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Abstract

Many problems of river management and civil protection consist of the evaluation

of the maximum water levels and discharges that may be attained at particular

locations during the development of an exceptional meteorological event. There is

also the prevision of the scenario subsequent to the almost instantaneous release

of a great volume of liquid. The situation is that of the breaking of a man made

dam. There is therefore a necessity to develop adequate numerical models able to

reproduce situations originated by the irregularities of a non-prismatic bed. It is

also necessary to trace their applicability considering the difficulty of developing a

model capable of producing solutions of the complete equations despite the irregular

character of the river bed. When trying to use mathematical models as a predictive

tool in the simulation of free surface flows, the hypothesis of one-dimensional models

are not always valid. Such is the case when dealing with compound, or highly

irregular, cross-section configurations, abrupt contractions and expansions, or rivers

of high curvature. When trying to reproduce these hydraulic situations, it becomes

necessary to use a two-dimensional formalism which takes into consideration the

influence of transverse components of the flow. Many efforts have been recently

devoted to the development of multidimensional techniques for free surface flows.

1 Introduction

Free surface flows common in Hydraulics are usually described by means of the shal-

low water equations, provided that the representative vertical dimensions are small with

respect to the horizontal dimensions. Despite their simplicity, this description is valid in

many practical applications, rendering worthwhile the efforts in developing good numeri-

cal methods to solve the corresponding system of differential equations.

As in any other case of integration of a system of non linear partial differential equa-

tions, the first difficulty is the choice of the numerical scheme. It must be pointed out that
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numerical results will be a better/worse approach of the exact solution of the equations

depending on the technique adopted for their discretization and on the computational

tools used. Moreover, even using the exact solution of the governing equations, the model

predictions can differ from the observation if the mathematical model does not contain

all the relevant physics, that is, when the model hypothesis are not valid.

Numerical modelling is an option versus experimental techniques. It is sometimes

preferred mainly due to economical reasons but also because of the amount of accesible

information it provides. They are actually two different and complementary tools since,

in particular, experimental data are necessary in order to validate numerical results. Nu-

merical methods are nowadays a common tool to predict flow properties both for steady

and unsteady situations of practical interest in Hydraulics. The application of finite dif-

ferences and finite volumes has been widely reported in particular. We will be concerned

with numerical methods from the finite volume point of view for the resolution of shallow

water equations in one-dimensional (1D) and two-dimensional (2D) approaches. The 1D

approach is valid whenever a more detailed description is not necessary. In other cases of

very irregular geometry, sudden expansions or contractions, high curvature, etc, this ap-

proach can be insufficient and a 2D or 3D description involving other velocity components

becomes necesary.

Traditionally, 1D schemes have been based on central differences and they still domi-

nate the commercial software in the field of computational hydraulics [2, 1] These schemes

were not developed taking into account the mathematical structure of the system of equa-

tions. Hence the quality of their solution depends on the flow conditions. leading in some

cases to totally incorrect results. Second order schemes are known for their oscillatory

behaviour in presence of strong gradients [3] and, therefore, to require some kind of ar-

tificial viscosity used as the easiest way to get rid of undesired numerical effects. The

disadvantage of this option is the global character, that can affect regions of gradually

varied flow, and the necessary tunning.

More recent schemes, known as high resolution schemes, pay spetial attention to prob-

lems with discontinuous solutions or shocks. A fundamental concept in this context is

that of upwind discretization, basic to all this family of techniques. Therefore, a detailed

description of the first order upwind scheme will be presented as well as the main lines

leading to second order extensions. These methods were gradually gaining presence in

the context of the shallow water equations years later of their successful performance in

the field of gas dynamics [4, 3]. The non-linerity of both inviscid Euler and shallow water

equations may complicate their solutions with the appearance of discontinuities reflecting

physical phenomena such as shock waves, hydraulic jumps and bores. The numerical

technique applied is crucial in these cases and the improvement experienced in both fileds

is similar [5, 6]. In general, high resolution techniques are based on mathematical theories
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well established for homogeneous linear problems or 1D homogeneous nonlinear problems.

Among them, Total Variation Diminishing Techniques (TVD) have proved very powerful

[7].

Once some of the schemes suitable for the numerical modelling of the homogeneous

shallow water equations have been described, the problem of the source terms must be

faced. This will be done first for the one-dimensional case and also for the two-dimensional

case. The presence of high bottom slopes, important roughness coefficients and strong

variations within irregular topography represents a great challenge to the model and

can lead to additional numerical errors. The field study devoted to partial differential

equations with source terms is becoming more and more active since it is present in an

important number of problems of practical interest. Roe [4] pointed out the convenience

of discretizing source terms and fluxes in a similar form. In [8, 5] and [9], decomposition

methods to solve advection equations with non-linear source terms are proposed. In

the line of these authors, a way to discretize the source terms when applying upwind

techniques will be presented. If the source terms are discretized in a pointwise manner,

numerical oscilations and inaccuracies can arise both in steady and unsteady calculations.

Both the flux and the bed slope appear in the shallow water model through their spatial

derivatives and that is the reason why their discretization must be analogous in order to

achieve perfect balance at least in quiescent steady state. Due to the initial conditions

in problems of advance over dry bed and mainly in presence of important roughness, the

friction terms become dominant in the equations and can lead to numerical errors if not

properly treated.

Numerical models of overland flow have been applied to a number of practical prob-

lems of interest in Engineering, including overland hydrology, open channel management

and surface irrigation. In the domain of river flow, this type of numerical models are

particularly interesting for the simulation of flood waves and their interaction with ex-

isting structures. Some of the more advanced approaches, reported for two-dimensional

hydraulic problems are based on operator splitting. This consists of regarding the 2D

situation as two 1D problems and then using a one-dimensional scheme for each problem

separately. Usually, Strang’s approximation [10] is followed, and a Cartesian 2D mesh is

often required. Other proposed techniques are the use of the method of characteristics

in 2D [11], Eulerian-Lagrangian techniques, or alternatively, the finite element technique

[12].

In the two-dimensional approach presented in this work, the spatial domain of inte-

gration is covered by a set of quadrilateral or triangular cells, not necessarily aligned with

the coordinate directions. A discrete approximation to the integral form of the equations

is applied in every cell so that the volume integrals represent integrals over the area of

the cell and the surface integrals represent the total flux through the cell boundaries.
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2 1D shallow water equations: Properties

Many hydraulic situations can be described by means of a one-dimensional model,

either because a more detailed resolution is unnecessary or because the flow is markedly

one-dimensional. The fundamental hypothesis implied in the numerical modelling of river

flows are formalized in the equations of unsteady open channel flow. They can be derived,

for instance, from mass and momentum control volume analysis and are a simplified model

of a very complex phenomenon but they are considered an adequate description for most

of the problems associated with open channel and river flow modelling under the St.

