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Abstract

During the last decade special attention has been paid to a problem that

is known as the regular polygon problem of (N + 1) bodies or, simply, the

ring problem and describes the motion of a small body under the action of

N much bigger bodies that are called primaries. (N − 1) of these primaries

are arranged in equal distances at the vertices of a regular polygon and have

equal masses m. Another primary with different mass m0 is located at the

center of mass of the configuration. Here we present a survey of the research

work that has been done on some versions of the problem by summarizing the

main results.

Key words: ring problem, regular polygon configurations, particle motion,

periodic orbits, stationary solutions, gyrostats, rigid body dynamics, effect of

radiation pressure.

1 Introduction

The problem deals with the motion of a small body S (natural or artificial) in the

force field of a system that consists of many bodies Pi, i = 1, 2, . . . , ν, (ν = N − 1)

located at the vertices of a regular ν-gon and a central body P0 that rests on the

center of mass of the system (Scheeres, [11]; Kalvouridis, [5], [6]; Arribas and Elipe,

[1]; Pinotsis, [9])(Fig.1). We assume that the primaries rotate around their center of

mass with constant angular velocity. In the pure gravitational case, two parameters

determine the dynamic behavior of the system: the mass parameter β = m0/m and

the number ν of the peripheral primaries. The model has application to satellite
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motion in the neighborhood of a planetary ring or near a planetary system that

consists of a central ”sun” and some co-orbital planets. The importance of the

above problem is also reinforced by the fact that it is reducible to a number of

known problems of Celestial Mechanics by a simple alteration of the values of its

two parameters. Apart from the original model, some other versions of the problem

have recently appeared, aiming to improve it and to make it more realistic without

destroying its simplicity.

2 Basic features of the gravitational version

2.1 Equations of motion and equilibrium positions

The motion of the particle is described in a synodic coordinate system Oxyz by

means of the dimensionless equations,

Figure 1: The three-dimensional ring problem of n+ 1 bodies.
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r0 =
√
x2 + y2 + z2, ri =

√
(x− xi)2 + (y − yi)2 + z2

xi =
cos[2(i− 1)θ]

2 sin θ
, yi =

sin[2(i− 1)θ]

2 sin θ

∆ = M(Λ + βM2), Λ =
ν∑
i=2

sin2 θ

sin(1− i)θ
, M = 2 sin θ, θ =

π

ν

Figure 2: Equilibrium zones in the ring configuration.

In general the equilibrium positions are arranged in five imaginary coplanar

circles that are centered at the origin of the synodic system. They are named

equilibrium zones and are symbolized by A1, A2, B, C2, and C1 as they appear from

the center outwards. Their number depends on β:

• If 0 < β < lν , where lν is a bifurcation point, different for each ν, all the

equilibrium zones exist. The number of the equilibria is 5ν in this case.

• When β > lν , only 1, C2 and C1 exist. The number of the equilibria is 3ν.

These zones are pushed toward the imaginary circle of the primaries as parameter

β increases.
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2.2 A property of the zero-velocity curves

All the zvc curves drawn in the (x0, C) diagram for a particular ν and for any

value of the mass parameter β, pass through two different focal points, which are

symmetric with respect to the C axis when ν is even, and non-symmetric when ν is

odd (Kalvouridis, [8]).

Figure 3: Common intersection points of the zero-velocity curves in the diagram

(x0, C) in a ring system with ν = 16 and β = 2.

Propositions

• All the 3-D surfaces C = C(x, y; β) intersect along a unique curve,

ν∑
i=1

r0
ri

=
Λ

M2

regardless the value of the parameter β.

• In all cases, the common curve is on the central funnel.

2.3 Planar Periodic orbits. Effect of the mass parameter

Periodic orbits form families according to their multiplicity and their particular

characteristics. The planar symmetric ones constitute curves in the x0-C diagram,
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that are usually called characteristic curves. Mass parameter plays a very important

role in the evolution of the families, the particular characteristics of the orbits and

their stability (Psaros and Kalvouridis, [10]). Figures 4 and 5 depict this effect and

the main conclusions are summarized in the comments that follow.

