
Numerical simulation of flood waves induced by landslides

A. Serrano-Pacheco, J. Murillo, P. Garćıa-Navarro and P. Brufau
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Abstract

The objective of the work is to design and test a numerical approach able to

deal with a class of phenomena quite important for the dam safety, as are the floods

induced by landslides. The physical phenomena involved are described assuming

that the fluid flow is composed of two layers of incompressible immiscible fluids,

a lower heavily concentrated layer of mud flow and an upper layer of clean water.

The movement of both layers is governed by a hydrostatic pressure model, based on

the two-dimensional shallow water equations. A Bingham fluid model characterizes

the landslide movement of the lower layer. An explicit first order in space and

time upwind finite volume scheme is used to discretize the system of equations, by

means of the Roe’s approximate Riemann solver. A special treatment of the source

terms arising from the stratification of the layers and the viscous model is required

to satisfy exact conservation of the variables involved in equilibrium conditions.

The results indicate that the numerical scheme computes the landslide and flooding

advance accurately. The numerical scheme was applied to the Santa Liestra dam

project on the Esera river (Spain) as a real size practical case, to estimate the

impacts of the possible landslides could produce in the zone of the project.

1 Introduction

Dams are usually built in valleys where active erosion is present, and some are in

active earthquake areas. Therefore, reservoirs can be vulnerable to landslides activated

by earthquakes or by heavy rains and they could generate large waves that can produce

flooding over banks or overtopping the dam crest.

As dam safety is a significant issue in dam engineering, studies of these natural ac-

cidents and their consequences must be considered in the project phase of a dam and

regular operation stages, especially when the construction site is placed in a high risk
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seismic activity zone, or when the geological study of the banks indicates the existence

of a potential landslide area. The study of these phenomena, including slope failures, the

generation of waves and their impacts on the dam should be integrated.

Studies of natural landslides that occur in dam reservoirs show that they were induced

mainly by earthquakes or heavy rains. Several ways of landslides classification could be

used: sliding mass can be initially non submerged, partially or completely submerged; the

material can be more or less compact or dense, granular or fine (rock and soil, snow); the

sliding mass volume could be variable from small to great volumes; sliding mass velocity

at the moment of the impact is dependent on the balance of forces/moments, which are

influenced by the dynamic properties of soil, by the soil brittleness and by topographic

effects; the size or volume, and the reservoir depth.

Experimental studies of impulse waves generated by landslides composed by granular

rockslide were presented in [5], and other authors like [4].

The Santa Liestra reservoir has been proposed to regulate 81.9 Hm3 at the upper

part of the Esera river, in the Spanish Pyrenees. There was a controversy due the risk

associated with potential landslides in the nearby mountains forming the banks of the

future reservoir. A study of the waves generated by landslide is in [10]. In this study,

they analyzed the effect of the landslide could produce in the zone of the Santa Liestra

dam project, with one-dimensional model. The present work is a more detailed study of

the hypothetical flood waves that could be triggered by the reservoir’s bank failure.

2 Mathematical Model

The main assumptions of the mathematical model are:

• The physical phenomena involved are described assuming that the fluid flow is

composed of two layers of incompressible immiscible fluids.

• The movement of both layers is governed by a hydrostatic pressure model, based on

the two-dimensional shallow water equations.

• An explicit first order in space and time upwind finite volume scheme is used to

discretize the system of equations (Roe’s approximate Riemann solver).

A sketch of the model is shown in figure 1. The water flow, in some circumstances,

can be modeled according to the shallow water equations (see [8]). The two dimension

shallow water equations can be obtained by depth-averaging the Navier-Stokes equations,

leading to:
∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(x,y,U), (1)

200



where the the expression for one layer is:

U =




h

hu

hv


 , F =




hu

hu2 +
1

2
gh2

huv


 ,

G =




hv

huv

hv2 +
1

2
gh2


 , S =




0

gh

(
∂(z + h)

∂x
−

τx

ρ

)

gh

(
∂(z + h)

∂y
−

τy

ρ

)




.