Venant hypotheses [2]. The 1D unsteady shallow water flow can be written in the form

∂U

∂t
+

∂F

∂x
= R, (1)

with

U = (A, Q)T ,

F = (Q,
Q2

A
+ gI1)

T ,

R = (0, gI2 + gA(S0 − Sf))
T ,

which emphasizes the conservative character of the system in the absence of source terms.

The effects of the wind as well as those of the Coriolis force have been neglected and no

lateral inflow/outflow is considered. In (2.1), A is the wetted cross sectional area, Q is

the discharge and g is the acceleration due to gravity. I1 represents a hydrostatic pressure

force term as described in [2]

I1 =
∫ h(x,t)

0
(h − η)b(x, η)dη

in terms of the surface water level h(x, t) and the breadth

b(x, η) =
∂A(x, t)

∂η
.

The pressure forces can have a component in the direction of the main stream due to

the reaction of the walls in case of variations in shape along this direction. The amount

of this force depends on the cross sectional variation for constant depth. It is important

to note that the validity of this approach is linked to the hypothesis of gradual variation.

If sudden expansions or contractions take place, the approach is not valid. I2 accounts for

the pressure forces in a volume of constant depth h due to longitudinal width variations.

I2 =
∫ h(x,t)

0
(h − η)

∂b(x, η)

∂x
dη.

According to both definitions, and following Leibnitz’s derivation rule,

∂I1

∂x
= I2 + A

∂h

∂x
. (2)
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The mass force is the projection of the weight of the volume of water in the direction

of the stream. The bed slope is the spatial partial derivative of the bottom elevation z,

S0 = −∂z

∂x
.

This representation is a consequence of the hypothesis made about the size of the bottom

slope. The friction term represents the action of the shear between the fluid and the solid

walls. Sf stands for the energy grade line and is defined, for example, in terms of the

Manning’s roughness coefficient n [13]:

Sf =
Q |Q|n2

A2R
4

3

,

with R = A/P , P being the wetted perimeter. Other forms of Sf can equally well be

used.

Other formulations are possible and frequently encountered. A simpler, non-conservative

and very common expression of the system, useful in situations of continuous flows, is

∂A

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x
(
Q2

A
) + gA

∂h

∂x
= gA(S0 − Sf ).

(3)

In the particular case of rectangular channels of constant breadth, they reduce to the

original equations presented by St. Venant in 1871. Being simpler, the equations in the

ideal homogeneous case admit exact solutions that have been traditionally used to test

the performance of the numerical techniques. It must be noted that they keep the non

linear convective character and, therefore, admit discontinuous (weak) solutions [1].

In those cases in which F = F(U) it is possible to rewrite the conservative system in

the form
∂U

∂t
+ J

∂U

∂x
= R, (4)

where the Jacobian matrix of the system (4) is

J =
∂F

∂U
=




0 1

c2 − u2 2u



 ,

where u = Q/A is the cross section averaged water velocity and c =
√

gA/b is the celerity

of the small amplitude surface waves. It is analogous to the speed of sound in gases

and contains the essence of the compressibility associated to the deformability of the

free surface. At the same time, it is the basis of the definition of the Froude number,

Fr = u/c, dimensionless number governing this kind of flow, which, also in analogy to

the Mach number, allows for a classification in three flow regimes: subcritical (Fr < 1),

supercritical (Fr > 1) and critical (Fr = 1).
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The system of equations (4) is a hyperbolic system of partial differential equations.

Therefore, the Jacobian matrix J presents interesting properties closely linked to the

physics of the problem represented by the mathematical model. The matrix can be

made diagonal by means of the set of eigenvalues, which are real and represent the speed

of propagation of the information. At the same time, the matrix has a set of linearly

independent eigenvectors.

The Jacobian’s eigenvalues can be obtained from |aI − J| = 0 and are

a1,2 = u ± c. (5)

They represent the speed of propagation of the perturbations and hence are the convective

wave velocities. If the Jacobian was a constant matrix, the system would be linear and

decoupled. Being a variable matrix in terms of the dependent variables, the system is

nonlinear and coupled, and the advection velocities can change of sign and value locally.

The eigenvectors can be obtained from Je = ae and are of the form

e1,2 = (1, u ± c)T . (6)

This form of the equations will be particularly useful in the context of upwind schemes.

At the same time it is directly related to the theory of characteristics since it enables the

diagonalization of the Jacobian. This is achieved by means of the matrix P made of the

column eigenvectors so that

J = PΛP−1, Λ = P−1JP. (7)

Matrix P is also the matrix responsible for the change of variables

W = P−1U, (8)

U = PW. (9)

So that the system may be rewritten as follows

∂W

∂t
+ Λ

∂W

∂x
= 0. (10)

Due to the construction of matrix P, (9) is equivalent to a linear combination of the

Jacobian’s eigenvectors in which the coefficients are precisely the characteristic variables

U =
m∑

k=1

αkek. (11)

In the new variables W, the system is decoupled and formed by a set of scalar equations

like
∂wk

∂t
+ ak

∂wk

∂x
= 0, (12)

as many equations as eigenvalues in the Jacobian matrix J, that is, two in our case. This

new formulation is the so called characteristic formulation that belongs to next section.
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2.1 Characteristic formulation

The characteristic formulation in 1D leads naturally to the method of characteristics.

It can be seen as a way to move from a problem governed by partial differential equations

to another problem based on ordinary differential equations. The application of this

method to unsteady open channel flow can be found in classical references such as [14, 1].

Apart from the derived method of solution, the characteristic formulation is essential to

understand the behaviour of the hyperbolic system solutions.

An alternative derivation of the system (12) can be performed starting from the gov-

erning equations for a horizontal and frictionless unit width rectangular channel. In that

case, the original equations can be manipulated to:

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0. (13)

Using that c2 = gh, and by means of some simple transformations, Eq. (13) can be

rewritten as

∂

∂t
(u + 2c) + (u + c)

∂

∂x
(u + 2c) = 0,

∂

∂t
(u − 2c) + (u − c)

∂

∂x
(u − 2c) = 0. (14)

This result is analogous to Eq. (12). The interpretation of this form of the equations

is that the quantity u + 2c is constant along a direction in the (x, t) plane given by the

local slope u + c and the same is true for u − 2c along the line of slope u − c.

dx

dt
= u + c ⇒ d(u + 2c) = 0 ⇒ u + 2c = cte,

dx

dt
= u − c ⇒ d(u − 2c) = 0 ⇒ u − 2c = cte. (15)

The directions in (15) are called characteristic directions (C+ positive, and C− neg-

ative). The quantities conserved along them are the Riemann invariants (J+ and J−,

respectively). In a flow domain governed by a system of hyperbolic equations such as

the shallow water equations there exist two characteristic directions at every point in the

plane (x, t) with the mentioned properties.