Figure 4: Evolution of families of simple periodic orbits for β = 2 and β = 100.

Comments

• The characteristic curves shift toward the boundary circle of the primaries as

parameter β increases and at the same time, they crowd in such a way that

they form a dense bunch. When β > 100.0, the distances among them, become

very small.
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Figure 5: Orbits of families S16K and S16M having the same Jacobian constant

and drawn for β = 10 (black) and β = 100 (gray).

• A slight bending appears in curves for large values of β (Fig.4). This bending

is particularly obvious in curves that lie near the central primary.

• As β increases, the part of the orbits described outside the imaginary ring of the

peripheral primaries shrinks while the one described inside the ring extends.

As a consequence of this, simple periodic orbits tend to become circular. The

same tendency is observed for both loops of double periodic orbits (Fig.5).

• The periods of the orbits of the same Jacobian constant increase while the

absolute values of the velocities at t = T/2 decrease.

• The state of stability of the orbits does not change in the considered range of

values of the mass parameter.

2.4 Three-dimensional periodic orbits

2.4.1 Vertical critical points on the characteristic curves of the

planar symmetric periodic families

Families of three-dimensional symmetric periodic orbits are created from bifur-

cation points of families of planar symmetric periodic orbits. Starting from these

points, a numerical investigation was carried out in the three-dimensional space and

several three-dimensional families of symmetric periodic orbits were located (Had-
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jifotinou and Kalvouridis, [2]; Hadjifotinou, et al., [3]). The above study was done

for ν = 7 and taking β = 2, that is, considering a central primary with mass double

of the mass of a peripheral primary.

Figure 6: Families of periodic orbits of the planar ring problem for ν = 7. Stars:

bifurcation points from the planar to the three-dimensional families of periodic or-

bits. (a)β = 2. The dotted line shows the discontinuity at x = −1.15. In the small

dotted square, we have included the plot (b), in order to show the difference in scale.

(b)β = 1000

3 The photo-gravitational version

The existence of strong radiating sources in the universe led many scientists, to

consider the effect of radiation pressure as well as gravitational forces. Radiation

plays an important role in particle dynamics and in several cases may produce

significant deviations from purely gravitational behavior. Here we present some of

the results obtained by investigating the consequences of radiation on the particle

dynamics in a regular polygon model of N bodies (Kalvouridis, [7]; Kazazakis and

Kalvouridis, [4]).
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Figure 7: (a)The families 7AL, 7DJ, 7EJ and 7EK of the three-dimensional ring

problem for ν = 7, β = 2 and their bifurcation from the families 7A − 7L of the

planar problem. (b)The same figure in the Cz-projection. The little dotted square

shows the dimensions of the same figure for β = 1000.

3.1 Potential function

The potential function when some or all primaries are radiation sources, takes

the form,

U(x, y) =
1

2
(x2 + y2) +

1

∆

[
βq0
r0

+
∑
i=1

ν
qi
ri

]
where qi = 1− bi and b =

Fr
Fg

are the radiation coefficients (i.e ratios of the radiation force to the gravitational

one), which depend on the luminosity and the mass of the emitting sources as well

as on the physical, geometrical and chemical properties of the grains.

3.2 Effect of radiation on the stationary solutions

Remarks

• As the number of radiation sources in the system increases, the equilibrium

points belonging to various sets are generally reduced.

• In all the examined cases and for the values of the parameters used, the sta-

bility of the equilibrium points does not change.
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Figure 8: β-parametric families of bifurcation points from two-dimensional to three-

dimensional symmetric periodic orbits for ν = 7. The bifurcation points accumulate

at the center of the drawing (around x = −1.15) as β increases beyond β = 50.

• The value for the Jacobian constant of a particular equilibrium point reduces

as new radiation sources are added to the system. Its distance from the center

of the system is also reduced.

