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Abstract

The main goal of this contribution is to apply the depth averaged shallow water

equations to several free surface flows in which the treatment of the geometry,

introduced on the mathematical model by the source terms, and the turbulence

modelling are of special interest (cf. Cea et al. [6]). The convective flux is discretised

with either an hybrid scheme (first order in the water depth and second order in the

unit discharge), or a fully second order scheme, both of them upwind Godunov’s

schemes based on Roe’s average. In order to avoid spurious oscillations of the free

surface when the bathymetry is irregular, an upwind discretisation of the bed slope

source term with second order corrections is used. The k − ε equations are solved

with either an hybrid or a second order scheme. In all the numerical simulations the

importance of using a second order upwind spatial discretisation has been checked.

A first order scheme may give rather good predictions for the water depth, but it

introduces too much numerical diffusion and therefore, it excessively smooths the

velocity profiles. This is specially important when comparing different turbulence

models, since the numerical diffusion introduced by a first order upwind scheme

may be of the same order of magnitude as the turbulent diffusion.
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1 Introduction

The two-dimensional character of a free surface flow is usually enforced by a horizontal

length scale much larger than the vertical one, and by a velocity field quasi-homogeneous

over the water depth. Under these conditions the 3D Reynolds averaged Navier-Stokes

equations can be simplified in order to obtain the depth averaged shallow water equations.

Here, the term shallow refers to a small ratio between the vertical and horizontal length

scales. Shallow flows appear in many engineering applications, mainly in river and coastal

engineering, but also in certain hydraulic structures like open channels or sedimentation

tanks, just to cite some examples.

The modelling of turbulence in shallow water flows has not been treated so profusely

as in other fluid dynamics areas. Some depth averaged turbulence models have been pro-

posed for the 2D-SWE. Those models derive from well known RANS turbulence models,

including somehow the effects of bed friction in the turbulence field. Special mention

should be given to the depth averaged k − ε model proposed by Rastogi and Rodi in

1978 [18], which was the first depth averaged two-equation eddy viscosity model, and it

is still the most commonly used with the 2D-SWE when turbulent effects are included in

the computation.

The main effect of turbulence is to diffuse the velocity field. This turbulent diffusion,

which is a physical effect, is added in the solution to the numerical diffusion inherent

to the upwind schemes which are used for solving hyperbolic equations. For this reason,

when modelling turbulence, it is even more important to use high resolution schemes for

the convective flux, in order to reduce the numerical diffusion to the minimum without

numerical instabilities. A first order scheme, which might be suitable for some problems,

should not be used when turbulent effects are significant, because the numerical diffusion

might be of the same order or even larger than the turbulent diffusion. In this paper we

use an hybrid second-order/first-order scheme (first order in the water depth and second

order in the unit discharge). The hybrid scheme uses a second order discretisation for the

two unit discharge components, whilst keeping a first order discretisation for the water

depth. In such a way the numerical diffusion is considerably reduced, without a significant

reduction on the numerical stability of the scheme. In order to avoid spurious oscillations

of the free surface when the bathymetry is irregular, an upwind discretisation of the bed

slope source term is used [11, 3].

In order to show the capabilities of depth averaged models in the computation of

turbulent flows, a finite volume model has been used to compute the flow in a coastal

estuary and in a vertical slot fishway. The estuary considered has extensive flat marsh

areas which flood and dry periodically due to the tidal driven flow. This makes it possible

to test the turbulence models in the presence of wet-dry fronts in complex two-dimensional



geometries with a very irregular bathimetry. The flow in the fishway is highly turbulent

and it has strong recirculation eddies, which makes it a perfect test case for the turbulence

models. All the numerical results are compared with extensive experimental data.

2 Mathematical model

This section presents some basic notions related to shallow water turbulent flows and

the mathematical model used in this work.