In the more general and realistic case of having source terms in the original equa-

tions, the invariants become quasi-invariants along the characteristic lines and the form

in which they vary is determined by the directional time integral of the source terms. The

interaction between the characteristic lines and the spatial boundaries is interesting for

the analysis of the required boundary conditions.
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3 2D mathematical model

It is generally accepted that the unsteady flow of water in a two-dimensional space

may be described by the shallow water equations, which represent mass and momentum

conservation and can be obtained by depth averaging the Navier-Stokes equations in the

vertical direction. This leads to a 2D formulation in terms of depth averaged quantities

and the water depth itself [15] and, neglecting diffusion of momentum due to turbulence,

they form the following system of equations:

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0, (16)

∂hu

∂t
+

∂hu2

∂x
+

∂huv

∂y
= fhv + hτsx − gh

∂H

∂x
+ cfu

√
u2 + v2, (17)

∂hv

∂t
+

∂huv

∂x
+

∂hv2

∂y
= −fhu + hτsy − gh

∂H

∂y
+ cfv

√
u2 + v2. (18)

f represents the Coriolis parameter f = 2Ω sin φ and contributes as a non-inertial volu-

metric force when geophysical problems of planetary scale are considered. It contains the

effect of the Earth rotation on a moving fluid (Ω being the rotation angular velocity and φ

being the geographic latitude). The relative importance of this term is controlled by the

Rosby number. The shear stresses acting on the free surface are due to viscosity and the

dynamic boundary condition requires that they are continuous across the surface, that is,

their value at the internal part is equal to the external value imposed by the wind. This

is the way to include the effect of the wind and is usually modelled using

τs = ρcW W 2, (19)

a semiempirical formula where W is the module of the wind velocity and cW is a coefficient

depending on the wind direction. Both the magnitude and direction of the wind force are

determined by the atmospheric flow. The coefficient cf appearing in the friction term is

normally expressed in terms of the Manning n or the Chézy roughness factor

cfu
√

u2 + v2 =
n2u

√
u2 + v2

h
4

3

, cfv
√

u2 + v2 =
n2v

√
u2 + v2

h
4

3

. (20)

The roughness coefficient n is in principle dependent on the nature of boundary solid

surfaces, but also on the flow Reynolds number, although the latter factor is normally

neglected.

The terms originated from the depth average of the pressure gradient are g∂H/∂x,

g∂H/∂y, which, using H = h + zb, can be written as

g
∂H

∂x
= g

∂h

∂x
+ g

∂zb

∂x
, qquadg

∂H

∂y
= g

∂h

∂y
+ g

∂zb

∂y
. (21)
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The bottom level variations are expressed in the form of a slope as

S0x = −∂zb

∂x
, S0y = −∂zb

∂y
. (22)

And the same notation is applied to the friction terms, using the energy grade slopes.

Sfx =
cfu

√
u2 + v2

gh
, Sfy =

cfv
√

u2 + v2

gh
. (23)

Finally the following form can be written for the system of shallow water equations

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0, (24)

∂hu

∂t
+

∂hu2

∂x
+ gh

∂h

∂x
+

∂huv

∂y
= gh(S0x − Sfx), (25)

∂hv

∂t
+

∂huv

∂x
+

∂hv2

∂y
+ gh

∂h

∂y
= gh(S0y − Sfy). (26)

The system can be rewritten in conservative form, that is, in the closest form to a

system of conservation laws as

∂U

∂t
+ ∇ (F,G) = R, (27)

where

U =








h

hu

hv








, F =








hu

hu2 + g h2

2

huv








,

G =








hv

huv

hv2 + g h2

2








, R =








0

gh (S0x − Sfx)

gh (S0y − Sfy)








.

(28)

U represents the vector of conserved variables (h water depth, hu and hv unit discharges

along the coordinate directions x, y respectively), F and G are the fluxes of the conserved

variables across the edges of a control volume and are formed by the convective flux and

the hydrostatic pressure gradient. R, contains the sources and sinks of momentum along

the two coordinate directions.

Hence, (27) is a system of coupled and nonlinear partial differential equations. It can

also be written in a quasi conservative form

∂U

∂t
+ (A,B)∇U = R. (29)

The Jacobian matrices are

A =
∂F

∂U
=








0 1 0

c2 − u2 2u 0

−uv v u








, B =
∂G

∂U
=








0 0 1

−uv v u

c2 − v2 0 2v








. (30)
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The non conservative form (29) of the two dimensional system of equations is less

useful than the analogous in one dimension from the point of view of the numerical

resolution because a simultaneous diagonalisation of A and B is not possible. This is

the main reason why most schemes relay on a normal flux formulation. A characteristic

form of the equations can also be found in two dimensions. In the 1D case, the Jacobian

diagonalization led to the direct identification of characteristic directions, characteristic

variables and their governing equations. The existence and properties of the two different

Jacobians in 2D only allows a partial diagonalization of the system. A set of special

directions and surfaces in the space (x, y, t) can be identified along which differential

expressions derived from the original system hold. These are called compatibility relations.

Figure 1.— Characteristic cones.

When dealing with the two-dimensional set of shallow water equations, the character-

istic surface cone 1, is centred on the so called world line and generated by an infinite

set of tangent bicharacteristic lines that can be expressed in terms of the polar angle

and are trajectories carrying information forward in time. When the 1D shallow water

equations are considered, two variables, depth, and velocity for instance, are unknown at

every point, and two characteristic curves, in the (x, t) plane are used to find the solution.

In the 2D case there are three unknowns, water depth and two velocity components, and

therefore three equations are required. The information used to find the solution in first

order of approximation travels through the world line and two selected bicharacteristic

curves. In the first order upwind scheme, the eigenvalues play a role similar to that of the

bicharacteristic curves, and that of the world line but computed at every cell edge and

contributing to the discretization of the three conservation equations (mass and momen-

tum). Depending on the dimensionless normal Froude number, the characteristic cone

has a different shape. At a given cell, a characteristic cone can be defined and the value

of the three unknowns at the cell can be updated using information carried by the ingoing

characteristic lines. It is important to insist that both the bicharacteristic lines and the
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negative eigenvalues carry useful information for the updating at a cell only when their

influence can be computed from known values of the variables within the domain at the

old time level.

