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1 Introduction

Let q1, . . . ,qN ∈ R
ℓ denote the position of the N punctual masses m1, . . . , mN respec-

tively. The motion of these masses is governed by the equations

mi q̈i = −
N∑

j=1, j 6=i

G mi mj
qi − qj

|qi − qj |3
, i = 1, . . . , N,

where G is the gravitational constant which can be taken equal to one by choosing conve-

niently the unit of time. The configuration space of the N–body problem in R
ℓ with the

center of mass at the origin is

E = {(q1, . . . ,qN) ∈ R
ℓN :

N∑

i=1

mi qi = 0, qi 6= qj , for i 6= j}.

Given positive masses m1, . . . , mN a configuration (q1, . . . ,qN) ∈ E is central if there

exists a positive constant λ such that

q̈i = −λqi, i = 1, . . . , N.
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That is, in a central configuration the acceleration q̈i of each point mass mi is proportional

(with the same constant of proportionality) to its position qi relative to the center of mass

of the system and is directed towards the center of mass. Thus a central configuration

(q1, . . . ,qN) ∈ E of the N–body problem with positive masses m1, . . . , mN is a solution

of the system of equations

N∑

j=1, j 6=i

mj
qi − qj

|qi − qj |3/2
= λqi , i = 1, . . . , N,

with λ > 0.

A central configuration of R
ℓ is called planar if the configuration of the N bodies

is contained in a plane, and it is called spatial if does not exist a plane containing the

configuration of the N bodies.

Two central configurations in R
ℓ are in the same class if there exists a rotation of

SO(ℓ) and a homothecy of R
ℓ which transform one into the other.

The simplest known planar central configuration of the N–body problem for N > 2

is obtained by taking N equal masses at the vertices of a regular N–gon. We cannot find

in the literature who was the first in knowing such planar central configurations. It is

also known the existence of planar central configurations for the 2N–body problem where

the masses are at the vertices of two nested regular N–gons with a common center. In

such configurations all the masses on the same N–gon are equal but masses on different

N–gons could be different. It seems that the first in studying these nested planar central

configurations was Longley [11] in 1907, later on in 1927 and 1929 Bilimovithc (see [6])

and in 1967 Klemplerer [7] also studied them. More recently they have been also studied

in [12, 13]. This result can be extended to planar central configurations of the pN–body

problem where the masses are at the vertices of p nested regular N–gons with a common

center (see [5]) for all p > 2. As above, in such configurations the masses on the same

N–gon are equal but masses on different N–gons could be different. It is also known

the existence of planar central configurations for the 9–body problem where the masses

are at the vertices of three nested equilateral triangles with a common center, and the

intermediate triangle is rotated an angle of π/3 in relation to the other two ones (see [10]).

In [1] the authors provide classes of non–planar symmetric central configurations. In

particular they prove that the configuration formed by N equal masses at the vertices of

a regular polyhedron of N vertices is central for the N–body problem.

If we put an additional mass m0 = µ at the center of mass of the polyhedra, then for

all µ > 0 the resulting configuration is still central.

In this paper we give a survey on the known results of spatial central configurations

related with nested regular polyhedra. As we will see, the previous results for nested

regular N -gons can be extended to nested regular polyhedra.
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Tetrahedron
a

(4)
1 = (−1,−1/

√
3,−1/

√
6) a

(4)
2 = (1,−1/

√
3,−1/

√
6)

a
(4)
3 = (0, 2/

√
3,−1/

√
6) a

(4)
4 = (0, 0,

√
3/2)

Octahedron
a

(6)
1 = (1, 0, 0) a

(6)
2 = (−1, 0, 0) a

(6)
3 = (0, 1, 0)

a
(6)
4 = (0,−1, 0) a

(6)
5 = (0, 0, 1) a

(6)
6 = (0, 0,−1)

Cube

a
(8)
1 = (1, 1, 1) a

(8)
2 = (1, 1,−1) a

(8)
3 = (1,−1, 1)

a
(8)
4 = (−1, 1, 1) a

(8)
5 = (1,−1,−1) a

(8)
6 = (−1, 1,−1)

a
(8)
7 = (−1,−1, 1) a

(8)
8 = (−1,−1,−1)

Icosahedron

a
(12)
1 = (0, 1, φ) a

(12)
2 = (0, 1,−φ) a

(12)
3 = (0,−1, φ)

a
(12)
4 = (0,−1,−φ) a

(12)
5 = (1, φ, 0) a

(12)
6 = (1,−φ, 0)

a
(12)
7 = (−1, φ, 0) a

(12)
8 = (−1,−φ, 0) a

(12)
9 = (φ, 0, 1)

a
(12)
10 = (φ, 0,−1) a

(12)
11 = (−φ, 0, 1) a

(12)
12 = (−φ, 0,−1)