2.1 2D Shallow water model

The mathematical derivation of the 2D-SWE can be found in many hydrodynamic

books, and has already been presented by many authors. Minor differences appear from

one derivation to another, but basically the process consists in assuming an hydrostatic

pressure distribution, integrating the horizontal 3D Reynolds averaged Navier-Stokes

equations over the water depth, applying Leibnitz’s rule, and using the kinematic free

surface and bed surface conditions. Several approximations are done through the math-

ematical derivation. As it is well know, the approximations made are summarised in

the following: incompressible flow, hydrostatic pressure and homogeneous behaviour over

the water depth. With the former approximations, the turbulent depth averaged shallow

water equations are obtained as:

∂h
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where the Einstein summation convention (j = 1, 2) is used with the notations that

are detailed next: Ui, i = 1, 2 are the two componets of the depth averaged horizontal

velocities∗, h is the water depth, g is the gravity acceleration, zb is the bed elevation, ρ is

the density of water, ν is the kinematic viscosity of water, and τb,i, i = 1, 2 are the two

horizontal components of the bed friction stresses model with the Manning formula:

τb,i

ρ
= gh

n2|U |Ui

h
4

3

, i = 1, 2. (2)

where n is the Manning coefficient. The depth averaged effective stress, τ e
ij , adds the

depth averaged viscous stresses τ v
ij , the turbulent stresses −u′

iu
′
j -or Reynolds stresses-

∗This notation allows to apply the Einstein summation convention, that simplifies the description of

the model, in other sections of the work also is used Ux = U1, Uy = U2, to denote the two horizontal

components of the depth averaged horizontal velocities.



and the longitudinal and lateral dispersion stresses terms Dij (Rastogi and Rodi, [18]):

τ e
ij

ρ
=

τ v
ij

ρ
− u′

iu
′
j + Dij, i, j = 1, 2 (3)

Their relative importance respect to the convective and turbulent stress terms depends

on the magnitude of the velocities u′ and v′. The viscous stress terms are obtained from

the water kinetic viscosity ν as:

τ v
ij

ρ
= ν

(
∂Ui

∂xj

+
∂Uj

∂xi

)

. (4)

2.2 The k − ε model of Rastogi and Rodi

The depth averaged horizontal Reynolds stresses u′2, u′v′, v′2 appearing in the 2D-SWE

need to be computed by means of a depth averaged turbulence model, which are usually

derived from RANS turbulence models by introducing in some way the effects of bed

friction and shallowness in the turbulence field. In the models based on the hypothesis of

Boussinesq the Reynolds stresses are evaluated from the expression:

−u′
iu

′
j = νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)

− 2

3
kδij , (5)

where νt is the eddy viscosity and k is the turbulent kinematic energy. The turbulence

model provides turbulent viscosity to use it in previous expression.

As it is anticipated in the title of the subsection, in this work we only described

to the equations of the model k − ε averaged in depth†. In the version of the model of

length of mixture for shallow water flows proposed by Rastogi and Rodi [18], the turbulent

viscosity νt is calculated from the local characteristics of the flow by means of the following

expression:

νt = cµ
k2

ε
, (6)

where k is the turbulent kinetic energy, ε are the rate of turbulence dissipation, and

cµ is a constant with value cµ =0.09. The model solves an equation of transport for

each one of the variables k and ε, where it considers the production due to bed friction,

the production by velocity and dissipation gradients and the convective transport. The

equations describe that it are:
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k
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†Other models also considered by the authors can be seen in [6].



The terms that take part in the second members, and whose interpretation will be de-

scribed briefly next, are:

Pk = 2νt(S
2
11 + S2

22 + 2S2
12), Sij =

1

2
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h
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µ

c
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f

,

cµ = 0.09 cε1 = 1.44 cε2 = 1.92 σk = 1.0 σε = 1.31

where the term Pk accounts for the production of turbulent energy due to horizontal

velocity gradients, and it has the same expression as in the 2D shallow water model. The

source terms Pkv and Pεv are responsible for modelling the 3D turbulence generated by

bed friction, where cf is the bed friction coefficient. The five constants of the model

(cµ, cε1, cε2, σk, σε) are assumed to have the same values as in the original k − ε model.

The model k − ε is a relatively sophisticated model. In shallow water turbulent flows

it provides relatively good results, being one of the used models more in this topic when

the turbulence level is important. However, its degree of complexity does not guarantee

correct results in any type of flow. Like any model of turbulence, the results obtained

with the model k − ε must be analyzed and be valued of critical form.