It is frequent to define the tensorial flux E = (F,G)T in order to introduce the integral

form of the equations over a fixed volume Ω,

∂

∂t

∫

Ω
U dΩ +

∫

Ω
(∇E) dΩ =

∫

Ω
R dΩ. (31)

This form of the equations of motion is more general and anticipates the finite volume

technique of discretization that will be applied. The application of Gauss’s theorem to

the second integral of the left hand side of (2.16) allows us to rewrite it as

∂

∂t

∫

Ω
U dΩ +

∮

S
(E · n) ds =

∫

Ω
R dΩ, (32)

where S denotes the surface surrounding the volume Ω and n is the unit outward normal

vector.

The Jacobian matrix, Jn, of the normal flux (E · n) present in (2.17) is evaluated as

Jn =
∂E · n
∂U

=
∂F

∂U
nx +

∂G

∂U
ny,

and can be expressed as

J
n

=








0 nx ny

(gh − q2
x

h2 )nx − qxqy

h2 ny
qy

h
ny + 2qx

h
nx

qx

h
ny

(gh − q2
y

h2 )ny − qxqy

h2 nx
qy

h
nx

qx

h
nx + 2qy

h
ny








.

where qx = hu andqy = hv. The eigenvalues of Jn are a representation of the characteristic

speeds al.

a1 = unx + vny + c,

a2 = unx + vny,

a3 = unx + vny − c.

The corresponding eigenvectors are

e1 =








1

u + cnx

v + cny








, e2 =








0

−cny

cnx








, e3 =








1

u − cnx

v − cny








.

Two matrices P and P−1 can be constructed with the property that they diagonalise

the Jacobian Jn. From their eigenvectors:

P =








1 0 1

u + cnx −cny u − cnx

v + cny cnx v − cny








, P−1 =
1

2c








c + u · n nx ny

2(uny − vnx) −2ny 2nx

c + u · n −nx −ny








,
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Jn = PΛP−1,

where Λ is a diagonal matrix with eigenvalues in the main diagonal.

Denoting by Ui and Ri the average value of the flow variables and source terms

respectively over the volume i at a given time, from (2.17) the following conservation

equation can be written for every cell:

∂Ui

∂t
Ωi +

∮

Si

(E · n) ds = Ri Ωi. (33)

The finite volume procedure defined above is completely general. A mesh fixed in time

is assumed and the contour integral is approached via a mid-point rule, i.e., a numerical

flux is defined at the mid-point of each edge, giving

∮

Si

(E · n) ds ≈
NE∑

k=1

(E∗

wk · nwk) dCwk, (34)

where wk represents the index of edge k of the cell, NE is the total number of edges in

the cell (NE = 3 for triangles, NE = 4 for quadrilaterals). The vector nwk
is the unit

outward normal, dCwk
is the length of the side, and (F,G)∗wk

is the numerical flux tensor.

Different implementations arise depending on the numerical scheme used and, conse-

quently, on the numerical flux E∗.

In the next section, this approach will be particularized to the 1st order Roe’s scheme

and to MacCormack’s scheme where first, the numerical flux corresponding to the classical

method will be described and then the TVD modification derived.

4 1D numerical techniques

Two forms of describing flow motion are well kown in Fluid Mechanics: Lagrangian

and Eulerian. What is essentially done in the Lagrangian form is to follow the particles

individual history. In the Eulerian description, the interest is not focused on particle

but on fixed points in space. In a totally parallel form, it is possible to distinguish two

families of numerical techniques for the resolution of the differential equations governing

fluid motion. Lagrangian techniques are those dealing with the equations developed under

this philosophy. The discretization used relays on a finite number of particles of known

position at the initial time. On the other hand, Eulerian techniques furnish information

of the evolution of the variables on a discrete and fixed set of spatial points called grid.

The methods included here belong to this category.

There exists a family of techniques for hyperbolic equations which cannot be totally la-

belled as Lagrangian or Eulerian: those based on the existence of characteristic directions.
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These directions have properties that, in some cases, form the basis of an alternative reso-

lution method. This kind of methods are often called Semi-lagrangian since, despite using

a Eulerian grid, they manage directional information. Different Semi-lagrangian methods

arise depending on the technique used for integrating the trajectory of the characteristic

curve or the interpolation method applied. The classical method of characteristics does

also fall in this category.

Among Eulerian schemes, a first division can be made according to the kind of time

integration: explicit and implicit methods. If the spatial discretization is used as a cri-

terion, two main groups can be made: central and upwind schemes. Independently of

these categories, there is a very important class of methods, that of conservative meth-

ods. If there is an interest to deal with unsteady problems that may contain rapidly

varied flows with possible presence of transcritical flow or formation of surges, attention

must be focused on techniques able to progress automatically and correctly towards a

weak or discontinuous solution of the equations [16]. They have the important property

of ensuring a correct approximation to a conservative equation or system of equations and

are hence well adapted to flow simulations with discontinuities. In general, conservative

schemes can be cast under the following discrete form

∆Ui

∆t
= R∗

i −
1

∆xi

(

F∗

i+1/2 − F∗

i−1/2

)

,

in which R∗ and F∗ are respectively the numerical source and the numerical flux to be

defined in every case. The schemes used for the numerical computations in this work fall

mainly into the category of conservative explicit methods.

The linear study of the numerical stability produces the following condition on the

time step size of the explicit schemes in 1D

CFL =
∆t

∆x
max(ak) ≤ 1, (35)

where ak are the eigenvalues of matrix J. This condition is directly related to the existence

of well defined domain of dependence and region of influence in hyperbolic problems.

There is a long list of finite difference techniques suitable for the numerical solution of

the equations presented. Some representative techniques will be briefly presented here

4.1 Lax-Friedrichs scheme

This is a first order in space and time central finite difference technique. For a general

homogeneous conservation system

∂U

∂t
+

∂F

∂x
= 0, (36)
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the procedure to update one time step ∆t the interior points 2, . . . , N − 1 of a regular

grid is based on a nodal updating:

Un+1
i = αUn

i +
1 − α

2
(Un

i+1 + Un
i−1) −

∆t

2∆x
(Fn

i+1 − Fn
i−1), 0 ≤ α < 1.

The value α = 1 renders the scheme unstable. More stability and more numerical diffusion

are introduced as α approaches zero. A value α = 0.1 is usually adopted. It is easy

to implement and very robust. It is a conservative scheme that admits the following

numerical flux

F∗

i+1/2 =
1

2

(

Fi+1 + Fi − (1 − α)
∆xi

∆t
(Ui+1 −Ui)

)

.

This method has been extensively studied and applied to the shallow water equations in

[17].