Dodecahedron

a
(20)
1 = (1, 1, 1) a

(20)
2 = (−1, 1, 1) a

(20)
3 = (1,−1, 1)

a
(20)
4 = (1, 1,−1) a

(20)
5 = (−1,−1, 1) a

(20)
6 = (−1, 1,−1)

a
(20)
7 = (1,−1,−1) a

(20)
8 = (−1,−1,−1) a

(20)
9 = (0, 1/φ, φ)

a
(20)
10 = (0,−1/φ, φ) a

(20)
11 = (0, 1/φ,−φ) a

(20)
12 = (0,−1/φ,−φ)

a
(20)
13 = (1/φ, φ, 0) a

(20)
14 = (−1/φ, φ, 0) a

(20)
15 = (1/φ,−φ, 0)

a
(20)
16 = (−1/φ,−φ, 0) a

(20)
17 = (φ, 0, 1/φ) a

(20)
18 = (−φ, 0, 1/φ)

a
(20)
19 = (φ, 0,−1/φ) a

(20)
20 = (−φ, 0,−1/φ)

Table 1.— The coordinates, modulus homothecies and rotations, of the vertices of the

five regular polyhedra centered at the origin. Here φ = (1 +
√

5)/2 is the golden ratio.

There are five convex regular polyhedra: the tetrahedron, the octahedron, the cube,

the icosahedron and the dodecahedron with 4, 6, 8, 12 and 20 vertices, respectively.

The vertices of the regular polyhedra centered at the origin, modulus homothecies and a

rotations, are the ones given in Table 1.

We define the two nested homothethic polyhedra configuration as the configuration

formed by two regular polyhedra with the same number of vertices N , the same center,

and where one of the polyhedra is a homothecy of the other one; that is, the positions of

the vertices of the inner polyhedron rin
i and the ones of the outer polyhedron rou

i satisfy

the relation rou
i = ρ rin

i for some scale factor ρ > 1 and for all i = 1, . . . , N . In a similar

way, the three nested homothetic polyhedra configuration is the configuration formed by

three regular polyhedra with the same number of vertices N , the same center and such

that the positions of the vertices of the inner polyhedron rin
i , the ones of the medium

polyhedron rm
i and the ones of the outer polyhedron rou

i satisfy the relation rm
i = ρ rin

i

and rou
i = R rin

i for some scale factors R > ρ > 1 and for all i = 1, . . . , N .

We define the two nested rotated polyhedra configuration as the configuration formed

by two regular polyhedra with the same number of vertices N , the same center, and where
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one of the polyhedra is a homothecy plus a rotation of the other one; that is, the positions

of the vertices of the inner polyhedron rin
i and the ones of the outer polyhedron rou

i satisfy

the relation rou
i = ρRrin

i for some scale factor ρ > 1, for some rotation matrix of SO(3):

R =




cos γ sin γ 0

− sin γ cos γ 0

0 0 1







1 0 0

0 cos β sin β

0 − sin β cos β







cos α sin α 0

− sin α cos α 0

0 0 1


 ,

with Euler angles α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π), and for all i = 1, . . . , N . In a

similar way, the three nested rotated polyhedra configuration is the configuration formed by

three regular polyhedra with the same number of vertices N , the same center, and where

one of the polyedra is a homothecy of the other one, and the third one is a homothecy

followed by a rotation of the other two.

In Section 2 we provide results related with two and three nested homothetic polyhedra

central configurations. In Section 3 we provide results on two and three nested rotated

polyhedra. In particular we provide central configurations of two and three nested rotated

tetrahedra because we cannot guarantee the existence of such configurations for the other

type of polyhedra. We have some evidence that the unique central configuration of two

nested octahedra and two nested cube is the homothetic one. Unfortunately, at this

moment, we have not a rigorous prove of it, we left this subject for future works.

2 Nested homothethic regular polyhedra

Without loss of generality we take the unit of mass in such a way that the masses

of the inner polyhedron are equal to one. Recall that the set of central configurations is

invariant under homothecies and rotations, so by choosing conveniently the unit of length

we can assume that the positions of the vertices of the inner polyhedron are the ones of

Table 1.

2.1 Two nested homothethic polyhedra

Theorem 1 Consider N equal masses mi = 1 for i = 1, . . . , N located at the vertices of

a regular polyhedron of N vertices having positions qi = a
(N)
i for i = 1, . . . , N . Consider

N additional equal masses mi+N = m for i = 1, . . . , N at the vertices of a second nested

regular polyhedron of N vertices having positions qi+N = ρ a
(N)
i for i = 1, . . . , N and scale

factor ρ > 1 (see Fig. 1). Then the following statements hold.