3 Finite volume discretisation of the turbulent shallow water equations

The computations displayed in this article have been done using the code Turbillon
‡,

developed in the Group of Engineering of the Water and the Environment (GEAMA) of

the Universidade of A Coruña in collaboration with the Universidade of Santiago de

Compostela. The code solves the shallow water equations using a finite volume method

for two-dimensional non-structured meshes. In the following a brief description of the

numerical schemes used in Turbillon is done. A more detailed description can be found

in Cea et al. [6]. This section presents an unstructured finite volume model for solving

the 2D-SWE and turbulence models presented in previous section. A comprehensive

description of finite volume methods for fluid dynamics can be found in [14, 20].

The two-dimensional shallow water equations can be written in vectorial form as:

∂w

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= S + G + D (8)

‡http://turbillon2d.googlepages.com
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,

where w is the vector of the conservative unknowns, νe is the effective viscosity (νe =

ν + νt). The vectors Fx and Fy account for the convective flux. The vector S accounts

for the bed slope, G for the bed friction, and D for the turbulent and viscous diffusion.

The discretisation of the spatial domain will be made with edge-type finite volumes,

which were introduced by Bermúdez et al. in [2]. These kind of control volumes are

generated from a previous triangulation of the numerical domain, as sketched in Figure 2.

The nodes (Ni and Nj) are placed at the midpoint of the edges of the triangulation, and

the cells Ci are built from the vertex and the barycentre of the triangles. The control

volumes built in such a way have 4 faces except in the boundaries, where they have 3

faces. This approach permits an easy definition of the normal vector at the boundary

faces, avoiding the indetermination which may appear in certain boundary nodes when

using vertex-type control volumes in complex geometries [9].

(a) Original triangular mesh. (b) Control volume Ci, defined by dashed region.

Figure 1.— Control volume generation from a triangular mesh

An explicit discretisation of Equation (8) is given by:

wn+1 −wn

∆t
+

∂Fx

∂x
(wn) +

∂Fy

∂y
(wn) = Sn + Gn + Dn, (9)

where the super-index n refers to time tn. The extension of the scheme to second order

in time can be easily implemented for example by a two-step method [5, 4]. Since the



solver is explicit in time, the time step is limited by the CFL condition, which has been

implemented as:

∆ti = CFL min

(
di

|U|i +
√

ghi

)

, (10)

where di = Ai/Pi is the ratio between the area Ai and the perimeter Pi on each cell Ci.

Integration of Equation (9) over a control volume or cell Ci and yields:

wn+1
i −wn

i

∆t
Ai +

∑

j∈Ki

∫

Lij

(Fxñx + Fyñy) dL =

∫

Ci

(Sn + Gn + Dn) dA (11)

where wn
i is the mean value of w in the cell Ci at time tn, Lij is the common face to

the volumes Ci and Cj, ñ = (ñx, ñy) is the unit normal vector to the cell face, and Ki

accounts for all the cells Cj which share any face with the cell Ci.

3.1 Convective flux

The convective flux in Equation (11) is discretised with a Roe upwind scheme [19].

Harten’s regularisation [12] is applied when necessary. In order to obtain second order

accuracy in space, the left and right states of the Riemann problem are obtained after

a linear reconstruction of the variables w from the nodes to the cell faces, which can be

computed as:

wIj = wi +
1

2
∆∗

i wiJ = wj +
1

2
∆∗

j (12)

where ∆∗
i , ∆∗

j are the limited slopes [21] at the nodes Ni and Nj , wIj is the extrapolated

value of wi to the cell face Lij , and wiJ is the extrapolated value of wj to the cell face

Lij (Figure 2(b)). The limited slopes can be computed as:

∆∗
i =

{

max[0, min (∇wirij, ∆ij)] if ∆ij > 0

min[0, max (∇wirij, ∆ij)] if ∆ij < 0
, with ∆ij = wj − wi (13)

with an analogous expression for ∆∗
j . In (13) rij is the distance vector between the two

nodes Ni and Nj . The triangles whose vertices are (Ni, Ni1 , Ni2) and (Nj, Nj1, Nj2) know

as upwind triangles see Figure 2(a) (more detail can be seen in Vázquez-Cendón [22]),

and the gradients ∇wi and ∇wj are computed from the values of w at the nodes of the

two upwind triangles respectively. The limited slopes computed from (13) reproduce the

Minmod limiter [21].