4.2 First order Roe’s Scheme

Upwind schemes are based on the idea of discretizing the spatial derivatives so that

information is taken from the side it comes. Hence, a sense of propagation is implied and

these techniques are well adapted to advection dominated problems. The extension of the

technique to a non-linear system like

∂U

∂t
+

∂F

∂x
= 0,

exploits the form
∂U

∂t
+ J

∂U

∂x
= 0,

and the property of the Jacobian that

J = PΛP−1,

where Λ is the diagonal matrix with the eigenvalues in the main diagonal and P is the

matrix made of the right eigenvectors. If the system was linear, it would be possible to

decouple it in a straightforward manner and apply the scalar technique to every equation

as follows:

Un+1
i = Un

i − ∆t

∆xi

(

(PΛ−P−1)n
i+ 1

2

(Un
i+1 −Un

i ) + (PΛ+P−1)n
i− 1

2

(Un
i −Un

i−1)
)

,

where

Λ± =
1

2
(Λ ± |Λ|), J± = PΛ±P−1. (37)

In the non-linear case, a local linearization is performed according to Roe’s approximate

Riemann solver [?]. At every cell limited by nodes L and R, an approximate Jacobian

(J̃RL) is defined satisfying the following conditions:

102



I) J̃RL depends only on the UR and UL states,

II) (FR − FL) = J̃RL (UR −UL),

III) J̃RL has real and distinct eigenvalues and a complete set of eigenvectors,

IV) J̃RL = J (UR) = J (UL) if UR = UL.

The expressions for the eigenvalues ãk and eigenvectors ẽk are similar to those of the

original Jacobian but evaluated at average values in (L, R).

ã1,2 = ũ ± c̃, ẽ1,2 = (1, ũ ± c̃)T ,

where the average velocity and celerity at the interface (L, R) are

ũ =
QR

√
AL + QL

√
AR√

ALAR(
√

AR +
√

AL)
, c̃ =

1

2
(cL + cR).

The basic idea is to calculate δU at every interface and propagate the different k

waves according to the sign of their celerities (eigenvalues) and the values of the local

CFL numbers. The scheme is conservative and the system version of the numerical flux

is

F∗

i+ 1

2

=
1

2
(Fi+1 + Fi) −

1

2

(

(P̃
∣
∣
∣Λ̃
∣
∣
∣ P̃−1)i+1/2(Ui+1 − Ui)

)

. (38)

This method has been studied and applied to the shallow water equations in [19], [20]

and [18] for instance.

4.3 Lax-Wendroff scheme

In a search for stable and more accurate shock capturing numerical schemes, P. Lax and

B. Wendroff [21] proposed the idea of combining the spatial and temporal discretization

in order to globally achieve second order. Lax-Wendroff’s scheme is an explicit second

order method. It was further simplified by some authors in order to avoid evaluation of

the celerity (Jacobian) at an intermediate position. In the case of homogeneous systems

of equations, the same guidelines lead to the following scheme

Un+1
i = Un

i − ∆t

2∆x

(

Fn
i+1 − Fn

i−1

)

+

+
(∆t)2

2(∆x)2

[

Jn
i+ 1

2

(

Fn
i+1 − Fn

i

)

− Jn
i− 1

2

(

Fn
i − Fn

i−1

)]

, (39)

where now J = ∂F/∂U is the Jacobian matrix of the system. If the system is linear, the

matrix is constant F = JU with J = constant, and, in the non-linear case, J (U) must

be evaluated at an intermediate position Ji+ 1

2

= J
(

Ui+ 1

2

)

. The numerical flux can be

written as

F∗

i+ 1

2

=
1

2

(

Fn
i+1 + Fn

i

)

+
∆t

2∆x

(

Jn
i+ 1

2

)2 (

Un
i+1 − Un

i

)

. (40)
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The scheme is non-dissipative for J = constant, and displays oscillations near strong

gradients (shocks). It can also lead to numerical difficulties near critical or sonic points.

Several authors have recommended the addition of extra dissipative terms (pseudovis-

cosity) in these cases, see [17] for instance. Lax-Wendroff’s scheme is one of the most

frequently encountered in the literature related to classical shock-capturing schemes. Dif-

ficulties have been reported when trying to include source terms in the discretization and

to keep second order of accuracy at the same time. This was studied in [18].

4.4 Second order upwind scheme

In order to improve the accuracy of the first order upwind scheme, second order can

be found by means of a Taylor series as seen in the Lax-Wendroff case. Discretizing now

the spatial derivatives in a non-central or upwind way to second order, the following is

obtained for the non-linear systems of equations:

F∗

i+1/2 = F+
i + F−

i+1
︸ ︷︷ ︸

first order

+
1

2

(

1 − ∆t

∆x
J̃+

i−1/2

) (

F+
i − F+

i−1

)

−

− 1

2

(

1 +
∆t

∆x
J̃−

i+3/2

) (

F−

i+2 − F−

i+1

)

, (41)

where F± and A± are defined like in (3.13).

4.5 High resolution TVD schemes

There is a recent group of methods combining the advantages of both the second order

accuracy and the first order smoothness. They will be briefly presented in what follows.

The fundamental concept to Total Variation Diminishing (TVD) methods [8], [7] is the

definition of the Total Variation of a continuous function u(x, t).

TV (u(x, t)) =
∫

|du| =
∫
∣
∣
∣
∣
∣

∂u

∂x

∣
∣
∣
∣
∣
dx, (42)

which has the property of not increasing in time (Harten 1984), i.e.,

TV (u(x, t2)) ≤ TV (u(x, t1)) , with t2 > t1. (43)

Any numerical method designed to have this property at the discrete level will remain

free of oscillations and new extrema no matter the accuracy achieved. The total variation

of a discrete function is expressed as

TV (un) =
∑

i

∣
∣
∣δun

i+1/2

∣
∣
∣ (44)

and a numerical approximation will be TVD whenever

TV
(

un+1
)

≤ TV (un) . (45)
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Among the schemes presented so far the first order schemes are already TVD when

working within the stability limits (Hirsch, 1990). The second order schemes can be made

TVD by means of a technique that combines first order parts and second order corrections.

The second order upwind scheme, for instance, can be re-expressed as follows

un+1
i = un

i − ∆t

∆x

[

δf+
i− 1

2

+ δf−

i+ 1

2

]

+

+
∆t

2∆x
ϕ
(

r−
i+ 3

2

) [

1 − ∆t

∆x
a−

i+ 3

2

]

δf−

i+ 3

2

− ∆t

2∆x
ϕ
(

r−
i+ 1

2

) [

1 − ∆t

∆x
a−

i+ 1

2

]

δf−

i+ 1

2

−

− ∆t

2∆x
ϕ
(

r+
i− 1

2

) [

1 +
∆t

∆x
a+

i− 1

2

]

δf+
i− 1

2

+
∆t

2∆x
ϕ
(

r+
i− 3

2

) [

1 +
∆t

∆x
a+

i− 3

2

]

δf+
i− 3

2

The factors affecting the second order correction terms are called flux limiters ϕ (r).