(2)

When describing a shallow water problem with two fluid layers, the formulation

changes to:

U =




h1

h1u1

h1v1

h2

h2u2

h2v2




, F =




h1u1

h1u
2
1 +

1

2
gh2

1

h1u1v1

h2u2

h2u
2
2 +

1

2
gh2

2

h2u2v2




,

G =




h1v1

h1u1v1

h1v
2
1 +

1

2
gh2

1

h2v2

h2u2v2

h2v
2
2 +

1

2
gh2

2




, S =




0

gh1

(
∂(z2 + h2)

∂x
−

τx1

ρ1

)

gh1

(
∂(z2 + h2)

∂y
−

τy1

ρ1

)

0

gh2

(
∂z2

∂x
−

τx2

ρ2

− r
∂h1

∂x

)

gh2

(
∂z2

∂y
−

τy2

ρ2

− r
∂h1

∂y

)




,

(3)

where script 1 refers to the upper layer, and 2 to the lower layer (see figure 1), h is

the depth of the fluid, u and v are the velocity component in the x and y directions,

respectively, ρ is the density of the fluid, g the gravity acceleration value, r is the ratio of

the densities (the terms τ/ρ are the energy slopes). To calculate these terms a Manning’s

relationship was used for layer 1, and a rheological model for layer 2.

The energy slope terms are calculated with, for the upper layer, the Manning’s equa-

tion,and for the lower layer using the Turbulent, Coulomb and Yield rheological model

(see [11]).

τx1

ρ1

= Sfx1 =
n2

1u1

√
u2

1 + v2
1

h
4/3

1

,
τy1

ρ1

= Sfy1 =
n2

1v1

√
u2

1 + v2
1

h
4/3

1

, (4)
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Figure 1.— Diagram of the two-layer model.

τx2

ρ2

= Sfx2 +
τi

ρ2gh2

=
n2

2u2

√
u2

2 + v2
2

h
4/3

2

+
τi

ρ2gh2

,

τy2

ρ2

= Sfy2 +
τi

ρ2gh2

=
n2

2v2

√
u2

2 + v2
2

h
4/3

2

+
τi

ρ2gh2

,

(5)

where n is the Manning’s roughness coefficient, and τi is the shear stress, which must be

overcome for the movement to start, and is estimated by:

τi = min (τy, ρ2gh2 cos α tan δ) , (6)

with α y δ the slope angle and the Coulomb friction angle, respectively. τy is the yield

strength. All these parameters depend of the characteristic of the material.

A finite volume method to solve the system of equations was used. Reformulating

system (1), we get
∂U

∂t
+
−→
∇E(U) = S(x,y,U), (7)

where the flux E = [F,G] is defined in order to highlight the conservative law structure

of the system in the homogeneous case.

3 Numerical Model

In the two-dimensional approach presented in this work, the spatial domain of inte-

gration is covered by a set of cells, and a finite volume method is formulated where all

the dependent variables of the system are represented as piecewise constant per cell. The
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method used to solve the system of shallow water equations (1) will follow the previous

works [8] and [7].

Integrating over the volume Ω the equation (7), leads to

∂

∂t

∫

Ω

UdΩ +

∫

Ω

(
−→
∇E)dΩ =

∫

Ω

SdΩ. (8)

Using the Gauss’s theorem in the second term of the (8), gives

∂

∂t

∫

Ω

UdΩ +

∮

δΩ

(E · n)dΩ =

∫

Ω

SdΩ. (9)

The domain of integration is approximated by the sum over the grid cells.

δUi

δt
Ai +

∮

∂Ω

(E · n)dS =

∫

Ωi

SdΩ, (10)

where Ai is the area of the cell Ωi. The normal flux at the edge of the cells k is approxi-

mated by
∮

∂Ω

(E · n)dS ≈

NE∑

k=1

(∂Ek · nk)sk, (11)

as an starting point for the derivation of the first order flux difference splitting technique,

where k represents the index of the edge shared between cells Ωi and Ωm, the vector ni,k

is the unit outward normal in the cell Ωi on edge k, lk is the length of the edge k (see

figure 2, where i = R and m = L), (∂E · n)i,k is the numerical flux difference across the

cell edge, Ei and Em are evaluated at cells m and i, and NE is the number of edges that

define the cell.