The boundary integral of the convective flux in Equation (11) is approximated by the

numerical flux φij as:
∫

Lij

(Fxñx + Fyñy) dL ≈ φij(wL,wR,nij), (14)

φij(wL,wR,nij) =
Z(wL,nij) + Z(wR,nij)

2

− 1

2
|Q(wL,wR,nij)|(wR −wL), (15)



Figure 2.— Reconstruction of the conservative variables from the cell nodes to the

faces. (a) Upwind triangles. (b) Linear reconstruction from nodes to faces, 1D view.

Z(w,nij) = Fx(w)nijx + Fy(w)nijy, |Q| = X|D|X−1, (16)
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λ̃1 = nxŨx + nyŨy, λ̃2 = λ̃1 + c̃
√

n2
x + n2

y, λ̃3 = λ̃1 − c̃
√

n2
x + n2

y, (18)

where wL = wIj and wR = wiJ and nij is a normal vector to the cell face Lij with the

same length as the cell face.

3.2 Bed slope source term

When the upwind scheme given by Equations (12-18) is used with a centred discretisa-

tion of the bed slope source term SC
i , that is, SC

i = S(xi, yi,w
n
i ), spurious oscillations are

generated under hydrostatic flow conditions. In order to avoid this unphysical oscillations,

the bed slope source term must be discretised with an upwind scheme [2, 23, 11, 10]. A

suitable upwind discretisation of S which is free of spurious oscillations when used with

the first order scheme of Roe is given by [2, 10]:
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,

where Si is the upwind discretisation of the bed slope source term, S̃ij is a centred ap-

proximation of the source term at the cell face Lij , and d⊥,ij = rijñij is the projection of

the distance between the nodes Ni and Nj (dij) on to the unit normal vector ñij .



Hubbard and Garćıa-Navarro [13] proposed a high order correction of the source term

in order to obtain a fully second order scheme which gives an exact balance between

convective flux and bed slope in the hydrostatic case.

All of the applications presented in this paper have been computed with both the

hybrid scheme (first order for the water depth and second order for the unit discharges)

as well as with the fully second order scheme. No significant differences have been found

in the results given by both schemes, probably because the water depth gradients are not

large enough. On the other hand, the hybrid scheme has been found to be much more

stable than the fully second order scheme, especially when the bathymetry is irregular

and there are unsteady wet-dry fronts in the solution.

3.2.1 Wet-dry fronts

A fixed finite volume mesh is used to discretise the whole spatial domain, and the control

volumes are allowed to wet and dry during the simulation in order to model unsteady

wet-dry fronts. A wet-dry tolerance parameter (εwd) is defined, such that if the water

depth in a cell is lower than εwd the cell is considered to be dry. In the same way, if the

water depth at the face Lij is lower than εwd
§, the face is considered to be dry and it

does not participate in the calculation. The water depth is never forced to be zero, in

order to keep the mass conservation property of the scheme. The lowest value of εwd is

desired in order to obtain accurate solutions. However, an excessively low value of εwd

promotes numerical instabilities and necessitates the use of a very small CFL, especially

when dealing with a very irregular bathymetry.

The fixed mesh approach needs a suitable wet-dry condition at the fluid interface which

ensures the conservation of mass and momentum, and is at the same time not diffusive

and free of spurious oscillations. Assuming a piecewise constant distribution of the bed

elevation, two conditions are imposed at the wet-dry front: (1) redefinition of the bed

elevation; (2) reflection condition.

The aim of redefining the bed elevation is to obtain an exact balance at the wet-dry

front between the bed slope and the hydrostatic pressure term for hydrostatic conditions.

As detailed by Brufau in [4], if the bed slope is not redefined spurious waves are generated

at the front. If the wet-dry front occurs between the cells Ci and Cj, the modified bed

slope at the front (∆zb,ij) is defined as [4]:

∆zb,ij =







hi − hj if hj ≤ εwd and hi < zb,j − zb,i

zb,j − zb,i otherwise
(20)

The treatment of the wet-dry fronts given by (20) gives the exact hydrostatic flow solution

§The wet-dry tolerance parameter is also used in the turbulence models.