They are non-linear functions of the local gradients of the solution working so that the

methods becomes of first order in the vicinity of strong gradients but remains of second

order in regions of smooth flow.

To achieve this goal, the gradient at a cell interface is compared to the gradient at

the neighbouring interface given by the sign of the advection speed. The argument of the

limiter is:

r−
i+ 1

2

=

[(

1 + ∆t
∆x

a−

)

δf−

]

i− 1

2[(

1 + ∆t
∆x

a−

)

δf−

]

i+ 1

2

, r+
i− 1

2

=

[(

1 − ∆t
∆x

a+
)

δf+
]

i+ 1

2[(

1 − ∆t
∆x

a+
)

δf+
]

i− 1

2

. (46)

Then for instance, if the limiter is nil, ϕ (r) = 0 there are no second order corrections

in the scheme and the first order upwind is recovered. When the limiter takes the value

ϕ (r) = 1, the method becomes the second order upwind scheme, and for ϕ (r) = r, the

method becomes the Lax-Wendroff scheme. For any other value between these limits

[22] the method behaves with the required properties. To guarantee them, the limiter

functions must have certain properties. Some of the most widespread are given below:

• Van Leer: ϕ (r) =
r + |r|
1 + r

• Minmod: ϕ (r) = max [0, min (r, 1) , min (1, r)]

• Superbee: ϕ (r) = max [0, min (2r, 1) , min (2, r)]

• Van Albada: ϕ (r) =
2r

1 + r2

The application of these techniques to 1D shallow water problems with source terms

was reported by [18].

5 2D numerical techniques

We shall concentrate on the first order upwind method. An important feature of the

1D upwind schemes for non-linear systems of equations is exploited here. This is the
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definition of the approximated flux jacobian, J̃, constructed at the edges of the cells. The

1D philosophy is followed along the normal direction to the cell walls, making use of the

normal numerical fluxes. Once this matrix has been defined, the numerical flux across

each edge wk of the computational cells L on the left and R on the right of a cell in a 2D

domain is

(F,G)∗ · n =
1

2

[

(F,G)R · n + (F,G)L · n− |J̃RL|(UR −UL)
]

. (47)

Here (J̃RL) represents the approximate Jacobian of the normal flux. Note that sub-

script k will be omitted for the sake of clarity and the following discussion is referred to

the cell side k.

As suggested by Roe [4], [23] the matrix J̃RL has the same shape as J
n

but is evaluated

at an average state given by the quantities ũ = (ũ, ṽ) and c̃ which must be calculated

according to the matrix properties [24]:

1. J̃RL = J̃RL(UR,UL).

2. FR − FL = J̃RL(UR − UL).

3. J̃RL has a complete set of real and different eigenvalues and eigenvectors.

4. J̃RL(UL,UL) = J
n
(UL) .

The approximate Jacobian matrix is not directly used in the actual method. Instead,

the difference in the vector U across the grid edge is decomposed on the matrix eigenvec-

tors basis as

∆U = UR − UL =
3∑

m=1

αmẽm, (48)

where the expression of coefficients αm are:

α1,3 =
hR − hL

2
± 1

2c̃
[((hu)R − (hu)L)nx + ((hv)R − (hv)L)ny − (ũnx + ṽny) (hR − hL)] ,

α2 =
1

c̃
[((hv)R − (hv)L − ṽ (hR − hL)nx) − ((hv)R − (hv)L − ũ (hR − hL) ny)] . (49)

Matrix |J̃RL| is replaced by its eigenvalues and eigenvectors in the product

|J̃RL| (UR − UL) in the form

|J̃RL| (UR −UL) =
3∑

m=1

|ãm|αmẽm. (50)

From the eigenvalues of J, those of J̃RL have the same form, all in terms of average

velocities and celerity. Enforcing the second condition of the matrix J̃RL the following

expressions for ũ, ṽ and c̃ can be obtained

ũ =

√
hRuR +

√
hLuL√

hR +
√

hL

, ṽ =

√
hRvR +

√
hLvL√

hR +
√

hL

, c̃ =

√
g

2
(hR + hL). (51)
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It has to be stressed at this point that in case of an advancing front over dry bed the

average velocities are calculated in the form

ũ =
uR + uL

2
, ṽ =

vR + vL

2
, (52)

since the velocity values at the right or left cell are zero. This election is the proposed by

the Q-scheme of Van Leer [25] for this situation.

The numerical flux normal to each edge of the computational cells becomes

Un+1
i = Un

i − ∆t

Ai

(
NE∑

k=1

E∗

k · nkdsk

)n

i

+ ∆t
∫

Ω
R dΩ. (53)

This form of updating the variables via a numerical interface flux is common in finite

volume methods. It is less common, but also possible, to re-express (53) in a different

form by realizing that

∆ (E · n) = J̃RL∆U = P̃Λ̃P̃−1∆U = P̃(Λ̃+ + Λ̃−)P̃−1∆U, (54)

where Λ± = (Λ ± |Λ|) /2, and the previous decomposition represents the splitting of the

gradient in left and right traveling parts. For the updating of a single cell, only the in-

going contributions are taken into account so that the contour integral of the numerical

normal flux is equivalent to the sum of these waves.

Un+1
i = Un

i − ∆t

Ai

(
NE∑

k=1

(P̃Λ̃−P̃−1∆U)kdsk

)n

i

+ ∆tR∗n
i . (55)

For the numerical source, R∗, an approach of the integral of the source term R over

the cell has to be defined. First, it should be noted that the source term vector can be

decomposed in two different parts that will be treated separately: the bottom variations

R1 and the friction term R2, R = R1 + R2 corresponding to

R1 =








0

ghS0x

ghS0y








, R2 =








0

−ghSfx

−ghSfy








. (56)

The first term R1 accounts for the bed slopes and is the only one containing spatial

derivatives. For this reason the discretization procedure will follow the flux term dis-

cretization as close as possible as suggested by [25]. The second term R2 accounts for

the friction. Extra terms could be added to take into account infiltration processes, for

instance.