(a) For N = 4 (i.e. two nested homothetic tetrahedra) such configuration is central for
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the spatial 8–body problem when

m = f8(ρ) =

(2/3)3/2

(ρ − 1)2
− ρ

2
+

2
√

2 (3ρ + 1)

(3ρ2 + 2ρ + 3)3/2

−1/2

ρ2
− (2/3)3/2ρ

(ρ − 1)2
+

2
√

2 ρ (ρ + 3)

(3ρ2 + 2ρ + 3)3/2

,

and ρ > α(4) = 1.8899915758 . . . , where α(4) is the unique real solution of f8(ρ) = 0

with ρ > 1.

(b) For N = 6 (i.e. two nested homothetic octahedra) such configuration is central for

the spatial 12–body problem when

m = f12(ρ) =

4ρ

(ρ2 + 1)3/2
−

(
1 + 4

√
2
)
ρ

4
+

2 (ρ2 + 1)

(ρ2 − 1)2

− 4ρ2

(ρ2 − 1)2 +
4ρ

(ρ2 + 1)3/2
− 1 + 4

√
2

4ρ2

,

and ρ > α(6) = 1.7298565115 . . . , where α(6) is the unique real solution of f12(ρ) = 0

with ρ > 1.

(c) For N = 8 (i.e. two nested homothetic cube) such configuration is central for the

spatial 16–body problem when m = b(ρ)/f(ρ) where

b(ρ) = − 1

72

(
18 + 9

√
2 + 2

√
3
)

ρ +
2 (ρ2 + 1)

3
√

3 (ρ2 − 1)2
+

3ρ − 1

(3ρ2 − 2ρ + 3)3/2
+

3ρ + 1

(3ρ2 + 2ρ + 3)3/2
,

f(ρ) = −18 + 9
√

2 + 2
√

3

72ρ2
− 4ρ2

3
√

3 (ρ2 − 1)2 −

(ρ − 3)ρ

(3ρ2 − 2ρ + 3)3/2
+

(ρ + 3)ρ

(3ρ2 + 2ρ + 3)3/2
,

and ρ > α(8) = 1.6436467629 . . . where α(8) is the unique real solution of b(ρ) = 0

with ρ > 1.

(d) For N = 12 (i.e. two nested homothetic icosahedra) such configuration is central

for the spatial 24–body problem when m = b(ρ)/f(ρ) where

b(ρ) =
2
√

5 − 2
√

5 (ρ2 + 1)

5 (ρ2 − 1)2
− 2

√
2
(√

5 − 5ρ
)

(ϕρ2 − 4 φ ρ + ϕ)3/2
+

2
√

2
(
5ρ +

√
5
)

(ϕρ2 + 4 φ ρ + ϕ)3/2
− 1

20

(
5
√

5 +

√
5 − 2

√
5

)
ρ,

f(ρ) = −4
√

5 − 2
√

5ρ2

5 (ρ2 − 1)2 − 2
√

2
(√

5ρ − 5
)
ρ

(ϕρ2 − 4 φ ρ + ϕ)3/2
+

2
√

2
(√

5ρ + 5
)
ρ

(ϕρ2 + 4 φ ρ + ϕ)3/2
− 5

√
5 +

√
5 − 2

√
5

20ρ2
,
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(a) N = 4 (b) N = 6 (c) N = 8 (d) N = 12 (e) N = 20

Tetrahedra Octahedra Cube Icosahedra Dodecahedra

Figure 1.— Two nested homothetic polyhedra.

ϕ = 5+
√

5 and ρ > α(12) = 1.5493511156 . . . where α(12) is the unique real solution

of b(ρ) = 0 with ρ > 1.

(e) For N = 20 (i.e. two nested homothetic dodecahedra) such configuration is central

for the spatial 40–body problem when m = b(ρ)/f(ρ) where

b(ρ) = − 1

36

(
18 + 9

√
2 +

√
3 + 9

√
5
)

ρ +
2 (ρ2 + 1)

3
√

3 (ρ2 − 1)2 +
6ρ − 2

(3ρ2 − 2ρ + 3)3/2
+

6ρ + 2

(3ρ2 + 2ρ + 3)3/2
+

6 φρ−
√

5 − 5

2 φ
(
3ρ2 − 2

√
5ρ + 3

)3/2
+

3ρ +
√

5
(
3ρ2 + 2

√
5ρ + 3

)3/2
,

f(ρ) = − 4ρ2

3
√

3 (ρ2 − 1)2 − 2(ρ − 3)ρ

(3ρ2 − 2ρ + 3)3/2
+

2(ρ + 3)ρ

(3ρ2 + 2ρ + 3)3/2
−

((
5 +

√
5
)
ρ − 6 φ

)
ρ

2 φ
(
3ρ2 − 2

√
5ρ + 3

)3/2
+

((
5 +

√
5
)
ρ + 6 φ

)
ρ

2 φ
(
3ρ2 + 2

√
5ρ + 3

)3/2
−

18 + 9
√

2 +
√

3 + 9
√

5

36ρ2
,

and ρ > α(20) = 1.4622260542 . . . where α(20) is the unique real solution of b(ρ) = 0

with ρ > 1.