The problem is then reduced to a one-dimensional Riemann problem projected onto

the direction ni,k at each cell edge. Roe [12] defined an approximated flux Jacobian, J̃n

for the Euler equations, and the approximate flux Jacobian for the coupled system shallow

flow can be defined as

∂ (E · n)i,k = J̃n∂Ui,k, (12)

where

J̃n =

(
J̃n1 0

0 J̃n2

)
. (13)

The elements of this matrix can expressed as follows:

J̃nj =




0 nx ny

(gh̃j − ũ2
j)nx − ũj ṽjny ṽjny + 2ũjnx ṽjny

(gh̃j − ṽ2
j )ny − ũj ṽjnx ṽjnx ũjnx + 2ṽjny


 , (14)

where j is 1 for the upper-layer (clean water), and 2 for the lower-layer (mud flow).

The eigenvalues of the approximated Jacobian matrix are

λ̃1
k = (ũ1 · n + c̃1)k , λ̃2

k = (ũ1 · n)k , λ̃3
k = (ũ1 · n− c̃1)k ,

λ̃4
k = (ũ2 · n + c̃2)k , λ̃5

k = (ũ2 · n)k , λ̃6
k = (ũ2 · n− c̃2)k ,

(15)
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Figure 2.— Diagram of the triangle cell.

and the corresponding eigenvectors are

ẽ1 =




1

ũ1 + c̃1nx

ṽ1 + c̃1ny

0

0

0




, ẽ2 =




0

−c̃1ny

c̃1nx

0

0

0




, ẽ3 =




1

ũ1 − c̃1nx

ṽ1 − c̃1ny

0

0

0




,

ẽ4 =




0

0

0

1

ũ2 + c̃2nx

ṽ2 + c̃2ny




, ẽ5 =




0

0

0

0

−c̃2ny

c̃2nx




, ẽ6 =




0

0

0

1

ũ2 − c̃2nx

ṽ2 − c̃2ny




.

(16)

Roe’s average approximation is used, thus,

ũj =
uRj

√
hRj + uLj

√
hLj√

hRj +
√

hLj

, ṽj =
vRj

√
hRj + vLj

√
hLj√

hRj +
√

hLj

, c̃j =

√
g
hRj + hLj

2
. (17)

Following a flux difference procedure, the difference in vector U across the edge is

projected onto the matrix eigenvectors basis as

δU =

Nλ∑

m=1

(αẽ)m
k , (18)
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where the expression of coefficients αk are

α1,3
k =

δh1,k

2
±

1

2c̃1,k
(δq1,k − ũ1,kδh1,k) · n, α2

k =
1

2c̃1,k
(δq1,k − ũ1,k) · nT ,

α4,6
k =

δh2,k

2
±

1

2c̃2,k

(δq2,k − ũ2,kδh2,k) · n, α5
k =

1

2c̃2,k

(δq2,k − ũ2,k) · nT ,
(19)

and qj = (qxj, qyj) (j is 1 for upper layer, and 2 for the lower layer), and nT = (−ny, nx)

is the tangential vector to the edge.

The δE · nk contributions at a cell edge k can be written as

δE · nk =
NE∑

k=1

Nλ∑

m=1

(λ̃mαmẽm)klk. (20)

The bed slope and the rheological source terms have been discretized, according to

[13], in an upwind form in order to ensure the best discrete balance with the flux terms

at least in steady state. At every edge k of every cell Ωi the source term participates with

the in-going contributions built as before:

U∗

i
= Un

i
−

NE∑

k=1

Nλ∑

m=1

((λ̃mαm − βm−)ẽm)n
i

sk

Ai

∆t, (21)

such that coefficients β are defined as

β1 = −
c̃1

2
δz1, β2 = 0,

β3 =
c̃1

2
δz1, β4 = −

c̃2

2

(
δz2 +

τidn

ρ2gh̃2

+ rδh1

)
,

β5 = 0, β6 = −
c̃2

2

(
δz2 +

τidn

ρ2gh̃2

+ rδh1

)
,

(22)

where dn is the distance between cell centroids projected onto the n vector, and h̃2 =
1

2
(h2R + h2L), is depth average between neighboring cells.

