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Abstract

The application of a finite volume numerical scheme for 2D shallow-water equa-

tions to flood events in the Ebro River is presented. The area of interest is a Natural

Reserve playing an important role in protecting human settlements from flooding

events and developing important biological functions like water quality improve-

ment, wildlife refuge, landscape heterogeneity, etc. The hydraulic model used is

based in the 2D transient shallow water equations on irregular bed solved with an

explicit finite volume upwind scheme able to compute flow advance over dry bed.

This model has been calibrated during the last years in a wide range of real and

academic cases giving an efficient result. This study involves the reliable simulation

of, not only the flood event itself but the drying processes. It is necessary to remark

the importance of the correct characterisation of the roughness coefficient and the

topography. The former is estimated from a previous classification of structurally

homogeneous habitats and the latter is defined by merging the DTM data with the

field-measured ones. The calibration of the suitability of the model to solve this

problem is based on different sets of field measurements: flooded area and water

levels measured during a flood event and time series of point-wise measurements of

water-depth and velocity during different situations along the year. Hydrological

connectivity is highly related to the exchange processes of nutrients and particu-

late matter between the river and the floodplain. It represents an indicator of the

dynamics of the ecological processes in the floodplain and, consequently, is a key

factor to be considered for the restoration of degraded habitats of floodplains. The

model presented is a tool that helps to analyse the surface processes involved.

Keywords: Hydrological connectivity, Unsteady surface flow, wetting/drying, Fi-

nite volume, Shallow-water.
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1 Introduction

Flooding facilitates the exchange of materials and energy between rivers and their flood-

plains ([4], [17], [1]). Hydrological connectivity is the driving force of the lateral exchange

processes, both via surface flow and via groundwater pathways ([19]). In the past cen-

tury, flow regulation has reduced or eliminated hydrological and ecological interactions

between many rivers and their floodplains ([16]). To interpret and predict the changes in

ecological characteristics of riparian wetlands across multiple spatial and temporal scales,

it is essential to know the hydrological relationships between the river and its floodplain.

On shorter time scales (days to months), the hydrological connectivity between landscape

elements varies in response to the flow pulse, that is, water level fluctuations that are

well below bankfull ([19]). On an annual or supra-annual scale, erosive floods are capable

of creating and maintaining habitat patches at a variety of successional stages, which, in

turn, determine the overall permeability and complexity of the landscape matrix ([18],

[15]). It is clear that hydrological connectivity is a key factor to be considered in hy-

drological restoration, but floodplain topography is an important consideration in the

restoration of lowland rivers ([2]). In this context, the numerical simulation of the over-

land water flow is used as a tool to know the hydrological floodplain dynamics and to

predict the hydrological dynamic when a terrain change happens, like gravel deposition,

dyke broke, dyke construction, etc.

In recent years, finite volume techniques based on upwind and TVD (Total Variation

Diminishing) numerical schemes have been successfully applied in Fluid Dynamics to

simulate one and two-dimensional free surface flows ([8], [12]). In particular, one- and

two-dimensional numerical models have been developed as tools to design and manage

river basin systems. In river modelling, the flow can be assumed to be governed by

the Shallow Water equations ([7]) where the bottom friction and bed level irregularities

have been shown to influence not only flood waves behaviour but also numerical methods

performance drastically. The hydraulic model is based on the shallow water flow equations

in two dimensions and is used to simulate unsteady flows in complex geometries. A cell

centered finite volume method based on Roe’s approximate Riemann solver ([5], [6]) across

the edges of both structured and unstructured cells is used. The discretization of the bed

slope source terms is done following an upwind approach ([13]). In some applications

a problem arises when the flow propagates over adverse dry bed slopes, so a special

procedure has been introduced to model the advancing front. It has been shown that

this modification reproduces exactly the steady state of still water in configurations with

strong variations in bed slope and contour and provides a fully conservative solution in

all cases ([14], [10]). The scheme is able to handle complex flow domains as will be shown

in the simulations corresponding to the field test cases that are going to be presented.
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2 Description of the study area