(f) For each N = 4, 6, 8, 12, 20 and for every fixed value of m > 0, there exists a

unique ρ > α(N) for which the configuration of two nested homothetic polyhedra of

N vertices is central for the 2N–body problem.

Theorem 1 is proved in [2]. Statements (a) and (b) are also proved in [14] and [8],

respectively in a different way. We note that in [14, 8] the authors also consider central

configurations of two nested homothetic tetrahedra and octahedra with scale factor 0 <

ρ < 1. These central configurations can be obtained from the ones given by Theorem 1

by replacing m by 1/m and ρ by 1/ρ.

If we put an additional mass m0 = µ > 0 at the center of mass of the two nested

homothetic polyhedra, then we obtain an analogous of Theorem 1 with the difference

that now m depend of µ and ρ must be greater than a value α̃(N) that depends also on µ.
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This value α̃(N)(µ) tends to the value α(N) given in Theorem 1 when µ → 0 and it tends

to 1 when µ → +∞. Consequently, if the ratios of the masses and the ratios of the length

of the edges of the polyhedra satisfy some convenient relations, then the configuration of

two nested homothetic polyhedra with a mass at their center of mass is also central for

the 2N + 1–body problem.

2.2 Three nested homothetic polyhedra

Theorem 2 Consider N equal masses mi = 1 for i = 1, . . . , N at the vertices of a

regular polyhedron of N vertices having positions qi = a
(N)
i for i = 1, . . . , N . Consider

N additional equal masses mi+N = m for i = 1, . . . , N at the vertices of a second nested

regular polyhedron of N vertices having positions qi+N = ρ a
(N)
i for i = 1, . . . , N with

scale factor ρ > 1, and finally we consider N additional equal masses mi+2N = M for

i = 1, . . . , N at the vertices of a third nested regular polyhedron of N vertices having

positions qi+2N = R a
(N)
i for i = 1, . . . , N with scale factor R > ρ (see Fig. 2). Let

m(R, ρ) =
1

det(A)

∣∣∣∣∣∣∣∣

1 β f(R, 1)

ρ g(ρ, 1) f(R, ρ)

R g(R, 1) −β/R2

∣∣∣∣∣∣∣∣
,

M(R, ρ) =
1

det(A)

∣∣∣∣∣∣∣∣

1 f(ρ, 1) β

ρ −β/ρ2 g(ρ, 1)

R −g(R, ρ) g(R, 1)

∣∣∣∣∣∣∣∣
,

(1)

where A =




1 f(ρ, 1) f(R, 1)

ρ −β/ρ2 f(R, ρ)

R −g(R, ρ) −β/R2


 for some functions f : D ⊂ R

2 −→ R and g : D ⊂

R
2 −→ R with D = {(x, y) ∈ R

2 : x > y > 1} and some constant β > 0 which depend

on the value of N , and let D(N) denote the set {(R, ρ) ∈ R
2 : m(R, ρ) > 0, M(R, ρ) >

0, R > ρ > 1}. Then the following statements hold.

(a) For N = 4 (i.e. three nested homothetic tetrahedra) such configuration is central for

the spatial 12–body problem when m = m(R, ρ) and M = M(R, ρ) are given by (1)

with

f(x, y) =
2
√

2/3

3(x − y)2
− 2

√
2(x + 3y)

(3x2 + 2yx + 3y2)3/2
,

g(x, y) =
2
√

2/3

3(x − y)2
+

2
√

2(3x + y)

(3x2 + 2yx + 3y2)3/2
,

β = 1/2 and (R, ρ) ∈ D(4) (see Fig. 3(a) for the plot of D(4)).

(b) For N = 6 (i.e. three nested homothetic octahedra) such configuration is central for

the spatial 18–body problem when m = m(R, ρ) and M = M(R, ρ) are given by (1)
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with

f(x, y) =
4xy

(x2 − y2)2 − 4y

(x2 + y2)3/2
,

g(x, y) =
4x

(x2 + y2)3/2
+

2 (x2 + y2)

(x2 − y2)2 ,

β =
(
1 + 4

√
2
)
/4 and (R, ρ) ∈ D(6) (see Fig. 3(b) for the plot of D(6)).