To avoid oscillations in the solution, the following condition must be fulfilled

(hu)n+1
i =





≥ 0 if (hu)n
i > 0

≤ 0 if (hu)n
i < 0

(hv)n+1
i =





≥ 0 if (hv)n
i > 0

≤ 0 if (hv)n
i < 0

(23)

In order to avoid that the rheological term would be unable to change the sign of the

discharges, the following conditions are enforced over the unit discharge function hu:

(hu)n+1
i = (hu)n

i −

(
higτ ∗dnlk

Ai

)n

i

∆t = (hu)n
i

(
1 −

gτ ∗dnlk
un

i

∆t

)
, (24)

where τ ∗ is the second term of the equation (5).
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To satisfy condition (23), the following condition over the time step is proposed:

∆t = CFL min





Amin,k

max
[
|λ̃m

k |
]
lk

,
|ũ|Amin,k

gτdnlk





k=1,Nedge

(25)

The first term of (25) represents the time step condition according of the numerical

model (more details in [8]), and the second one, is the time step restriction to satisfy (23)

to prevent change in the direction of the discharges.

4 Applications

4.1 Test Cases

In order to evaluate the behavior of the proposed model, a series of numerical test

cases haven been analyzed. Twelve different test cases were invented, but only three of

them are presented in this work. The computation domain for all cases is 2000 m and 20

m, and the Manning’s roughness coefficient is 0.2 s/m1/3. Two different conditions were

analyst for each case, two liquid layers and liquid and mud layers.

In the case of two liquid layers, the ratio of densities used was r = 0.98. For liquid

and mud layers, the value of r was 0.56, the yield strength 2300 Pa and the δ = 10.

All computational cases were simulated with different grid refinement, with no significant

differences in the results.

4.1.1 Test Case 1

In this case, a dam break of the lower layer was analysed. Figure 3a and figure 4a show

the initial condition for two liquid layers and liquid and mud layers, respectively. The

initial level of the upper layer was 50 m and for the lower layer 30.5 m, in both cases.

Figure 3 shows the results for the test case 1 for liquids layers. As it can be seen

in the results, the model behaves according which expected. The equilibrium condition

obtained with the model, for the liquid layers test case, is horizontal (see figure 3d).

On the other hand, for the liquid and mud layers, the equilibrium condition for the

upper layer was horizontal, that is the equilibrium condition of liquid (see figure 4d).

4.1.2 Test Case 2

In this case, the symmetry in the final solution is evaluated. The initial conditions are

shown in the figures 5a and 6a for the two liquid layers, and liquid and mud layers,

respectively. They show a huge column of material of layer 2 in the center of the domain.

The height of the column of mud is the 50 m and the level of the water is 30.5 m.

Besides, to evaluate the discretizetation of the bed slope term, the level bottom elevation
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Figure 3.— Results for the Test Case 1 for two liquid layers, (a) initial condition, (b)

200 s, (c) 500 s, and (d) equilibrium condition.

is variable. The aim of these examples was to evaluate the symmetry in the results during

the simulation.

Plots 5b, and 5c show the results at 200 s, and 500 s, respectively. These plots show

that the symmetry in the results is satisfied for this case. For the liquid and mud layers

(see plots 6b and 6c) this symmetry is satisfied as well.

The equilibrium condition for the two liquid layers is shown in the plot 5d. The

graphics shows again that the obtained levels for both layers is horizontal. For the liquid

and mud layers, the equilibrium condition is displayed in figure 6d. Besides, for the upper

layer, the obtained level is horizontal and solution is symmetry.

4.1.3 Test Case 3

In this case, the lightest layer was located in the middle of the domain (layer 1), and at

the edges of the domain, there are two columns of layer 2. As well as in the previous

example, the idea of this case is to evaluate the symmetry in the solution during the

simulation. In this case, the level of the lightest layer is 30.5 m height and 50 m for the
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Figure 4.— Results for the Test Case 1 for liquid and mud layers, (a) initial condition,

(b) 200 s, (c) 500 s, and (d) equilibrium condition.

other layer (layer 2), and the bottom elevation is variable, and has the same shape of the

test case 2.