The study area is in the Middle Ebro River in northeast Spain and comprises a watershed

area of 85362 km2. The Ebro River, 910 km long, is the largest river in Spain. It has

an annual discharge into the Mediterranean Sea of 18138 hm3/y and remains geomor-

phologically active despite the presence of 170 dams and reservoirs on the river and its

tributaries. The reach of the Ebro River in the study area forms a meander (211 ha, river

wide: 110 m with one island and an oxbow lake) situated downstream Zaragoza city and

included in the Natural Reserve “Los Galachos” (see Fig.1). The discharge, averaged over

the years 1927 to 2003, within this reach is 230 m3/s and the surface elevation ranges

from 175 m asl at the river channel to 185 m asl at the base of the old river terrace. The

flooded area by the 10-yr return period flood (3000 m3/s, 1927–2003) is 211 ha, although

only about 14% of the area is flooded by a river discharge of 1000 m3/s (0.37 y return

period, 1927–2003), and only 4% is flooded by a river discharge of 600 m3/s (0.14 y return

period, 1927–2003). The oxbow lake is connected with the river when the discharge is

1000 m3/s, it occurs 1–3 times per year. During the last century, the number and extent

of permanent water bodies has declined considerably.

Figure 1: Area of study.

2.1 Topography

The Digital Terrain Model (DTM) used in this paper was provided by the Ebro River

Basin Administration (www.chebro.es) as a support to the research project. It had been

obtained using the Laser light detection and ranging (LIDAR) technology. The DTM has

0.15 m accuracy and 1m resolution that supplies good quality information about all the

surface not covered by water. The main channel shape has been characterised with an in-

situ bathymetry using a depth portable sounder. A bed elevation map of the full domain

was thereafter produced by interpolating these measured values with the DTM data. For
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the terrain discretization we use the ArcGis software (resample tool), by transforming the

network from 1 m resolution to 5 m.

2.2 Roughness

The floodplain roughness has been characterised dividing the floodplain in a set of habitats

of homogeneous structure. The roughness coefficient has been assigned to each habitat

according to the recommendations found in the specialized bibliography .

3 Simulation model

The water flow, in some circumstances, can be modelled according to the shallow water

model [10]). This is a system of equations derived from the Navier-Stokes equations for

incompressible flow by averaging in the water depth ([7]). It can be written as:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(x, y,U), (1)

U =




h

hu

hv


 , F =




hu

hu2 + 1

2
gh2

huv


 ,

G =




hv

huv

hv2 + 1

2
gh2


 , S =




0

gh(S0x − Sfx)

gh(S0y − Sfy)


 ,

(2)

where h is the water depth, u is the x-component of the depth averaged flow velocity, v is

the y-component of the depth averaged flow velocity, g is the acceleration of the gravity,

S0x and S0y are the bed slopes in the x and y directions respectively, and Sfx and Sfy are

the hydraulic energy slopes also in the x and y directions:

S0x = −∂z

∂x
, S0y = −∂z

∂y
, (3)

Sfx =
n2u

√
u2 + v2

h4/3
, Sfy =

n2v
√

u2 + v2

h4/3
, (4)

where the energy slopes have been modelled by means of the semi-empirical Manning

friction law [7]. The functions (3) and (4) determine the source terms in the shallow

water system of equations (1). The system is hyperbolic and will be solved by means of

a finite volume method so that it is convenient to reformulate it as:

∂U

∂t
+
−→∇E(U) = S(x, y,U), (5)
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where the flux E = [F,G] is defined in order to highlight the conservative law structure

of the system in the homogeneous case. The integration of (5) within a volume Ω, gives:

∂

∂t

∫

Ω

UdΩ +

∫

Ω

(
−→∇E)dΩ =

∫

Ω

SdΩ. (6)

Using the Gauss theorem in the second term:

∂

∂t

∫

Ω

UdΩ +

∮

δΩ

(E · n)dΩ =

∫

Ω

SdΩ, (7)

where δΩ represents the surface limiting the volume Ω and n the outward unit normal

vector. It is useful to define the Jacobian matrix Jn of the normal flux (E · n) of our

hyperbolic system of equations, so that:

Jn =
∂(E · n)

∂U
=

∂F

∂U
nx +

∂G

∂U
ny, (8)

with components:

Jn =




0 nx ny

(gh − u2)nx − uvny vny + 2unx vny

(gh − v2)ny − uvnx vnx unx + 2vny


 (9)

The eigenvalues of Jn represent the characteristic celerities of the information relevant

in our model:

λ1 = u · n + c, λ2 = u · n, λ3 = u · n − c, (10)

where u = (u, v), n = (nx, ny) and c =
√

gh is the celerity of the small amplitude surface

waves. The eigenvectors of the normal Jacobian are:

e1 =




1

u + cnx

v + cny


 , e2 =




0

−cny

cnx


 , e3 =




1

u − cnx

v − cny


 . (11)

Matrices P and P−1 can be built from the eigenvectors so that they diagonalize Jn:

Jn = PΛP−1, Λ = diag(λ1, λ2, λ3). (12)

P =




1 0 1

u + cnx −cny u − cnx

v + cny cnx v − cny


 ,P−1 =

1

2c




−u · n + c nx ny

2(uny − vnx) −2ny 2nx

u · n + c −nx −ny


 . (13)

This is the basis of the finite volume method. Next, the discretization technique is

outlined.
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4 Numerical Method

The method used to solve the system of shallow water equations (1) will follow the pre-

vious works [8] and [10]). This is a cell centered finite volume method formulated so

that the functions are piecewise constant per grid cell or first order in space ([3]). The

computational domain is discretized in either triangular or quadrilateral cells that can

be aligned or not with the coordinate axis. So the method is designed to work on both

structured and unstructured grids. A discrete approximation is applied to (7) all over the

mesh cells Ωi at a given time. The integration along one time step can be interpreted as

the time variation of the integral over the cell area and the surface integrals represent the

total flow across the boundaries. Calling Ui the uniform value of the conserved variables

in volume/grid cell Ωi at a given time, (7) can be rewritten:

δUi

δt
Ai +

∮

∂Ωi

(E · n)dS =

∫

Ωi

SdΩ, (14)

where Ai is the area of cell Ωi. The grid is assumed fixed in time and the surface/contour

integral is approximated by a sum over the cell edges. The normal flux is evaluated

following an upwind flux difference splitting technique ([3]) as follows:

∮

∂Ω

(E · n)dS ≈
NE∑

k=1

(δEk · nk)sk, (15)

and subindex k labels the edges of the cell Ωi, NE represents the number of cell edges (4

if rectangular and 3 when triangular). The unit vector nk is the ourward normal to cell

edge k, sk being the length of that side and δEk · nk is the normal flux difference.

Upwind schemes are based on the idea of discretizing the flux spatial derivatives according

to the propagation of the relevant physical information ([9]). When dealing with conser-

vation laws with source terms, the later must be discretized in the same form as the flux

derivative terms [20], [8]. The discrete evaluation of flow and source terms at the same

local state is important in many cases to achieve discrete equilibrium at steady state [13],

[10] and therefore to make sure that the numerical solution has the best properties during

transients.

The existence and the properties of the Jacobian matrix allow a local linearization [5],

of the form:

δ(E · n) = J̃RLδU, (16)

with δU = UR − UL calling ΩL the left cell to a given edge and ΩR the right cell (the

normal vector to the edge is assumed to point from L to R), as sketched in figure 2.

This linearization can be used to build the discretization of the normal fluxes across

the computational cell edges. The local definition of an approximate Jacobian matrix, J̃RL
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ΩL

ΩRn

sk

Figure 2: Elements in a structured triangular grid.

is required. According to Roe [5], matrix J̃RL has the same form as Jn but is evaluated

at an average state given by the quantities ũ = (ũ, ṽ) and c̃, which must be derived from

the matrix properties:

1. J̃RL = J̃RL(UR,UL)

2. (E · n)R − (E · n)L = J̃RL(UR −UL)

3. J̃RL = J̃RL(UR) = J̃RL(UL) if UR = UL

Therefore,

J̃RL =




0 nx ny

c̃2nx + ũ · nũ ũnx + ũ · n ũny

c̃2ny − ũ · nṽ ṽnx ṽny + ũ · n


 , (17)

where

ũ =
uR

√
hR + uL

√
hL√

hR +
√

hL

, ṽ =
vR

√
hR + vL

√
hL√

hR +
√

hL

, c̃ =

√
g
(hR + hL)