(c) For N = 8 (i.e. three nested homothetic cube) such configuration is central for the

spatial 24–body problem when m = m(R, ρ) and M = M(R, ρ) are given by (1) with

f(x, y) =
x − 3y

(3x2 − 2yx + 3y2)3/2
− x + 3y

(3x2 + 2yx + 3y2)3/2
+

4xy

3
√

3 (x2 − y2)2 ,

g(x, y) =
3x − y

(3x2 − 2yx + 3y2)3/2
+

3x + y

(3x2 + 2yx + 3y2)3/2
+

2 (x2 + y2)

3
√

3 (x2 − y2)2 ,

β =
(
18 + 9

√
2 + 2

√
3
)
/72 and (R, ρ) ∈ D(8) (see Fig. 3(c) for the plot of D(8)).

(d) For N = 12 (i.e. three nested homothetic icosahedra) such configuration is central

for the spatial 36–body problem when m = m(R, ρ) and M = M(R, ρ) are given by

(1) with

f(x, y) =
2
√

2
(√

5x − 5y
)

(ϕx2 − 4φyx + ϕy2)3/2
− 2

√
2
(√

5x + 5y
)

(ϕx2 + 4φyx + ϕy2)3/2
+

4
√

5 − 2
√

5xy

5 (x2 − y2)2 ,

g(x, y) =
2
√

2
(
5x −

√
5y

)

(ϕx2 − 4φyx + ϕy2)3/2
+

2
√

2
(
5x +

√
5y

)

(ϕx2 + 4φyx + ϕy2)3/2
+

2
√

5 − 2
√

5 (x2 + y2)

5 (x2 − y2)2 ,

β =
(
5
√

5 +
√

5 − 2
√

5
)

/20 and (R, ρ) ∈ D(12) (see Fig. 3(d) for the plot of D(12)).

Here ϕ = 5 +
√

5.

(e) For N = 20 (i.e. three nested homothetic dodecahedra) such configuration is central

for the spatial 60–body problem when m = m(R, ρ) and M = M(R, ρ) are given by

(1) with

f(x, y) =
2(x − 3y)

(3x2 − 2yx + 3y2)3/2
− 2(x + 3y)

(3x2 + 2yx + 3y2)3/2
+

(
5 +

√
5
)
x − 6φy

2φ
(
3x2 − 2

√
5yx + 3y2

)3/2
−

(
5 +

√
5
)
x + 6φy

2φ
(
3x2 + 2

√
5yx + 3y2

)3/2
+

4xy

3
√

3 (x2 − y2)2 ,

g(x, y) =
2(3x − y)

(3x2 − 2yx + 3y2)3/2
+

2(3x + y)

(3x2 + 2yx + 3y2)3/2
+

6φx −
(
5 +

√
5
)
y

2φ
(
3x2 − 2

√
5yx + 3y2

)3/2
+

6φx +
(
5 +

√
5
)
y

2φ
(
3x2 + 2

√
5yx + 3y2

)3/2
+

2 (x2 + y2)

3
√

3 (x2 − y2)2 ,
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(a) N = 4 (b) N = 6 (c) N = 8 (d) N = 12 (e) N = 20

Tetrahedra Octahedra Cube Icosahedra Dodecahedra

Figure 2.— Three nested homothetic polyhedra.

β =
(
18 + 9

√
2 +

√
3 + 9

√
5
)
/36 and (R, ρ) ∈ D(20) (see Fig. 3(e) for the plot of

D(20)).

The proof of Theorem 2 can be found in [3].

After analyzing the level curves m(R, ρ) = c1 and M(R, ρ) = c2 for some c1, c2 > 0 we

get numerical evidence that the following conjecture can be true (see also [3]).

Conjecture 3 For each N = 4, 6, 8, 12, 20, fixed a pair of values m > 0 and M > 0

there exists a unique pair of values (R, ρ) ∈ D(N) for which the configuration of three

nested homothetic polyhedra of N vertices defined in Theorem 2 is central for the 3N–

body problem.

If we put an additional mass m0 = µ > 0 at the center of mass of the three nested

homothetic polyhedra, then we obtain an analogous of Theorem 2 with the difference that

now m, M and the region D(N) depend of µ (see [4]). Consequently if the ratios of the

masses and the ratios of the length of the edges of the polyhedra satisfy some convenient

relations, then the configuration of three nested homothetic polyhedra with a mass at

their center of mass is also central for the 3N + 1–body problem.

2.3 p nested homothetic polyhedra

As happen with the nested N–gons, one would expect that the following conjecture

can be true.

