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Universitat de València, C/ Dr Moliner,50 46100 Burjassot, Spain

Monograf́ıas de la Real Academia de Ciencias de Zaragoza 31, 77–87, (2009).

Abstract

The theoretical foundations of high-resolution TVD schemes for homogeneous

scalar conservation laws and linear systems of conservation laws have been firmly

established through the work of Harten [8], Sweby [13], and Roe [11]. These TVD

schemes seek to prevent an increase in the total variation of the numerical solution,

and are successfully implemented in the form of flux-limiters or slope limiters for

scalar conservation laws and systems. However, their application to conservation

laws with source terms is still not fully developed. In this work we analyze the prop-

erties of a second order, flux-limited version of the Lax-Wendroff scheme preserving

steady states [5]. Our technique is based on a flux limiting procedure applied only

to those terms related to the physical flow derivative.

1 Introduction

The theory of numerical schemes for homogeneous scalar conservation laws is well

established. Total Variation Diminishing (TVD) schemes have proved to be particularly

successful at capturing shock waves and discontinuous solutions. A problem of increasing

importance in Computational Fluids Dynamics is the application of numerical methods to

inhomogeneous problems such as shallow water equations. In such cases the TVD property

is no longer valid. Although certain source terms may preserve the TVD property of the

homogeneous part, others will actively increase the variation in the solution. An adapted

one-step second-order scheme gives a very good accuracy of the solution in smooth regions

although the inevitable presence of spurious overshoots in the proximity of the shock,

typical of second order schemes, has been observed. As in the homogeneous case, the

oscillations are not reduced if we use a fine mesh (see figure 1). This motivates the use of

TVD-like schemes for inhomogeneous problems, however, although care needs to be taken

in the inclusion of the source terms.
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Figure 1.— Second order scheme applied to ut + ux = −u.

2 Operator-Splitting

A popular method of treating inhomogeneous hyperbolic equations of the form

ut + f(u)x = s(x, u), (1)

is to split the problem, over a time step △t, into a homogeneous conservation part

ut + f(u)x = 0 (2)

and an ODE part

ut = s(x, u) (3)

and to alternate between the two solutions. The numerical solution for a general scalar

problem of the type (1) would be to find the numerical solution, ūn+1, of (2) with initial

data u(x, tn) = un, a high order TVD scheme would be suitable, then use a numerical

ODE solver , like various Runge-Kutta type methods, to obtain un+1 from (3) with initial

data u = ūn+1.

The advantages of such an approach are clear since numerical schemes for both (2)

and (3) are well developed and can be chosen to optimal effect. This is particularly true

for stiff problems where much work has been undertaken using implicit ODE solvers [10].

Despite their advantages in problems with stiff source terms, the situation is by no means

ideal, however. The solution of the homogeneous PDE part may cause a large departure

from the true solution which will need to be recovered by the ODE solver. If the recovery

is not exact, numerical errors will be introduced.

There are some other potential pitfalls in using a fractional-step method to handle

source terms. This approach performs very poorly in those situations where ut is small

relative to the other two terms, in particular when steady or quasi-steady solutions are
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being sought. For such solutions, highly accurate numerical simulations can only be

obtained from numerical methods that respect the balance that occurs between the flux

gradient and the source term when ut is small, and it is known ([9]) that this balance is

not likely to be respected when using a fractional step approach.

3 An adapted second-order method

Many numerical methods, like fractional step methods, have difficulties preserving

steady states and cannot accurately calculate small perturbations of such states, as we

have observed in the previous section.

The source term has to be incorporated into the algorithm, avoiding fractional steps.

In general, the source term can be approximated in two ways: A pointwise approach,

where the source term approximation is calculated at the nodal points, and an upwind

characteristic based approach, where the source term is approximated in a more physical

way. Roe [12] put forward the idea of upwinding the source terms in inhomogeneous

conservation laws, in a manner similar to that for constructing numerical fluxes for solv-

ing homogeneous conservation laws. Further work in this direction was carried out by

Bermúdez and Vázquez-Cendón [1], who started by considering the problem

ut + aux = s(x, u). (4)

The solution of this inhomogeneous linear equation with nonlinear source, considering

a constant (a > 0), at time t = (n + 1)△t can be calculated by integrating along the

characteristic through (xi, tn+1) between tn and tn+1 to give

u(xi, tn+1) = u(xi − a△t, tn) −
∫ tn+1

tn

b(xi − a(tn+1 − ξ), u(xi − a(tn+1 − ξ), ξ)dξ. (5)

In the above integral b is clearly dependent on data in the upwind domain, indicating a

need for an upwind treatment of source term.