3.3 Effect of radiation on the particle periodic motions

Radiation pressure which acts on small particles i.e. interplanetary or interstellar

dust, should not be generally ignored. The consequences of this action may be

significant when the bodies are strong radiation emitters (b, b0 > 0.1). In this case,

small changes are observed on the evolution of the particle orbits and their measures.

For a wide range of values of the above coefficients, radiation doesn’t really affect

the state of stability found in the purely gravitational case.

4 Version where the small body is a gyrostat

As it is known, gyrostat is a mechanical system that consists of a platform

and a number of rotors that are rigidly attached to the carrier. Each rotor is

spinning independently about an axis fixed on the platform and its motion does not

modify the mass distribution of the gyrostat. The platform may rotate about an

inertial reference frame, so that a gyrostat is generally characterized by n+1 angular

velocities, the n of which are the angular velocities of the spinning rotors relative to

the platform. Sometimes, in the relevant literature, a gyrostat is also referred to as
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Figure 9: Distribution of equilibrium points in various cases of the photo-

gravitational version when ν = 7 and β = 2. (a)Gravitational case. (b)Primary

P1 radiates. (c)Primaries P1, P2 and P3 radiate. (d)Primaries P1, P2, P3, P4 and P5

radiate.

a ’dual-spin’ body. Here we present a version of the ring problem where the small

body S is a gyrostat (Tsogas, Kalvouridis and Mavraganis, [12]).
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Figure 10: Simple (left) and double (right) periodic orbits in the case where the

central body radiates. The unperturbed (black) and the perturbed (gray) orbits

have the same Jacobian constant.

Figure 11: The small body S is a gyrostat consisting of a platform and a rotor.
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4.1 Kinetic and potential energy of the gyrostat

The kinetic energy of the translational-rotational motion of the gyrostat is given

by the relation,

T =
1

2
mg

[
(ẋ− ωy)2 + (ẏ + ωx)2 + ż2

]
+

1

2
(I1 − I2) sin θ sin 2φθ̇(ψ̇ + ω)

+
1

2

[
(I1 sin2 φ+ I2 cos2 φ) sin2 θ + I3 cos2 θ

]
(ψ̇ + ω)2 +

1

2
(I1 cos2 φ+

+ I2 sin2 φ)θ̇2 +
1

2
I3φ̇

2 + I3 cos θφ̇(ψ̇ + ω) + (a cosφ− b sinφ)θ̇

+ cφ̇+ [(a sinφ+ b cosφ) sin θ + c cos θ] (ψ̇ + ω) + Tr

where mg is the mass of the gyrostat, Ii , i = 1, 2, 3 are its principal central

moments of inertia, a, b, c are the components of the rotor’s internal moment of

momentum and Tr is its kinetic energy relative to the platform.

We assume that the rotor rotates with relation to the carrier with constant angular

velocity, therefore the quantity Tr is constant and does not appear in the final form

of the equations of motion. The potential energy is expressed with the help of

MacCullagh’s formula,

V = −Gmmg

[
ν∑
i=1

1

ri
+

β

rC

]
+Gm

{
ν∑
i=1

1

r5
i

[
(x− xi)

2f + (y − yi)
2g + z2p+ (x− xi)(y − yi)h

+ (x− xi)zs+ (y − yi)zq] +
β

r5
C

[
x2f + y2g + z2p+ xyh+ xzs+ yzq

]}
where

r0 =
(
x2 + y2 + z2

)1/2

ri =
[
(x− xi)

2 + (y − yi)
2 + z2

]1/2
, i = 1, 2, . . . , ν.