Figure 3.— Wet-dry fronts. (a) Bed redefinition ∆zb,ij = hi. Reflection condition

qn,ij = 0. (b) No redefinition. No reflection condition.

for any bed elevation without diffusing the front, and without generating any spurious

oscillations of the free surface.

The reflection condition sets to zero the normal unit discharge at the cell face where

the wet-dry front occurs (qn,ij), which is the kinetic condition at a wall boundary:

qn,ij = qx,ijñx,ij + qy,ijñy,ij = 0 (21)

Condition (21) only applies when hi < zb,j −zb,i (Figure 3(a)). Setting the normal unit

discharge to zero at the interface is justified by the assumption of a piecewise constant

bed elevation, which is similar to a representation of the bed by a set of small vertical

walls. In this way the wet-dry front is only allowed to advance when the water depth in

the wet cell is larger than the bed step between cells (hi > zb,j − zb,i, Figure 3(b)). It

should be noticed that the unit discharge is not set to zero in the left cell Ci, but only

at the face Lij when computing the convective flux. Condition (21) also assures that the

convective transport of k and ε at the wet-dry front is zero when hi < zb,j − zb,i. In this

case the diffusive flux of k and ε over the face Lij is also set to zero.

3.3 Turbulent and viscous diffusion

The diffusion term is discretised with a semi-implicit centred scheme. In the following

we will refer only to the x-momentum equation, with analogous expressions for the y-

momentum equation. Integration of the diffusion term in the x-momentum equation over

the cell Ci gives:

Dtot =

∫

Ci

∂

∂x

(

νeh
∂Ux

∂x

)

+
∂

∂y

(

νeh
∂Ux

∂y

)

dA

≈
∑

j∈Ki

νe,ijhij

(
∂Ux

∂x
nx +

∂Ux

∂y
ny

)

ij

. (22)

When the eddy viscosity is large, it is convenient to implicit the main diagonal of

the diffusion source term in order to relax the stability condition over the time step. In

order to do so, following the ideas of Davidson [7], the total diffusive flux (Dtot) is split



in two parts: an orthogonal diffusion (D⊥) and a non-orthogonal diffusion (D‖), so that

Dtot = D⊥ + D‖.

Figure 4.— Discretisation of the diffusion term.

The gradient of the velocity at the cell face Lij is computed applying the Gauss theorem

on the volume Aij, which is defined by the shaded area in Figure 4. The two edges of

the volume Aij which pass through the nodes Ni and Nj are defined by the same normal

vector as the cell face Lij , i.e. nij . The other two edges are parallel to the line which joins

the nodes Ni and Nj , and are defined by the normal vector αij, with modulus |αij | = |rij|,
so that αijrij = 0. The area of the volume is given by Aij = |nij |d⊥,ij = rijnij . With

these definitions, the gradient of Ux at the cell face Lij is evaluated as:

∂Ux

∂x

∣
∣
∣
∣
ij

≈ 1

Aij

∫

Aij

∂Ux

∂x
dA =

1

Aij

∫

L

Uxñx dL (23)

≈ 1

Aij
(Ux,jnx,ij + Ux,Bαx,ij − Ux,inx,ij − Ux,V αx,ij)

with an analogous expression for
∂Ux

∂y

∣
∣
∣
∣
ij

. The following expression is obtained for the

discrete diffusive flux at the cell Ci:

Dtot ≈
∑

j∈Ki

νe,ijhij
|nij |
d⊥,ij

(Ux,j − Ux,i)

︸ ︷︷ ︸

D⊥≡orthogonal

(24)

+
∑

j∈Ki

νe,ijhij
dij

d⊥,ij

(Ux,B − Ux,V ) (α̃x,ijñx,ij + α̃y,ijñy,ij)

︸ ︷︷ ︸

D‖≡non-orthogonal

The non-orthogonal part (D||) is treated explicitly with the rest of source terms, while

the orthogonal part (D⊥) is split as:

D⊥,ij = νe,ijhij
|nij|
d⊥,ij

(Ux,j − Ux,i) = ΓD⊥,ij
Ux,j −

ΓD⊥,ij

hi
qx,i (25)



where ΓD⊥,ij
=

νe,ijhij |nij|
d⊥,ij

is the orthogonal diffusion coefficient. In Equation (25) all

the variables are evaluated at time tn except the unit discharge qx,i, which is evaluated

at time tn+1. In this way no additional computational cost is introduced, since there is

no need to solve any system of equations. In orthogonal meshes the vectors nij and αij

are perpendicular and therefore, the non-orthogonal diffusion in Equation (24) vanishes

(D‖ = 0).

3.4 Discretisation of the k − ε equations

The modelled k − ε equations are written in vectorial form as:

∂Φ

∂t
+

∂FΦ,x

∂x
+

∂FΦ,y

∂y
=

4∑

m=1

Hm (26)

Φ =

(

hk

hε

)

, FΦ,x =

(

hkUx

hεUx

)

= UxΦ, FΦ,y =

(

hkUy

hεUy

)

= UyΦ

H1 =







∂

∂xj

(

(ν +
νt

σk

)h
∂k

∂xj

)

∂

∂xj

(

(ν +
νt

σε
)h

∂ε

∂xj

)







, H2 =




min (2νtSijSijh, 10εh)

c1ε
ε

k
2νtSijSijh



 ,

H3 =





min(cku
3
f , 10εh)

cε

u4
f

h



 , H4 =




−εh

−c2ε
ε2

k
h



 .

The source terms Hm (m=1,4) account respectively for the viscous and turbulent dif-

fusion (H1), the production due to horizontal velocity gradients (H2), the production due

to bed friction (H3), and the dissipation rate (H4). The same second order discretisation

scheme described for the mean flow equations is used for the k−ε equations. However, in

this case the normal convective flux to the face Lij (ZΦ,ij) depends linearly on the depth

averaged velocity as:

ZΦ,ij = (Uxñx + Uyñy)ijΦij = Un,ijΦij. (27)

At each cell face the numerical flux Z∗
Φ,ij is computed as:

Z∗
Φ,ij = Un,ij

ΦIj + ΦiJ

2
− 1

2
|Un,ij| (ΦiJ −ΦIj) , (28)

where Un,ij is a centred discretisation of the normal velocity to the cell face, and ΦiJ ,ΦIj

are linearly extrapolated values from the cell nodes to the cell faces using (12).

All the source terms are discretised at the cell nodes using a centred scheme. In order

to reinforce the stability of the scheme and to help the turbulent quantities k and ε to



remain positive during the computation, the following semi-implicit linearization of the

source terms is used in the solver [7]:

H = Hn
NΦn+1 + Hn

P . (29)

All the negative source terms are discretised in the form Hn
NΦn+1, while the positive

source terms are included in Hn
P . The production source terms H2 and H3 are always

positive and therefore, they are included in Hn
P . The dissipation source term H4 is always

negative, so it is discretised as:

H4 =




−εh

−c2ε
ε2

k
h



 =




−
(ε

k

)n

(kh)n+1

−c2ε

( ε

k

)n

(εh)n+1



 . (30)

The diffusion term H1 can be positive or negative and thus, it is included in Hn
P or

Hn
NΦn+1 depending on its sign. With these considerations the terms Hn

N and Hn
P in (29)

are given by:

Hn
N = min

(
H1

Φ
, 0

)n

+




−ε

k
−c2ε

ε

k





n

, Hn
P = max (H1, 0)n + Hn

2 + Hn
3 . (31)

4 Applications

4.1 Tidal flow in the Crouch estuary

The Crouch estuary, Essex, UK (Figure 5), is a challenging test case if we consider its

complex bathymetry, with extensive intertidal flats. The tidal range is approximately 4.8

m at the mouth. The maximum depth is about 15 m at high tides. Freshwater influx is

negligible in the whole estuary, and therefore, all the water in the estuary is salt water.

The large separation between horizontal and vertical length scales justify the use of a

2D-SWE model.