An upwind approach has been adopted to model the bottom variations in order to

ensure the best balance with the flux terms at least in steady cases. This procedure is

analogous in 1D. The flux discretization in Eq. (55) can be used in the same way for the

bottom slope terms because both contemplate the same spatial derivative.
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For every cell-edge k of cell Ωi the discrete source term is decomposed into inward and

outward contributions

R̃1
k = R̃1+

k + R̃1−
k ,

with

R̃1±
k = P̃

(

I ± |Λ̃|Λ̃−1
)

P̃−1R̃1
k =

3∑

m=1

βm±ẽm. (57)

The average value R̃1
k is computed with

R̃1
k =








0

gh̃∆zbx

gh̃∆zby








k

, (58)

where h̃ consists of the average obtained from the depth values stored in the left and right

cell that share the same edge in each computational cell:

h̃ =
1

2
(hR + hL) . (59)

and the bed increments in each direction are computed in the form

∆zbx = −(zbR − zbL)nx, ∆zby = −(zbR − zbL)ny, n = (nx, ny). (60)

For every cell Ωi the total contribution of the source terms is made of the sum of the

parts associated to inward normal velocity at every edge k

R1∗
i =

NE∑

k=1

R̃1−
k .

For that reason we define the numerical source term at cell-edge k as

R1∗
k = R̃1−

k .

The expressions for the β− coefficients are

β1−,3− = ± 1

2c̃

(

1 − |a1,3|
a1,3

)

[R1
2nx + R1

3ny] ,

β2− =
1

c̃

(

1 − |a2|
a2

)

(−R1
2ny + R1

3nx) .

(61)

The average value, Eq. (58), proposed in [25], ensures a conservative discretization of

this source term.

The numerical scheme for this part is formulated as

Un+1
i = Un

i − ∆t

Si

(
NE∑

k=1

(

(F,G)∗k · nkdCk −R1∗
k

)
)n

. (62)
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In practical two-dimensional river flow aplications, water is not confined into a vessel

but has the freedom to overflow the main channel depending on the flood event. Due to

the small initial values (zero actually) for the variables h, u, and v and the high value of

the Manning coefficient required to take into account the effects of the vegetation in the

dry field, the friction terms may become dominant and the numerical solution is affected.

The main consequence is in the form of numerical stability restrictions different from the

well known CFL conditions. This is further complicated by the mathematical difficulties

linked to the advance of the front over dry bed.

To avoid this problem, one option is to discretize the friction term in an upwind

manner even though it does not show a gradient form. This option does not prove useful

in relieving numerical troubles. Back to the pointwise option, two possibilities to avoid

this problem can be considered; the first is to ignore the friction terms when the depth

of water is smaller than a threshold; another approach is to treat the source terms in a

semi-implicit form. In the approximation presented here, the friction terms are calculated

in the following way

Sfx = −(1 − θ)(ghSfx)
n − θ(ghSfx)

n+1, (63)

Sfy = −(1 − θ)(ghSfy)
n − θ(ghSfy)

n+1, (64)

where n indicates the time level in which we know the values of the variables and n+1 is

the next time level where we update the variables. θ is a parameter that accounts for the

implicitness of the treatment of the source terms in the equation and can take any value

in the interval [0,1].

So, the final expression for the numerical scheme is

Un+1
i = Un

i − ∆t

Ai

(
NE∑

k=1

(

E∗

k · nkdsk − AiR
1∗
k

)
)n

i

+ ∆t
(

R2
)n

i
. (65)

The stability criterion adopted has followed the usual in explicit finite volumes for

the homogeneous system of equations not including source terms. In practice, some

restrictions on the CFL can be observed due to the non-linearity of the system of equations

or to the presence of source terms. Theoretical studies on this question are still on

development.

δt ≤ min






dij

2
(√

u2 + v2 + c
)

ij




 , (66)

where dij is the distance between the centroid of the cell i and its neighbours j.
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6 2D boundaries

6.1 Wetting and drying fronts

The wetting front advance over a dry bed is a moving boundary problem in the context

of a depth averaged two dimensional model. As such, the optimum way to deal with it is

to find the physical law that best defines the dynamics of the advancing front to use it as

physical boundary condition to be plugged into the above procedure. The question about

that physical law makes us reconsider the 3D basic equations at the wetting front position.

In advance over adverse dry bed the water column tends to zero smoothly and, hence,

the free surface and bottom level tend to reduce to one point where both the free surface

and bottom boundary conditions apply simultaneously. This line of reasoning, being

interesting, does not solve the discrete problem in a simple way but, on the contrary,

leads to the generation of an alternative technique for a number of cells that increases in

time as the wetting progresses.

In a different approach closer to the discrete solution, wetting fronts over dry surfaces

can be reduced to Riemann problems in which one of the initial depths is zero. This

problem can be analytically studied for simplified conditions and the solution exists both

for horizontal bed (Ritter solution) [14] and for sloping bed [16]. The solution in the latter

case, when dealing with adverse slopes, identifies a subset of conditions incompatible with

fluid motion (stopping flow). On the other hand, the numerical technique described in

section 3.1 is an approximate Riemann solver adapted to cope with zero depth cells which

provides a discrete solution to the problem in all these cases not identifying correctly the

stopping flow conditions. Therefore, this technique is unable to solve correctly situations

of still water in a domain of irregular shape, generating spurious velocities in the wet/dry

contour and often violating mass conservation. The steady flow problem is converted into

an unsteady one by predicting the appearance of negative depths at the outside of the

wetted domain and producing movement in water that should be always at steady state

and mass conservation is lost.

In order to avoid the numerical error, the technique proposed is to enforce the local

redefinition of the bottom level difference at the interface to fulfill a zero velocity equi-

librium condition and therefore mass conservation. We shall call this the wetting/drying

condition [26]. In unsteady cases, i.e., for wetting fronts advancing over an adverse dry

slope, the procedure followed is the same. However in this case the numerical representa-

tion of the slope between the two adjacent cells may produce a too fast propagation of the

front. It is necessary to reduce to zero the velocity components u, v at the wetting/drying

interface; otherwise some water could easily jump to the dry upper cell.

Previous works on this topic have reached to this point and some authors working

with finite elements solve the problem allowing the controlled use of negative depths [27],
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[28].

6.2 Boundary conditions

The boundaries of the two-dimensional domain in which a numerical solution of the

overland flow problem is sought are the different parts of the external contour line of

the field. As in any other boundary problem in computational fluid dynamics, there is

first a question concerning the number of physical boundary conditions required at every

boundary point. To help, the theory of characteristics in 2D tells us that, depending on

both the value of the normal velocity through the boundary

u · n = unx + vny (67)

and the local Froude number Fr = u · n/c, the possibilities are

• Supercritical inflow: u · n ≤ −c, ⇒ all the variables must be imposed.

• Subcritical inflow: −c < u · n ≤ 0, ⇒ two variables must be imposed.

• Supercritical outflow: u · n > c, ⇒ none of the variables must be imposed.

• Subcritical outflow: 0 < u · n ≤ c, ⇒ one variable must be imposed.