In this sense, Gascón and Corberán in [5] presented an extension of the one-step

Lax-Wendroff scheme for inhomogeneous conservation laws by rewriting (1) as

ut + gx = 0 where g = f(u) −
∫ x

0

s(ξ, u(ξ, t))dξ, (6)

and g is considered as a function of x and u. However, if we consider g = g(x, t), then a

second order method is obtained by the scheme

Un+1
i = Un

i − △t

△x
(g

n+ 1

2

i+ 1

2

− g
n+ 1

2

i− 1

2

), (7)

where the estimation of the new flux, g, at the point mid-way between grid points is

obtained by an expression based on Taylor’s expansion

g
n+ 1

2

i+ 1

2

= gn
i+ 1

2

+
△t

2

∂g

∂t

∣

∣

∣

∣

n

i+ 1

2

. (8)
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By introducing the following notation:

αn
i+ 1

2

=
△t

△x

∂f

∂u

∣

∣

∣

∣

n

i+ 1

2

, βn
i+ 1

2

=
△t

2

∂s

∂u

∣

∣

∣

∣

n

i+ 1

2

, bn
ik ≈

∫ xk

xi

−s(ξ, u(ξ, tn))dξ1,

and using simple algebraic manipulations, the scheme admits the expression

Un+1
i = Un

i − △t

△x
(fLW

i+ 1

2

− fLW
i− 1

2

) − △t

△x
(bn

i− 1

2
i
+ bn

ii+ 1

2

)

− △t

2△x
(βn

i+ 1

2

(fn
i+1 − fn

i + bn
ii+1) + βn

i− 1

2

(fn
i − fn

i−1 + bn
i−1i)) (9)

with

fLW
i+ 1

2

=
1

2
(fn

i+1 + fn
i − bn

ii+ 1

2

+ bn
i+ 1

2
i+1

− αn
i+ 1

2

(fn
i+1 − fn

i + bn
ii+1)). (10)

4 A Flux limiter scheme

The motivation for this work is to analyze the properties of a second order, flux-limited

version of the Lax-Wendroff scheme which preserves the TVD property, in the sense that

it avoids oscillations around discontinuities, while preserving steady states([5]).

We consider the Lax-Wendroff method (9) adapted to a balance law (1), this is a

second order method that generates spurious oscillations near discontinuities (see figure

1). In order to construct a ”flux-limiting” method, we consider the numerical flux in (9)

of the form

F n

i+ 1

2

= F LO

i+ 1

2

+ φi+ 1

2

(F HI

i+ 1

2

− F LO

i+ 1

2

), (11)

using (10) as a high order numerical flux(F HI

i+ 1

2

). As a low order numerical flux(F LO

i+ 1

2

), our

choice is

F LO
i+ 1

2

=
1

2
(fn

i+1 + fn
i − bn

ii+ 1

2

+ bn
i+ 1

2
i+1

− sign(αn
i+ 1

2

)(fn
i+1 − fn

i + bn
ii+1)). (12)

We called this method the TVDB scheme, and we can notice that the numerical flux

incorporates information on the source term in its definition, for this reason, we define

the variable ri+ 1

2

, that is always the ratio of the upwind change to the local change, as:

ri+ 1

2

=























fi − fi−1 + bi−1i

fi+1 − fi + bii+1
, sign(αi+ 1

2

) > 0;

fi+2 − fi+1 + bi+1i+2

fi+1 − fi + bii+1

, sign(αi+ 1

2

) < 0.

(13)

As a flux limiter function φi+ 1

2

= φ(ri+ 1

2

) we use the minmod limiter,

φi+ 1

2

= max(0, min(ri+ 1

2

, 1)) (14)

1We make sure that b
n

ik
approximation guarantee that the scheme satisfy the exact C-property, i.e.,

it is exact when applied to the stationary case.
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In Fig 2-left, we display the numerical results obtained after applying this scheme to

ut + ux = −u. A slight oscillation can be observed, whose amplitude decreases with the

mesh width, as shown in figure 2right.
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Figure 2.— ut + ux = −u. Left: TVB method. Right Error for the TVDB method.

5 Burgers’ equation with source terms

In a variety of physical problems one encounters source terms that are balanced by

internal forces and this balance supports multiple steady state solutions that are stable.

Typical of these are gravity-driven flows such as those described by the shallow water

equations over a nonuniform ocean bottom. In this section we show a scalar 1-D approx-

imation of balance laws of this kind.

5.1 The Embid problem

This problem was presented in [3] as a simple scalar approximation to the 1-D equa-

tions that model the flow of a gas through a duct of variable cross-section.

{

ut + (u2

2
)x = (6x − 3)u, 0 < x < 1

u(0, t) = 1, u(1, t) = −0.1.
(15)

There are two entropy satisfying steady solutions for the Embid problem. One is stable

in time with a standing shock at x1 = 0.18 and the other with an unstable standing shock

at x2 = 0.82. The steady solutions for the Embid problem are

u(x) =

{

1 + 3x2 − 3x, x < xi;

−0.1 + 3x2 − 3x, x > xi.
(16)

for i = 1, 2. We computed the steady profiles by taking initial data with a jump at

the stable location, using a CFL number equal to 0.8 and by marching in time until
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convergence criterion
∑

i

|un+1
i − un

i | ≤ 10−10

was satisfied (figure 3left).
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Figure 3.— Embid problem. Left: TVB scheme. Right: Convergence history

The TVDB numerical solution reproduces the exact steady solution except for one

internal shock point. The scheme requires 383 iterations to reach the stationary solution

with a residual less than 10−10 and using the minmod limiter. Figure 3right shows the

logarithm of the residual errors with respect to the number of iterations for both schemes.