2
. (18)

The basic procedure in our method starts by a projection of the vector δU, defined at

a cell edge, on the basis of eigenvectors:

δU = UR − UL =
3∑

m=1

αmẽm (19)

Where the expressions for the coefficients αm are:

α1,3 =
δh

2
± 1

2c̃
(δq − ũδh) · n, α2 =

1

c̃
(δq − ũδh) · nT. (20)
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Then, at every cell edge, the matrix J̃n is replaced by its eigenvalues and eigenvectors

in the evaluation of the normal flux difference J̃RL(UR − UL) as follows:

J̃RL(UR −UL) =
3∑

m=1

λ̃mαmẽm. (21)

In order to discriminate the sign of the advection in the eigenvalues, the new matrices

Λ± are used, with Λ± = (Λ ± |Λ|)/2, therefore,

δ(E · n) = J̃RLδU = P̃Λ̃P̃−1δU = P̃(Λ̃+ + Λ̃−)P̃−1δU,

δ(E · n) = P̃Λ̃−P̃−1δU︸ ︷︷ ︸
Ingoing wave

+ P̃Λ̃+P̃−1δU︸ ︷︷ ︸
Outgoing wave

. (22)

Only the information carried by the ingoing wave to a cell is used to update the

conserved variables. Hence, prior to including the source terms:

δUi

δt
Ai = −

NE∑

k=1

3∑

m=1

(λ̃m−αmẽm)n
ksk, (23)

where λ− = (λ − |λ|)/2.

A specific modification of the Riemann solver is used to overcome the generation of

the negative values of depth, that can appear as a consequence of existing wetting/drying

fronts. More details of the modification can be found in [10].

The size of the time increment in an explicit scheme such as (15) is limited by numer-

ical stability reasons and controlled by the Courant-Freidrichs-Lewy (CFL) dimensionless

number or CFL condition

∆t = CFL ∆tCFL
max , CFL ≤ 1. (24)

Where the maximum time step size is chosen among all the NCELL cells:

∆tCFL
max = min

(
∆tCFL

max,i

)
i=1,NCELL

, (25)

and

∆tCFL
max,i =

(
min(AR, AL)

max(λ̃m−

k )sk

)

k=1,NE

. (26)

4.1 Bed slope source terms

The bed slope source terms have been discretized, according to [13], in an upwind form

in order to ensure the best discrete balance with the flux terms at least in steady state.

At every edge k of every cell Ωi the source term participates with ingoing contributions

built as before:
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U∗

i = Un
i −

NE∑

k=1

3∑

m=1

((λ̃mαm − βm)ẽm)n
k

sk

Ai
∆t, (27)

so that the coefficients β are defined as:

β1 = − c̃

2
δz β2 = 0 β3 = −β1. (28)

Note that the superscript ∗ denotes the value of the updated variable.

4.2 Friction source terms

The friction term, R, representing, as said before, the energy slopes is a vector of com-

ponents:

R =




0

−ghSfx

−ghSfy


 . (29)

According to Brufau et al. ([14]), a pointwise explicit treatment of the friction term

produces numerical oscillations when the roughness coefficient is high. Furthermore, near

wetting/drying fronts, characterized by small values of water depth, this term dominates

over any other influence. To avoid oscillations in the solution, the following condition

must be fulfilled:

(hu)n+1
i =





≥ 0 if (hu)n
i > 0

≤ 0 if (hu)n
i < 0

, (hv)n+1
i =





≥ 0 if (hv)n
i > 0

≤ 0 if (hv)n
i < 0

. (30)

To handle properly the friction term, Brufau ([12]) proposed the following splitting

technique:

(hu)n+1
i = (hu)∗i − (ghiSfx)

n+1
i ∆t,

(hv)n+1
i = (hv)∗i − (ghiSfy)

n+1
i ∆t,

(31)

where the values signalled with * are obtained using the updating formula ((27)), assuming

that the friction term is not considered in the upwind discretization. Denoting by

Sf =
n2|u|
h

4

3

, (32)
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and considering Sn+1

fi
∼= S∗

fi, equation (31) is:

(hu)n+1
i = (hu)∗i − (hu)n+1

i (Sf)
∗

i ∆t,

(hv)n+1
i = (hv)∗i − (hv)n+1

i (Sf)
∗

i ∆t.