Conjecture 4 Theorems 1 and 2 can be extended to spatial central configurations of the

pN–body problem with p nested regular polyhedra of N vertices each one, for all p > 4.

We left the proof of this conjecture for a future work.
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(a) N = 4.

R

ρ
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R = ρ = α(6)
�

m(R, ρ) = 0�

M(R, ρ) = 0�

R = ρ�

D(6)

(b) N = 6.

R

ρ

ρ = 1�

R = ρ = α(8)
�

m(R, ρ) = 0�

M(R, ρ) = 0�

R = ρ�

D(8)

(c) N = 8.

R

ρ

ρ = 1�

R = ρ = α(12)
�

��9

m(R, ρ) = 0�

M(R, ρ) = 0�

R = ρ�

D(12)

(d) N = 12.

R

ρ

ρ = 1�

R = ρ = α(20)
�

��9

m(R, ρ) = 0�

M(R, ρ) = 0�

R = ρ�

D(20)

(e) N = 20.

Figure 3.— The region D(N) for N = 4, 6, 8, 12, 20. The numerical values of α(N) are

given in Theorem 1.
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3 Nested rotated tetrahedra

3.1 Two nested rotated tetrahedra

Without loss of generality we take the unit of mass in such a way that the masses of

the inner tetrahedron are equal to one. Recall that the set of central configurations is

invariant under homothecies and rotations, so by choosing conveniently the unit of length

we can assume that the positions of the vertices of the inner tetrahedron are the ones of

Table 1.

Theorem 5 Consider four equal masses mi = 1 for i = 1, . . . , 4 at the vertices of a

regular tetrahedron having positions qi = a
(4)
i for i = 1, . . . , 4. Consider four additional

equal masses mi+4 = m for i = 1, . . . , 4 at the vertices of a second nested rotated regular

tetrahedron having positions qi+4 = ρRa
(4)
i for i = 1, . . . , 4 where ρ > 1 and R is an

arbitrary rotation matrix of SO(3). The following statements hold.

(a) There are two unique classes of central configurations of two nested rotated regular

tetrahedra.

(a.1) The class of configurations of Type I with {q5,q6,q7,q8} = {ρa1, ρa2, ρa3, ρa4}
which is described in Theorem 1(a).

(a.2) The class of configurations of Type II with {q5,q6,q7,q8} = {ρPa1, ρPa2,

ρPa3, ρPa4} where P is the rotation matrix

P =




1 0 0

0 −1 0

0 0 −1


 .

These two classes of configurations are shown in Figure 4.

(b) The configuration of Type II is central for the spatial 8–body problem when

m =
b(ρ)

f(ρ)
=

−ρ

2
+

2
√

2(3ρ − 1)

(3ρ2 − 2ρ + 3)3/2
+

(2/3)3/2

(ρ + 1)2

− 2
√

2(ρ − 3)ρ

(3ρ2 − 2ρ + 3)3/2
+

(2/3)3/2ρ

(ρ + 1)2
− 1

2ρ2

,

and ρ ∈ [1, α1) ∪ (α2,∞) where α1 = 1.3981650369 . . . is the unique real solution

of b(ρ) = 0 with ρ > 1 and α2 = 6.5360793703 . . . is the unique real solution of

f(ρ) = 0 with ρ > 1. Moreover the following statements hold.

(b.1) There is a unique central configuration of Type II with ρ ∈ [1, α1) for m ∈ (0, 1].

In this configuration the faces of both tetrahedra intersect.

11



(a) Conf. of Type I

ρ > 1

(b) Conf. of Type II

1 6 ρ 6 3

(c) Conf. of Type II

ρ > 3

Figure 4.— Plot of the possible classes of configurations of two nested regular tetrahe-

dra. Notice that we have two possibilities for the configurations of Type II, in (b) the

faces of both tetrahedra intersect whereas in (c) they do not intersect.

(b.2) Let α3 = 8.7756058918 . . . be the unique real solution of (n(ρ)/d(ρ))′ with ρ > 1

and m0 = n(α3)/d(α3) = 2880.33 . . . . There are no central configurations for

m ∈ (1, m0).

(b.3) There is a unique central configuration of Type II with ρ = α3 for m = m0. In

this configuration the faces of the tetrahedra do not intersect.

(b.4) There are two central configurations of Type II, one with ρ ∈ (α2, α3) and the

other with ρ ∈ (α3,∞), for m ∈ (m0,∞). In this configuration the faces of the

tetrahedra do not intersect.

The proof of Theorem 5 can be found in [4]. In [9] the authors prove statement (b)

of Theorem 5 in a different way. We note that in [9] the authors also consider values of

the scale factor 0 < ρ < 1. The central configurations of two nested rotated tetrahedra

for values of the scale factor 0 < ρ < 1 can also be obtained from the ones given by

Theorem 5 by replacing m by 1/m and ρ by 1/ρ.