The flow in the model is completely driven by the water surface elevation at the mouth,

which is the only open boundary condition to be imposed. The rest of the boundaries

are treated as walls. Due to the size and complexity of the computational domain (27.65

Km2) the mesh size near the walls is relatively coarse and therefore, a slip condition has

been used at the wall boundaries. Accordingly, the normal velocity as well as the diffusion

of k and ε are set to zero at the boundary faces. Nonetheless, most of the time during the

simulation the wall boundaries are dry and thus, they do not participate in the solution.

On the other hand the wet-dry front, which defines the fluid extension, plays a more

important role in the flow field.

The water surface elevation at the mouth is directly obtained from a tidal gauge. The

flow at the mouth is always subcritical. Hence, only the water depth needs to be imposed



Figure 5.— Bathymetry of the Crouch-Roach estuary for the numerical model, rel-

ative to mean sea level at the mouth. Locations of tide gauges and current meter

deployments are shown.

during the ebb tide (subcritical outlet). During the flood tide (subcritical inlet) the flow

is forced to be perpendicular to the boundary, as an additional condition to the imposed

water depth.

A Manning coefficient of n = 0.02 ms−1/3 was used in the inter-tidal and sub-tidal

regions, where the bottom sediments are predominantly muddy. There are also several

marsh regions, which are assigned n = 0.05 ms−1/3.

After using several meshes with different resolution, a mesh with approximately 50000

volumes was chosen. The numerical mesh used covers the whole estuary using 48995

control volumes. The area of the control volumes in the main channel is about 300 m2.

The hybrid scheme was used in the computations, which proved to be much more

stable than the fully second order scheme, while producing almost identical results.

The velocity field in the whole estuary is very dependent on the bathymetry, with

velocities being highest in the deepest regions of the estuary. The sensitivity of the

numerical results to the bed friction coefficient and turbulence model is much smaller

than the differences between numerical and experimental data (see Cea et al. [6]). Some

of the disagreements between numerical and experimental results are probably due to

errors in the local bathymetry of the model. The fact of comparing the experimental

velocity measured at a fixed height of 2 m above the bed, with the numerical depth-

averaged velocity, might also account for some of these discrepancies.

In general water depth is rather well predicted by the model except at Fambridge,

this is the reason beacuse we choose Figure 6 between all the numerical results showed

in Cea [5] , where the tidal amplitude is slightly underpredicted. Regarding the current



speed, both ebb and flood flows are well predicted, although the maximum ebb velocity is

slightly underpredicted at Fambridge. Figure 6 shows several numerical and experimental

time-series for water depth and current speed.

Figure 6.— Water depth and horizontal velocity time series at Fambridge. ML and

k − ε turbulence models, and zero eddy viscosity (νt = 0).

In this case turbulence is mainly produced by bed friction( Figure 7). For uniform

channel flow the eddy viscosity given by the k−ε model reduces to νk−ε
t = 0.08ufh, while

the depth averaged mixing length model (ML) (see Cea et al. [6]) gives νML
t = 0.068ufh.

For this reason the velocity and water depth fields are very insensitive to the turbulence

model used.

Even in the mouth of the estuary, where the turbulence intensities are highest (Fig-

ure 7), the turbulent horizontal Reynolds number is rather large (Rt = UL/νt ≈ 21000).

This means that the turbulent diffusion forces are small when compared to the convective

forces, which diminishes the influence of the turbulence model on the mean velocity field.

Velocity and water depth fields independent of the turbulence model were also obtained

by Babarutsi et al. [1] when modelling shallow recirculating flows dominated by bed fric-

tion, by Davies et al. [8] when computing the tidal flow in the Irish Sea, and by Lloyd

and Stansby [15] when modelling the flow around conical islands.

4.2 Turbulent flow in a vertical slot fishway

A vertical slot fishway is a channel divided into several pools separated by vertical

slots through which the water flows downstream. Although the geometry of a vertical

slot fishway is two-dimensional, the ratio between the water depth and the length of the

pool is of the order of 0.5, and therefore, it is not straightforward that the 2D-SWE are

able to reproduce the flow pattern in a vertical slot fishway. In fact, the hypotheses which

are made in the derivation of the 2D-SWE are broken in some regions of the flow, specially

near the slot. However, the numerical and experimental data agree quite well.