are the distances of the gyrostat from the primaries and

f = −3

2
ε sin2 ψ sin2 θ +

3

4
ζ cos2 ψ cos 2φ− 3

4
ζ sin2 ψ cos2 θ cos 2φ−

− 3

4
ζ sin 2ψ cos θ sin 2φ+

ε

2

g = −3

2
ε cos2 ψ sin2 θ +

3

4
ζ sin2 ψ cos 2φ− 3

4
ζ cos2 ψ cos2 θ cos 2φ+

+
3

4
ζ sin 2ψ cos θ sin 2φ+

ε

2

90



h =
3

2
ε sin 2ψ sin2 θ +

3

4
ζ sin 2ψ cos 2φ+

3

2
ζ cos 2ψ cos θ sin 2φ+

+
3

4
ζ sin 2ψ cos2 θ cos 2φ

p = −3

2
ε cos2 θ − 3

4
ζ sin2 θ cos 2φ+

ε

2

q =
3

2
ε cosψ sin 2θ +

3

2
ζ sinψ sin θ sin 2φ− 3

4
ζ cosψ sin 2θ cos 2φ

s = −3

2
ε sinψ sin 2θ +

3

2
ζ cosψ sin θ sin 2φ+

3

4
ζ sinψ sin 2θ cos 2φ

with ε =
I1 + I2

2
− I3 and ζ = I1 − I2

4.2 Equations of gyrostat’s translational motion

The equations of the translational motion of the gyrostat are,

ẍ− 2ωẏ = ω2x−Gm

[
ν∑
i=1

(x− xi)

r3
i

+
βx

r3
0

]
−

−G
m

mg

{
ν∑
i=1

∂

∂x

[
1

r5
i

[
(x− xi)

2f + (y − yi)
2g + z2p+ (x− xi)(y − yi)h+ (x− xi)zs+ (y − yi)zq

]]
+ β

∂

∂x

[
1

r5
0

(x2f + y2g + z2p+ xyh+ xzs+ yzq)

]}
(1)

ÿ + 2ωẋ = ω2y −Gm

[
ν∑
i=1

(y − yi)

r3
i

+
βy

r3
0

]
−

−G
m

mg

{
ν∑
i=1

∂

∂y

[
1

r5
i

[
(x− xi)

2f + (y − yi)
2g + z2p+ (x− xi)(y − yi)h+ (x− xi)zs+ (y − yi)zq

]]
+ β

∂

∂y

[
1

r5
0

(x2f + y2g + z2p+ xyh+ xzs+ yzq)

]}
(2)

z̈ = −Gm

[
ν∑
i=1

z

r3
i

+
βz

r3
0

]
−

−G
m

mg

{
ν∑
i=1

∂

∂z

[
1

r5
i

[
(x− xi)

2f + (y − yi)
2g + z2p+ (x− xi)(y − yi)h+ (x− xi)zs+ (y − yi)zq

]]
+ β

∂

∂z

[
1

r5
0

(x2f + y2g + z2p+ xyh+ xzs+ yzq)

]}
(3)
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4.3 Equations of gyrostat’s rotational motion

The equations of the rotational motion of the gyrostat are,[
(I1 sin2 φ+ I2 cos2 φ) sin2 θ + I3 cos2 θ

]
ψ̈ +

1

2
(I1 − I2) sin 2φ sin θθ̈ + I3 cos θφ̈+

+
[
(I1 − I2) sin 2φ sin2 θφ̇+ (I1 sin2 φ+ I2 cos2 φ) sin 2θθ̇ − I3 sin 2θθ̇

]
(ψ̇ + ω)+

+ (I1 − I2) cos 2φ sin θθ̇φ̇+
1

2
(I1 − I2) sin 2φ cos θθ̇2 − I3 sin θθ̇φ̇+

+ [(a sinφ+ b cosφ) cos θ − c sin θ] θ̇ + (a cosφ− b sinφ) sin θφ̇ =

= −Gm

{
ν∑
i=1

1

r5
i

[
(x− xi)

2 ∂f

∂ψ
+ (y − yi)

2 ∂g

∂ψ
+ z2 ∂p

∂ψ
+ (x− xi)(y − yi)

∂h

∂ψ
+ (x− xi)z

∂s

∂ψ

+ (y − yi)z
∂q

∂ψ

]
+
β

r5
0

[
x2 ∂f

∂ψ
+ y2 ∂g

∂ψ
+ z2 ∂p

∂ψ
+ xy

∂h

∂ψ
+ xz

∂s

∂ψ
+ yz

∂q

∂ψ

]}
(4)