(33)

Therefore, the stability is unconditionally and the previously calculated values of the

variables are updated in a rather straightforward way as follows.

(hu)n+1
i =

(hu)∗i
1 + (Sf )∗i g∆t

, (hv)n+1
i =

(hv)∗i
1 + (Sf)∗i g∆t

. (34)

5 Results

To calibrate the model, institutional aerial photographs of previous flooding events and

local field measurements of depth water, velocity and flooded area taken by the research

team were used.

Nowadays the introduction of digital terrain models (DTM) provides data of great

accuracy, but does not furnish any information of the region covered by the water. The

definition of the river bottom bed level elevation in 2D simulations is not straightforward

as this information is only known at a few cross sections. The interpolation methods

based on statistical treatment of the overall information, such as the GIS tools, provide

incorrect results when reconstructing the river bed and are therefore unable to recover

with accuracy the measured field data. In consequence the numerical results for flood

modelling based on the GIS model reconstruction are inaccurate. In a first set of trial

simulations, the ArcGis software (topogrid tool) was used to generate the river bed surface

from the floodpain surface data and a constant discharge of 500m3/s corresponding to field

measured conditions was applied at the inlet boundary with dry bed initial conditions.

The computed floodplain was excessively flooded and many habitats were erroneously

connected to the river. This is displayed in Fig. 3 where the extension of the computed

flooded area has been plotted together with the flooded area measured from differential

GPS Topcon R© (0.03 m accuracy) when the 500m3/s discharge was flowing at steady

state. These results were owing to the main channel interpolation. Then, another in-

terpolation method was developed. It was found that, in order to correctly model the

bottom elevation, the relevant information must be taken only from the measured cross

sections. Also, it is necessary to take into account the sinuosity described by the main

channel and to include this information in the interpolation technique, for instance when

defining the distance metrics. Only in this way it is possible to represent correctly the

river bed variations. The adequacy of the new interpolation technique is shown in Fig. 4

where both computed and photographed flooded areas match.
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The following simulations were performed over the correctly reconstructed river bed.

The events simulated corresponded to measured flood events in which the river discharge

had increased from a steady value (initial condition) to a larger one (maximum discharge)

in a known flooding time. One ordinary event (783m3/s of maximum discharge) with

steady state of 495m3/s as initial condition was the first case. The simulation had six

control points where field measurements of water depth were available to calibrate it as

shown in Fig. 5. The biggest relative error in water level surface at the control points was

−0.48% and all the habitats were found correctly connected to the river. Table 1 displays

the values of the measured and computed water levels at three gauging locations labelled

A, B and C. The flow velocity was laminar at the floodplain, in agreement with the field

measurements. One extraordinary event (1169m3/s of maximum discharge) with steady

state of 495m3/s as initial condition was the first case. The simulation had six control

points where field measurements of water depth were available to calibrate it as shown

in Fig. 5. The habitats were found correctly connected to the river. Table 2 displays the

values of the measured and computed water levels at three gauging locations A, B and C.

Table 1: Upstream discharge Q=783 m3/s.

Field point Measured WL Computed WL Relative Error

A 181.66 m 181.79 m -0.07

B 183 m 183 m 0.00

C 181.31 m 181.31 m 0.00

Table 2: Upstream discharge Q=1169 m3/s.

Fiel point Measured WL Computed WL Relative Error

A 182.63 m 182.56 m 0.04

B 183 m 183 m 0.00

C 181.31 m 181.31 m 0.00

6 Conclusions

The finite volume model based on the unsteady two-dimensional shallow water equations

is an excellent tool to know the hydrological connectivity between the river and the

floodplain. Simulation can help us to interpret the changes in ecological characteristics

and to predict the floodplain hydrodynamic when a terrain modification occurs. The

model can be considered useful in ecological restoration studies.
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Figure 3: Comparison of the observed flooded area and the computed flooded area using

a GIS recontruction of the river bed. Q=500m3/s.
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