Figure ?? show the initial condition, the results at 200 s, 500 s and the equilibrium

condition for the two liquid layers. As shown there, the results are symmetric during the

simulation (see figure ??b, and ??c). Figure ??d shows that the equilibrium condition

the level of both layers is horizontal.

On the other hand, in figures 8 display the initial, results at 200 s, 500 s, and equi-

librium conditions for the liquid and mud layers. The obtained results for this case show

the symmetry in the solution during the simulation as well, and the equilibrium level for

the upper layer is horizontal.

4.2 Santa Liestra Dam Project

The presented in the previous section will be applied to a case characterized by irreg-

ular cross section and realistic dimensions. The problem consists of the evaluation of the

consequences of the potential catastrophic displacement of an important volume of solid
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Figure 5.— Results for the Test Case 2 for two liquid layers, (a) initial condition, (b)

200 s, (c) 500 s, and (d) equilibrium condition.

material into the dam project Santa Liestra reservoir, on the Esera river in the Spanish

Pyrenees. The construction of the reservoir at that location is intended to regulate 81.9

Hm3, at the upper part of the river. In 2000, CEDEX made an internal report [3] and

obtained some useful geological data [1]. Figure 9, shows the topographic location of the

reservoir. The maximum envisaged water level is 642 m (full reservoir) and the location

of the potential sliding area at the left bank of the Esera river. The volume of the ma-

terials involved is around 20 Hm3 according to the geological prospections. Besides, the

kind of materials and their fractured and weathered state, and the fact that the lower

land would become saturated when filling the reservoir contribute to the possibility of a

sudden failure. The present work, however, does not focus on the conditions under which

the slide could be triggered. This study starts from the hypothesis that the slide takes

place and is motivated by the consequences of the impact over the stored water in the

reservoir. The maximum risk scenario follows the hypothesis made in previous studies

[3]. The figure 10d shows the condition at time 400 s, at this time the reservoir will be

separated in two water bodies. For this reason, the area at the end of the reservoir will
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Figure 6.— Results for the Test Case 2 for liquid and mud layers, (a) initial condition,

(b) 200 s, (c) 500 s, and (d) equilibrium condition.

be flooded. In order to have an idea of the volume of the material, the figures 10 show

the form of bottom level and water surface level longitudinal longitudinal profiles along

the river axis. In figure 10b shows of the falling material at 50 s after the beginning of

landslide. At that time, almost landslide material has fallen into the reservoir.

The parameters of the rheological model have been modified, in order to analysis

the sensitivity of the model. The different values used were chosen for the different soil

characteristics. The frictional angle was tested with values between 10 and 30 degrees,

and the yield strength between 1000 and 3000 Pa, with no significant differences in the

final results. The results presented for this paper in figure 10 were for 10 degrees for the

angle and 2300 Pa for the yield strength.
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Figure 7.— Results for the Test Case 3 for two liquid layers, (a) initial condition, (b)

200 s, (c) 500 s, and (d) equilibrium condition.
labelcase31
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Figure 8.— Results for the Test Case 3 for liquid and mud layers, (a) initial condition,

(b) 200 s, (c) 500 s, and (d) equilibrium condition.
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Figure 9.— View plant of the Santa Liestra dam project.
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Figure 10.— Longitudinal section of the Esera river at (a) 0 s, (b) 50 s, (c) 100 s, and

(d) 200 s.
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5 Conclusions

The proposed model has been presented as a tool to simulate landslide movements

and their interaction with shallow water bodies.

From the numerical point of view, it can be concluded that the scheme used is appro-

priate for this kind of problem. Besides, the mass conservation analysis gave errors on the

order of 10−5 %. All the cases (except of the Santa Liestra dam project) were simulated

using a several degrees of grid refinement. Numerical solutions become grid independent.

The sensitive analysis showed that the rheological model used does not present signif-

icant changes in the results with different values of the parameters.

Although further validation of this model is required, the proposed methodology can

be considered a valuable starting point. This study shows the need of the experimental

data on this field.

Future work envisaged to incorporate more rheological relationships, in order to in-

crease the application range of the model is envisaged.
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