Figure 7.— Eddy viscosity field at the mouth of the estuary. Ebb tide. k − ε model.

Dry regions are shown in black.

From the experimental results of several researchers [17, 16] it follows that for uniform

flow conditions the velocity field in vertical slot fishways is almost independent of the

total flow discharge. On the other hand, the water depth is proportional to the flow

discharge with an almost linear relation. The first feature we should expect from the

numerical model is to reproduce this behaviour. In order to prove so, three different

discharges covering almost the full range of experimental flow conditions were used in the

simulations: 35 l/s and 105 l/s.

The flow pattern in the pools can be described as a main jet which crosses the pool

from the inlet to the outlet slot. At each side of the jet a recirculation eddy appears. The

flow separates behind the inlet slot baffle and the so-called lower eddy appears. Going

through the outlet slot the flow is forced to reattach. Both eddies are driven by turbulent

shear stress, and therefore their prediction is very dependent on the turbulence model

used. The k − ε model predicts maximum velocity and recirculation regions which are

quite insensitive to the total discharge (Figure 8). This result is in direct agreement with

the experimental data.

A comparison of the depth averaged longitudinal velocity at several cross sections

reveals a quite satisfactory agreement between the experimental and numerical results

(Figure 9).

The k − ε model fails to predict the anisotropy between the two horizontal Reynolds

stresses, and gives excessively large values of the transversal component v′2 (see Cea et

al. [6]). Nonetheless, the global agreement between the experimental and numerical



Figure 8.— Depth averaged velocity field. Q = 105l/s.The black line separates the

regions with positive and negative longitudinal velocity

Figure 9.— Numerical and experimental depth averaged longitudinal velocity Vx(m/s)

at several cross sections. (a) Q = 35 l/s. x =0.16 m. (b) Q =35 l/s. x =0.46 m. (c)

Q = 105 l/s. x = 0.16m

normal Reynolds stresses is quite satisfactory. The largest differences appear in the main

jet stream, where the ASM tends to underpredict the turbulent energy, while the k − ε

model overpredicts it. The excessively large turbulence level given by the k−ε model just

downstream the inlet slot might be explained by the strong shear strain, with velocity

gradients of the order of 20 s−1. The flow conditions in this region, with a very strong

swirl, as well as separation and reattachment in a very short distance, are beyond the

capabilities of the eddy viscosity turbulence models. The largest source of turbulence in

the pool is due to the strong shear strain in the inlet slot and lower eddy. The maximum

value of the turbulent kinetic energy given by the k − ε model is inside the eddy region,

with values around 0.24 m2/s2.



5 Conclusions

In this paper we have presented a comprehensive study on depth averaged turbulence

modelling on shallow flows, including a critical description of the equations and numerical

schemes used to solve them, practical applications and experimental validation.

In order to avoid spurious oscillations when the bathimetry is irregular, an upwind

discretisation of the bed slope term has been described. Alternatively to a fully second

order scheme, we have described a rather simple, free of spurious oscillations and stable

scheme, which reduces the numerical diffusion in a significant way, which just uses a second

order discretisation for the two unit discharge components, whilst keeping a first order

discretisation for the water depth and bed elevation. The resulting hybrid scheme has

been used in the practical applications, giving accurate and stable results. Nevertheless,

it is important to remark that the water depth gradient in all the applications was quite

smooth.

It turned up that, even if the flow is fully turbulent in all the applications, the impor-

tance of the turbulence modelling is much dependent on the problem, to the point that in

the Crouch estuary turbulence has not importance at all in the global flow field, while in

the fishway its role is critical. Still, it should be remarked that the turbulence field might

be important in order to compute sediment transport or dispersion of pollutants, which

are problems usually dominated by turbulent diffusion.

The comparison between the numerical and experimental results in the applications

presented in section 4 showed that the depth averaged shallow water equations, coupled

with a suitable turbulence model, may be used in order to compute the free surface flow

in vertical slot fishways as well as the tidal flow in complex estuaries with extensive tidal

flats. The importance of a correct turbulence modelling in the fishway was confirmed by

the numerical results. The k − ε model give fairly accurate velocity fields.
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