1

2
(I1 − I2) sin 2φ sin θψ̈ + (I1 cos2 φ+ I2 sin2 φ)θ̈ − (I1 − I2) sin 2φθ̇φ̇+

+ (I1 − I2) cos 2φ sin θφ̇(ψ̇ + ω)− 1

2

[
(I1 sin2 φ+ I2 cos2 φ)− I3

]
sin 2θ(ψ̇ + ω)2+

+ I3 sin θφ̇(ψ̇ + ω)− (a sinφ+ b cosφ)φ̇− [(a sinφ+ b cosφ) cos θ − c sin θ] (ψ̇ + ω) =

= −Gm

{
ν∑
i=1

1

r5
i

[
(x− xi)

2∂f

∂θ
+ (y − yi)

2∂g

∂θ
+ z2∂p

∂θ
+ (x− xi)(y − yi)

∂h

∂θ
+ (x− xi)z

∂s

∂θ
+

+ (y − yi)z
∂q

∂θ

]
+
β

r5
0

[
x2∂f

∂θ
+ y2∂g

∂θ
+ z2∂p

∂θ
+ xy

∂h

∂θ
+ xz

∂s

∂θ
+ yz

∂q

∂θ

]}
(5)

I3 cos θψ̈ + I3φ̈− I3 sin θθ̇(ψ̇ + ω)− 1

2
(I1 − I2) sin 2φ sin2 θ(ψ̇ + ω)2+

+
1

2
(I1 − I2) sin 2φθ̇2 − (I1 − I2) cos 2φ sin θθ̇(ψ̇ + ω)−

− (a cosφ+ b sinφ) sin θ(ψ̇ + ω) + (a sinφ+ b cosφ)θ̇ =

= −Gm

{
ν∑
i=1

1

r5
i

[
(x− xi)

2∂f

∂φ
+ (y − yi)

2 ∂g

∂φ
+ z2 ∂p

∂φ
+ (x− xi)(y − yi)

∂h

∂φ
+ (x− xi)z

∂s

∂φ
+

+ (y − yi)z
∂q

∂φ

]
+
β

r5
0

[
x2∂f

∂φ
+ y2 ∂g

∂φ
+ z2 ∂p

∂φ
+ xy

∂h

∂φ
+ xz

∂s

∂ψ
+ yz

∂q

∂φ

]}
(6)

4.4 Equilibrium states of the gyrostat

The equilibrium states of the gyrostat are determined by the conditions

ẋ = ẏ = ż = ẍ = ÿ = z̈ = θ̇ = θ̈ = φ̇ = φ̈ = ψ̇ = ψ̈ = 0 as being applied to
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equations (1) to (6). There are a lot of equilibrium solutions, but here we shall

confine to those for which

ψ = λψ
π

2
with λψ = 0, 1, 2, 3

θ = λθ
π

2
with λθ = 0, 1, 2 and

φ = λφ
π

2
with λφ = 0, 1, 2, 3

For these values it holds that

h = s = q = 0 and
∂f

∂ψ
=
∂g

∂ψ
=
∂f

∂θ
=
∂g

∂θ
=
∂h

∂θ
=
∂f

∂φ
=
∂g

∂φ
= 0

These conditions result in various combinations of the above values of angles for

which equilibrium states exist. Some of them are exposed in Table I.

Table I: Some cases of equilibrium states

I1 = I2 I1 = I3 I2 = I3

a = 0 b 6= 0 c 6= 0 a = 0 b 6= 0 c = 0 a 6= 0 b = 0 c = 0

ψ θ φ ψ θ φ ψ θ φ

0 0 π
2 0 π

2 0 0 π
2

π
2

0 0 3π
2 0 π

2 π 0 π
2

3π
2

π 0 π
2

π
2

π
2 0 π

2
π
2

π
2

π 0 3π
2

π
2

π
2 π π

2
π
2

3π
2

We observe that each condition I1 = I2, I1 = I3 or I2 = I3 implies f = g. The

stability analysis showed that all the equilibrium states of the gyrostat are

unsteady.
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