If we put an additional mass m0 = µ > 0 at the center of mass of the two nested

rotated tetrahedra, then we obtain an analogous of Theorem 5(b) with the difference that

now m and α1 depend of µ. The value α̃1(µ) tends to the value α1 given by Theorem 5(b)

when µ → 0 and it tends to 1 when µ → +∞. Consequently if the ratios of the masses and

the ratios of the length of the edges of the tetrahedra satisfy some convenient relations,

then the configuration of two nested rotated tetrahedra with a mass at their center of

mass is also central for the 9–body problem.

3.2 Three nested rotated tetrahedra

In this section we analyze the spatial central configurations of the 12–body problem

when the masses are located at the vertices of three nested regular tetrahedra with scale

12



(a) 1 6 ρ < R (b) 1 < R 6 ρ (c) 0 < ρ < 1 < R

Figure 5.— Three possible central configurations with three nested regular tetrahedra

with scale factors 1, ρ and R and the one with scale factor ρ rotated with respect to

the other two by a rotation of Euler angles α = 0, β = π and γ = 0. In (a) the medium

tetrahedra is the rotated one, in (b) is the outermost, and in (c) is the innermost. In

any of these three possibilities the tetrahedra can intersect or not.

factors 1, ρ and R and some of them rotated with respect to the others by a rotation of

Euler angles α = 0, β = π and γ = 0 (i.e. by a rotation with rotation matrix P ). Taking

conveniently the unit of masses we can assume that all the masses of the tetrahedron

with scale factor 1 are equal to one. We also choose the unit of length in such a way that

the edges of the tetrahedron with scale factor 1 have length 2. Since the set of central

configurations is invariant under homothecies and rotations, without loss of generality we

can assume that the positions of the vertices of the tetrahera of scale factor 1 are the ones

of Table 1, that there is only one rotated tetrahedra which is the tetrahedra with scale

factor ρ, and that 1 6 ρ < R when the rotated tetrahedra is the medium one, 1 < R 6 ρ

when the rotated tetrahedra is the outer one, and finally 0 < ρ < 1 < R when the rotated

tetrahedra is the inner one (see Figure 5). We define the sets

Cm = {(ρ, R) ∈ R
2 : 1 6 ρ < R},

Co = {(ρ, R) ∈ R
2 : 1 < R 6 ρ},

Ci = {(ρ, R) ∈ R
2 : 0 < ρ < 1 < R}.

Result 6 Consider four equal masses mi = 1 for i = 1, . . . , 4 at the vertices of a regular

tetrahedron having positions qi = a
(4)
i for i = 1, . . . , 4. Consider four additional equal

masses mi+4 = m for i = 1, . . . , 4 at the vertices of a second nested rotated regular

tetrahedron having positions qi+4 = ρPa
(4)
i for i = 1, . . . , 4 with scale factor ρ > 0. Finally

we consider four additional equal masses mi+8 = M for i = 1, . . . , 4 at the vertices of a

third nested regular tetrahedron having positions qi+8 = Ra
(4)
i for i = 1, . . . , 4 with scale

13



factor R > 1. Let

m = m(ρ, R) =
1

det(A)

∣∣∣∣∣∣∣∣

1 1/2 g1(R)

ρ −f(ρ, 1) f(ρ, R)

R g2(R) −1/(2R2)

∣∣∣∣∣∣∣∣
,

M = M(ρ, R) =
1

det(A)

∣∣∣∣∣∣∣∣

1 f(1, ρ) 1/2

ρ −1/(2ρ2) −f(ρ, 1)

R f(R, ρ) g2(R)

∣∣∣∣∣∣∣∣
,

(2)

where A =




1 f(1, ρ) g1(R)

ρ −1/(2ρ2) f(ρ, R)

R f(R, ρ) −1/(2R2)


 and

f(x, y) =
2
√

2(y − 3x)

(3x2 − 2yx + 3y2)3/2
− (2/3)3/2

(x + y)2
,

g1(x) = − 2
√

2(x + 3)

(3x2 + 2x + 3)3/2
+

(2/3)3/2

(x − 1)2
,

g2(x) =
2
√

2(3x + 1)

(3x2 + 2x + 3)3/2
+

(2/3)3/2

(x − 1)2
.

Then the following statements hold.

(a) Such configuration is central for the spatial 12–body problem when m = m(ρ, R) and

M = M(ρ, R) are given by the expression (2) and (R, ρ) ∈ D = {(R, ρ) ∈ R
2 :

det(A) 6= 0, m(R, ρ) > 0, M(R, ρ) > 0, ρ > 0, R > 1} (see Figure 6 for the plot of

D).