A second question is related to the procedure used to obtain numerical boundary

conditions [3]. The idea of using a Riemann solver to calculate the flux at the face of a

cell can also been used at the boundaries. The variables are stored at the centre of each

cell and the boundary conditions are also imposed there. The value of the variables not

prescribed are calculated from a usual finite volume balance. For this purpose, the fluxes

across the edges lying on the boundary are estimated by means of a ‘ghost’ cell outside.

Usually, the ghost cell just duplicates the boundary cell. When the boundary is a solid

wall, the ghost cell is a mirror cell in which the depth of water has the same value that

the boundary cell and the velocities are the same with opposite sign.

7 1D applications

7.1 Dam break test case

The idealized dambreak problem was chosen because it is a classical example of non-

linear flow with shocks to test conservation in numerical schemes and, at the same time,

has an analytical solution [14]. This problem is generated by the homogeneous one-

dimensional shallow water equations for the ideal case of a flat and frictionless channel of

unit width and rectangular cross section, with the initial conditions

Q(x, 0) = 0, h(x, 0) =







hL if x ≤ L
2

hR if x > L
2
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If the calculation times used are so as to avoid interaction with the boundaries of the

channel, the boundary conditions are trivial.

This classical test case is considered a benchmark for comparison of the performance of

numerical schemes specially designed for discontinuous transient flow. Although defined

by the system of homogeneous shallow water equations, it is widely considered a standard

test case for validation of schemes. Starting from initial conditions given by still water

and two different water levels separated by a dam, the theory of characteristics supplies

an exact evolution solution [14] that can be used as a reference. In the example presented,

two ratios of initial water depths hL/hR = 10 and hL/hR = 100 are used. The solution is

displayed in Figure 2 for t = 20 s. An space interval of ∆x = 1 m is used in the mesh.

The entropy correction produces remarkable results, being the typical ”dog-leg” effect

negligible. It is also remarkable that the Lax-Wendroff scheme only with entropy correc-

tion, although displaying numerical oscillations, is able to solve strong shocks without a

TVD correction. The first order upwind scheme provides a reasonably good result with

a slight numerical diffusion. The second order in space TVD scheme tends to produce

antidiffusive solutions, being this excessive with the Superbee flux limiter. Nevertheless

with the Minmod flux limiter this is less noticeable providing a slight improvement with

regard to the first order scheme. Second order in space and time improves the numerical

solution being the most accurate scheme as expected.

7.2 Application to river flow

In order to show the application to a practical case, an example of unsteady flow in

a river is presented now. It is a 9000 m long reach of the upstream part of river Neila

in Spain. Being a mountain river, it is characterized by strong irregularities in the cross

section, by a rather steep part in the first kilometers and by a low base discharge (1

m3/s) which, altogether, produce a high velocity basic flow, transcritical in some parts.

The bottom level and the breadth variations along the axis of this river (Figure 3), to-

gether with the small value of its base discharge (Q = 1 m3/s) and the corresponding

initial values of the Froude number (Figure 4) rendered the numerical computation re-

ally challenging and accentuated the differences among the capabilities of the numerical

schemes. The simulation starts from a definition of the topographic features in the form

of numerical functions (data tables) of the depth and the distance along the river. These

are matrices of dimensions (number of cross sections x number of water depth levels).

The data tables do not correspond in general to equidistributed points along the river

and never to the computational grid positions. One option is the numerical generation of

intermediate sections by interpolation of the surveyed cross sections. On the other hand,

the particular value of any of the functions at a nodal position for an arbitrary water
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Figure 2.— Ideal dam break problem. T=20s.

depth can be obtained each time via interpolation from the data tables. More or less

sophisticated interpolations can be performed. Considering that any interpolation may

introduce numerical errors in the results and the irregular character of the river, a linear

interpolation between data tables was used in this work. The bed slopes were determined

using the values of the bottom level at each cross section.

In order to check the conservation properties of the schemes applied, and the absence

of oscillations in the TVD schemes, a sudden increase in discharge to 40 m3/s and a

critical depth is imposed at the upstream end. This step hydrograph propagates into the

river. The same CFL number as the steady flow cases and an interval of ∆x = 22.5 m

in the mesh are used. Figure 5 shows that the discharge wave propagates with almost a

perfectly constant value at times t = 500 s, t = 1000 s and t = 1500 s. Fig. 6.18 shows

the detail of the front wave where the advantages of using higher order approaches are

noticeable, this is not so clear when reproducing steady states. In Fig. 6.19 the strong

gradient in the bed slope of river Neila can be seen. Figure 6 shows some other variables
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as calculated with the second order in space and time TVD scheme with Superbee limiter

(the most accurate scheme) and the strong irregularities of the river are evident.
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Figure 3.— Initial top width. Neila river.
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Figure 4.— Initial Froude number distribution. Neila river.

8 2D applications

8.1 Circular dam break over a dry irregular bed

In order to test the sensitivity of the results to the treatment of the wetting/drying

fronts, an academic test of a circular dam break over a highly irregular bed domain (Figure

7) is performed. The dimensions are 100x100 m and the initial water level is 30 m high,

centered in the mesh, with a diameter of 20 m. The roughness coeficient of Manning, n

is set equal to 0.9 in order to slow the process as much as possible.
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Figure 5.— Evolution in the discharge with first order upwind scheme (top left), Lax-

Wendroff scheme (top right), second order in space TVD scheme with Minmod limiter

(bottom left), second order in space and time TVD scheme with Superbee limiter

(bottom right).

The dam break flow simulation is performed in two ways: 1) using the scheme proposed

in [26] that controls the wetting/drying fronts, and 2) making zero the negative values

of depth obtained when nothing is done to control the wetting/drying front. Figure 8

shows the results at different times t = 2, 6, 12 s, and when the steady state is achieved,

(t = 1000 s in case 1). When option 1) is used, the still water steady state is achieved with

a mass error to machine accuracy. In the case of option 2), during the phase of advance

of the front, a considerable mass error is produced, and finally all the mass disappears.

Figure 9 shows the results in both cases at time 2 s.
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Figure 6.— Evolution in the depth, top width, velocity and Froude number with second

order in space and time TVD scheme with Superbee limiter.

Figure 7.— Irregular bed for the circular dam break test case. Left: Plan view. Right:

3D view.
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Figure 8.— Four snapshots of the water level evolution calculated with option 1). t = 2

s top left, t = 6 s top right, t = 12 s bottom left, and still water bottom right.

Figure 9.— Comparison of the numerical solutions provided by options 1) and 2) at

t = 2 s after the dam breaking. Left: conservative solution. Right: non-conservative

solution.
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[17] Burguete, J., Garćıa-Navarro, P.: “Improving simple explicit methods for unsteady open

channel and river flow”, International Journal for Numerical Methods in Fluids 45, pp. 125-

156, 2004.

118
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