5.2 Greenberg et al. tests

In order to test the methods described above, we show the numerical result following

the tests in [7]. Let us consider the equation

ut + (
u2

2
)x + ax(x)u = 0. (17)

where

a(x) = 0.9















0, x < 0;

(cos(π x−1
2

))30, 0 ≤ x ≤ 2;

0, 2 < x.

(18)

Figure 4left is the numerical solution of (17) with the initial data u + a = 1 at time 1

(Experiment 1). The l1−error is 6.9044 ·10−17 for the TVDB scheme, thus the C-property

is ensured.

On the other hand, the initial condition used to generate figure 4right at time 1.5

(Experiment 2) is

u + a =

{

1.3, x < 0.2;

1, 0 < x.
(19)

In this case, we cannot observe any spurious oscillations in the numerical solution.
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Figure 4.— Left: Experiment 1. Right: Experiment 2.

6 The shallow water equations

The shallow water equations form a hyperbolic system of conservation laws that

approximately describes various geophysical flows. We consider source terms due to to-

pography, but we do not consider wind effects and Coriolis force. In this case, the one

dimensional shallow water equations are as follows

ut + f(u)x = s(x,u), (20)

where

u =

(

h

q

)

, f(u) =

(

q
q2

h
+ g

2
h2

)

, and s(x,u) =

(

0

−ghzx

)

.

We propose an extension of the TVDB scheme to this system via the so-called characteristic-

based approach, see [4], [2]. This technique makes use of the fact that all the eigenvalues

of the Jacobian matrix of the convective flux vector are real, and the matrix is diagonal-

izable, i.e., there is a complete set of N linearly independent eigenvectors.

The following series of numerical experiments are standard in the literature. Firstly,

and in order to give a numerical validation of the C-property, we consider the following

steady flow cases.

Steady flow

Following [14], let consider a channel with a length of 20 m defined as

z(x) = 0.2e−
2

5
(x−10)2 , (21)

with the quiescent state h + z = 2m (q = 0) as initial condition. As expected, the

TVDB scheme exactly preserves the steady state (see figure 5), because the L1 error of

the numerical solution at time 50 s is 3.3267 · 10−14, which is roundoff error.
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Figure 5.— Flow at rest. Left: Smooth topography. Right: Complex topography.

Usually, the bottom topography is not smooth. With the aim of evaluating the per-

formance of a numerical scheme in the presence of complex and possibly non-smooth

geometry, the following experiment was proposed in the workshop on dam-break wave

simulation [6]. The initial data is the water at rest at a level of 12m. Numerical results

obtained after a simulation of 200s are displayed in figure (5), we can observed that also

in this test the L1 error, which is 1.4989 · 10−15 is roundoff error.

The interest of the next three tests (extracted from [6]) is to study the convergence

of this scheme towards a steady state. In these simulations a bottom topography of 25m

length is defined as:

z(x) =

{

0.2 − 0.05(x − 10)2, 8m < x < 12m

0, otherwise.
(22)

In all cases, the initial data are h + z =constant and q = 0. The analytical solution is

computed with the Bernoulli equation

q2

2gh2
+ h + z = Ha,

where Ha is the upstream head, q is the steady discharge and h the water level.

For the initial conditions are h + z = 2m, and q = 0 and boundary conditions

• downstream: h = 2 m

• upstream: q = 4.42 m2/s.

The resulting flow is a subcritical flow (6-(a)). If we use as boundary conditions

• downstream: h = 0.66 m only when Fr < 1

• upstream: q = 1.53 m2/s.
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Figure 6.— Steady flow over a hump. (a) Subcritical flow. (b) Transcritical flow

without shock. (c) Transcritical flow with shock.

where Fr = u/
√

gh is the Froude number, and h+z = 0.66 m and q = 0 as initial condition,

then a transcritical flow without shocks is obtained, see figure 6-(b). Transcritical flow,

with a shock (see figure 6-(c)), is obtained if h + z = 0.33 m and q = 0 is used as initial

data, and in this case the boundary conditions are

• downstream: h = 0.33 m

• upstream: q = 0.18 m2/s.

Quasi stationary flow

This last test were proposed in [9] by LeVeque in order to evaluate the capability of

the scheme to accurately compute small perturbations of the water surface over a variable

topography, in this case is given as

z(x) =







0.25

(

cos

(

π
x − 0.5

0.1

)

+ 1

)

, if |x − 0.5| < 0.1

0, otherwise,

(23)

on 0 < x < 1and with g = 1. The initial condition is

h + z = 1 + 0.001 for 0.1 < x < 0.2

q = 0,

which represents a small hump perturbation of the quiescent state (h, q) = (1 − z, 0).

LeVeque uses this test to show the disadvantages of schemes that do not preserve steady

states. In figure 7, we show the numerical result at time 0.7, using different limiters. We

could observe in this example the main features of both limiters..
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