(b) The set D is formed by the disjoint union of the sets Di for i = 1, . . . , 6 defined in

Figure 6. Then the regions Di provide central configurations of the 12–body problem

with the masses located at the vertices of three nested regular tetrahedra satisfying

the following.

(b.1) The rotated tetrahedron is the inner one and it intersects only the medium when

(ρ, R) ∈ D2 ∩Ci, it intersects the medium and the outer when (ρ, R) ∈ D4 ∩Ci,

and the three tetrahedra do not intersect when (ρ, R) ∈ D1.

(b.2) The rotated tetrahedron is the medium one and it intersects only the inner when

(ρ, R) ∈ D2 ∩ Cm and when (ρ, R) ∈ D3 ∩ {ρ 6 3}, it intersects the inner and

the outer when (ρ, R) ∈ D5 ∩ Cm ∩ {ρ 6 3} and when (ρ, R) ∈ D4 ∩ Cm, it

intersects only the outer one when (ρ, R) ∈ D5 ∩ Cm ∩ {ρ > 3}, and the three

tetrahedra do not intersect when (ρ, R) ∈ D3 ∩ {ρ > 3}.
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(b.3) The rotated tetrahedron is the outer one and it intersects only the medium

when (ρ, R) ∈ D5 ∩ Co ∩ {ρ > 3}, it intersects the inner and the medium when

(ρ, R) ∈ D5 ∩ Co ∩ {ρ 6 3}, and the three tetrahedra do not intersect when

(ρ, R) ∈ D6.

(c) Let

m(M, ρ, R) =
ρ2(ρ + 2f(ρ, 1))

2ρ3f(1, ρ) + 1
− M

2ρ2(ρg1(R) − f(ρ, R))

2ρ3f(1, ρ) + 1
,

and M0(ρ, R) = (ρ2(ρ + 2f(ρ, 1)))/(2ρ2(ρg1(R) − f(ρ, R)), and let

p = (p1, p2) = (1.5094116757 . . . , 1.9479968088 . . . ),

q = (q1, q2) = (1.9926247501 . . . , 31.4606148079 . . . ),

be the solutions of system det(A) = det(A2) = det(A3) = 0 (see (1) for the defini-

tions of A2 and A3). Then the following statements hold.

(c.1) For each M > M0(p), where M0(p) = 0.1252891302 . . . , and m = m(M,p) =

−0.4001317738 · · ·+ 3.1936671053 . . .M we have a central configuration of the

spatial 12–body problem when (ρ, R) = p. In this configuration the rotated

tetrahedron is the medium and it intersects with the inner and the outer.

(c.2) For each M > M0(q), where M0(q) = 25204.620455 . . . , and m = m(M,q) =

−3.5811747685 · · ·+ 0.0001420840585 . . .M we have a central configuration of

the spatial 12–body problem when (ρ, R) = q. In this configuration the rotated

tetrahedron is the medium and it intersects only the inner.

We call the previous result as Result 6 instead of Theorem 6 because part of its proof

is done numerically with the help of Mathematica. The prove of Result 6 can be found

in [4].

After analyzing the plot of m(ρ, R) and M(ρ, R) on the regions Di for i = 1, . . . , 6

we observe the following (see for details [4]). On D1, m(ρ, R) ∈ (0, 0.000347182 . . . ) and

M(ρ, R) ∈ (0,∞). On D2, m(ρ, R) ∈ (0,∞) and M(ρ, R) ∈ (25204.62 . . . ,∞). On D3,

m(ρ, R) ∈ (0,∞) and M(ρ, R) ∈ (11625.1167 . . . ,∞). On D4, m(ρ, R) ∈ (0,∞) and

M(ρ, R) ∈ (0,∞). On D5, m(ρ, R) ∈ (0,∞). and M(ρ, R) ∈ (0,∞). And finally, on D6,

m(ρ, R) ∈ (14997.0524 . . . ,∞) and M(ρ, R) ∈ (0,∞).

If we put an additional mass m0 = µ > 0 at the center of mass of the three nested

rotated tetrahedra, then we obtain an analogous of Theorem 6 with the difference that

now m, M and the region D depend of µ. Consequently, if the ratios of the masses and

the ratios of the length of the edges of the tetrahedra satisfy some convenient relations,

then the configuration of three nested rotated tetrahedra with a mass at their center of

mass is also central for the 13–body problem.
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Figure 6.— The set D. The dotted curves correspond to points where det(A) = 0,

the continuous curves correspond to points where m(ρ,R) = 0, and finally, the curves

with small circles correspond to points where M(ρ,R) = 0.
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