that the generalized van der Waals model

has three integrable cases for the values λ = 1/4, 1, 4. The third integral was given

explicitly for those cases. We have found (see Egea et al. [10]) that they may be extended

to the 4-D case. Here we are interested in the bifurcations related to those integrable

cases, studying them with the invariant formalism.

4.2 Polar manifold Ξ = L1 = 0. Parametric bifurcations

In this case sections of the surface defining the thrice reduced space (24) and the

graph of the Hamiltonian (22) with the plane S = 0 are parabolas. More precisely,

considering the two parabolas (the two branches) of the reduced space and the family Nh

of Hamiltonian parabolas

N = ±1

2
(n2 − K2), Nh =

3

2

3λ − 2

4 − λ
K2 +

2

n(4 − λ)
h,

we compare them, distinguishing several cases. Fixing a value of λ, for each generic

value of h we obtain a closed curve which can be given expliticly by elliptics functions

after integrating system (23). There is a special type of solutions related to values of

the energy h such that the Hamiltonian parabola contains one of the relative equilibria:

‘south’, singular or ‘north’ points respectively. They are homoclinic and heteroclinic

trajectories given in Fig. 5.
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Figure 5.— Three snapshots of the separatrix. Left λ = 1/5, center λ = 1/2 and right

λ = 2

Finally, we identify particular values for λ such that both parabolas will coincide: this

will correspond to a degeneracy. We will have then infinity relative equilibria at this order

and higher order normalization will be needed, in order to elucidate the true nature of

that flow for those values of the physical parameter.

The separatrices.- For the sake of completeness we include the explicit expressions of

the separatrices:

• Homoclinic for 0 < λ < 1/4

K = n tanhω1 t, N =
3(2 − 3λ)n2

2(λ − 4)
sech2ω1 t, S =

√

5(1 − λ)(4λ − 1)n2

(λ − 4)
sech2ω1 t,

where ω1(λ) = 2n2
√

5(1 − λ)(4λ − 1).

• Heteroclinic for 1/4 < λ < 1

K = ±n
√

4 − λ√
4λ − 1

sechω2t, N =
n2

2
+

3(2 − 3λ)n2

2(4λ − 1)
sech2ω2t, S = ±n2

√

5(λ − 1)√
4λ − 1

senh ω2t

cosh2ω2t

where ω2(λ) = 2n2
√

5(4 − λ)(λ − 1). Note that for λ = 2/3 the heteroclinic is a plane

curve.

• Homoclinic for 1 < λ < 4

K =
±n(λ − 4)sech ω3t√

5
√

(λ − 5)λ + 4
, N = −n2

2
+

3(3λ − 2)n2

10(λ − 1)
sech2ω3t, S =

±n2
√

(4λ − 1)
√

5(λ − 1)

senh ω3t

cosh2ω3t

where ω3(λ) = 2n2
√

(λ − 4)(4λ − 1).

What happens if λ = 4 and λ > 4? It can be seen immediately that when λ = 4

the parabola degenerates into two vertical lines and then for λ > 4 again the dynamics is

similar to the first case.

In order to obtain the flow corresponding to the thrice reduced orbit space, we may

proceed either by numerical computation of the diferential system for several initial values

or, taking into account the geometry of the problem, forgetting about the time evolution
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and drawing the intersection of the reduced space with the Hamiltonian function for

different values of the energy. We follow this second way, using the technique of ‘painting

the flow’ (see [15]) gathering the different scenarios, which in increasing values of λ, come

as are presented in Figs. 6 and 7.

λ = 0: ‘polar Zeeman’

λ = 1/10

λ = 1/4 integrable case: south pole view: infinite equilibria

λ = 0.26

λ = 2/3 space sliced by horizontal planes

λ = 9/10

Figure 6.— Case Ξ = L1 = 0: ‘north pole’ (left) and ‘south pole’ (right) views of the

flow on the thrice reduced space for several values of the physical parameter λ. The

integrable case λ = 1/4 is related to a Hopf bifurcation connecting the singular points

Higher order normalization of the system is needed for a investigation of the Hamil-

tonian Hopf Bifurcation in these values.
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λ = 1, integrable case. north pole view: Infinite equilibria

λ = 1.1

λ = 2 Van der Waals

λ = 3.5

λ = 4, integrable case. Oyster bifurcation. Infinite equilibria in the plane K = 0

λ = 6: stable equilibrium is at the north; the unstable at the south.

Figure 7.— Case Ξ = L1 = 0: ‘north pole’ (left) and ‘south pole’ (right) views of the

flow on the thrice reduced space for several values of the physical parameter λ. From

λ = 1 to λ = 6 we find two integrable cases. When λ = 1 the bifurcation associated

to it involves the singular points: it is a degenerate Hopf bifurcation. When λ = 4 we

identify another bifurcation called oister-bifurcations by some authors.
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Conclusions

The generalized 4-D van der Waals uniparametric system model may be taken as a

benchmark for dealing with symmetries, integrability and bifurcations, and the relations

among them, in the perturbed isotropic oscillator in 4-D. In this paper we report on

first results about those aspects (for a detailed study see [6]). In particular we focus on

invariant manifolds, reduction and bifurcations. We have found that two of the integrable

cases relate with Hopf bifurcations, whose analysis requires higher order normalization

now in progress (see [5]).

Acknowledgements

We are in debt to Prof. Abad for the software Esferas that we have used for painting

the thrice reduced space. The authors acknowledge support from Ministerio de Educación

of Spain (grant MTM2006-06961) and from the Gobierno Regional of Murcia (Fundación

Séneca).

References

[1] Alhassid, Y. Hinds, E A. and Meschede, D.: Dynamical symmetries of the perturbed hydrogen

atom: The van der Waals interaction, Phys. Rev. Lett 59 1545–1548, 1987.

[2] Cushman, R.: A survey of normalization techniques applied to Keplerian systems. in : Dynamics

Reported, volume 1, new series (ed. K. Jones et al.), Springer Verlag, Berlin, p. 54–112, 1991.

[3] Cushman, R. and Bates, L.: Global aspects of classical integrable systems. Birkhäuser, 1997
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