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Abstract

We are interested in studying the motion in a (big) neighborhood of the collinear

equilibrium point L3 of the RTBP. We consider both the planar and spatial cases.

Actually different kinds of invariant objects appear: periodic orbits, invariant tori,

the associated invariant manifolds, collision manifolds and homoclinic and hete-

roclinic phenomena among others. In this communication, we just present some

particularities of L3 and its 1-dimensional manifolds to show the difficulties that we

have to cope with in order to give a global description of the motion in a global

neighborhood of 3.

Key words and expressions: Restricted three-body problem, equilibrium point,

periodic orbits, invariant tori, manifolds.

1 Introduction

Our framework is the circular RTBP, whose well known equations of motion depend

on the mass parameter µ ∈ (0, 1/2], and in a rotating reference system are

ẍ − 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,

z̈ = Ωz,

where

Ω =
1

2
(x2 + y2) +

1 − µ

r1

+
µ

r2

+
1

2
µ(1 − µ)
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Figure 1.— Horseshoe motion

and r1 =
√

(x − µ)2 + y2 + z2, r2 =
√

(x − µ + 1)2 + y2 + z2. Such equations have 5

equilibrium points L1, . . . , L5 (L1, L2 and L3 are the collinear ones, while L4 and L5 are

the equilateral ones), the Jacobi first integral given by

C = 2Ω − ẋ2 − ẏ2 − ż2.

and the well known symmetry

(x, y, z, x′, y′, z′, t) → (x,−y, z,−x′, y′,−t). (1)

(see [13]).

In this communication we will deal with the collinear equilibrium points, with special

emphasis on the L3 point. Actually, L3 is responsible for the horseshoe motion (see

Figure 1). This kind of motion has been observed in some interesting situations, like the

asteroid motion of Janus and Epimetheus as coorbitals of Saturn (see [11], [6], [7], [8]

and [12]), and the motion of some more recent near Earth Asteriods (see [3] and [5]).

Concerning horseshoe motion related to L3, we mention [2], where a mechanism that

explains horseshoe motion in the planar RTBP, for µ > 0 small, is given from the µ = 0

case, and also [1] where many families of horseshoe periodic orbits (both in the planar and

spatial RTBP) are computed. On the other hand, we point out that the study of L3 is

also interesting from an academic point of view since it requires the development of new

methodology. Actually the neighborhood of L1, L2 has been (and is being) systematically

studied by both semi–analytical and numerical techniques (see [4] and [10]). But some of

this methodology does not apply easily to the neighborhood of L3 (see below).

We finally remark that our aim would be the description (as global as possible) of

a neighborhood (as large as possible) of L3 including homoclinic and heteroclinic phe-

nomena, for different values of the mass parameter µ. Therefore we need to compute, in

particular, periodic orbits (PO), invariant tori and the invariant manifolds of both PO
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Figure 2.— Two families of Lyapunov PO.
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Figure 3.— A sample torus.

and tori. Along this talk, we will describe some specific particularities of L3 and some

problems that appear when studying and doing numerical explorations in a (maybe large)

neighborhood of L3.

2 Local/global behaviour around L3

As it is well known, SpecDf(0) = {±iω1,±iω2,±λ}, so L3 is a center×center×saddle

type equilibrium point. Thus, a first insight to the local dynamics around L3 gives two

families of non-linear Lyapunov periodic orbits (PO) associated with the two centers (see

Figure 2) and a 2-parametric (cantorian) family of 2-dimensional tori (see Figure 3).

Of course, as far as the Jacobi constant decreases, the amplitudes of both the PO and

tori increase. Therefore, in order to describe the global dynamics around L3, it will be

necessary to explore, in particular, the possible homoclinic connections to the existing

invariant objects: L3, the PO and the tori.

Therefore, first the homoclinic connections to L3, when µ increases, is explored. Then,
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Figure 4.— Horsehsoe-shaped invariant manifold of L3.

the case of the Lyapunov families of PO, when µ is fixed and CJ decreases, will be studied.

In this case, it will be necessary to take into account the bifurcations that appear in both,

planar and vertical Lyapunov families. Finally, we will consider the families of invariant

tori.

3 Difficulties around L3

On one hand, let us say that the invariant 1-dimensional manifolds of L3 may be

regarded as the skeleton of the 2-dimensional manifolds of the Lyapunov PO close to L3

(when decreasing the Jacobi constant) and therefore of the 3-dimensional manifolds of

the tori associated with the Lyapunov PO. On the other hand, the specific particularities

of L3 give rise to some numerical difficulties when analysing the homoclinic connections.

Let us mention some of these particularities:

• For small µ, both the unstable and stable manifolds of L3, W u(L3) and W s(L3),

return to the neighborhood of L3, see Figure 4.

• Let us take small values of µ and let us concentrate on planar homoclinic orbits to

L3. We will distinguish between symmetric and non-symmetric homoclinic orbits.

Due to symmetry (1), if an invariant manifold of L3 has an orthogonal crossing with

the {y = 0} axis (i.e. for a suitable time t, we have y(t) = x′(t) = 0), then it

becomes a symmetric homoclinic connection of L3. This homoclinic orbit will have

a horseshoe shape for µ small enough. Actually, if one considers the homoclinic

connections of L3 with only one crossing with the x axis (the orthogonal one), there

exists a sequence of values of µk → 0 for which this is the case (see [9] and [2]).

• The loops of the invariant manifolds that appear close to L3 are inherited by the

invariant manifolds of planar Lyapunov orbits. That is, if we decrease the Jacobi

constant, the Lyapunov PO has 2-dimensional invariant manifolds with also a horse-

shoe shape and loops close to the Lyapunov orbit (see Figure 5). Therefore, when

38



-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1 -0.5 0 0.5 1
x

y

-0.2

-0.15

-0.1

-0.05

0

0.99 0.995 1 1.005 1.01

Figure 5.— Left: horsehsoe-shaped invariant manifold of a Lyapunov PO. Right: zoom.
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Figure 6.— Left: invariant manifold of L3 that also surrounds L2 and the small primary.

Right: invariant manifold of L3 that collides with the small primary.

analysing the symmetric homoclinic orbits of the Lyapunov PO by means of the

intersection between the invariant manifold and the y = x′ = 0 plane at a certain

crossing, a careful analysis that takes into account the number of crossings must be

done. Alternatively, a method that gives the homoclinic connections, regardless the

number of crossings, should be designed.

• For bigger values of µ, the neighborhood of the small primary and L1,2 play a role

(see Figure 6 left) and we can even have manifolds that go to collision with the small

primary, so a regularization must be done (we have used Levi-Civita coordinates).

We show in Figure 6 right a collision manifold. We refer the interested reader to

[2] where a systematic study of the invariant manifolds of L3, when varying µ, is

carried out.
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4 Further work

Once the behaviour of the invariant manifolds of L3 is studied, the next step consists

of consider the families of Lyapunov orbits and tori. For each one of these objects we will

take into account the following two situations:

• Symmetric homoclinic connections. As before, due to the symmetry (1), it will be

enough to take into account the branches of one of the invariant manifolds, W u or

W s, associated to the object and their intersections with the section Σ = {y = 0}.

As we have mention before, to develop a numerical method to find W u,s∩Σ without

considering the number of crossings with the section will be an important tool.

• Non-symmetric homoclinic connections. In this case, we will look for intersections

between both W u and W s invariant manifolds. One way to do this could be to

find, firstly, the intersections of each manifold (separately) with a suitable section

Σ (for example, x = 0.5 − µ), and then the intersections of the manifolds on Σ.

Nevertheless, again in this case will be interesting to develop a numerical tool in

order to find homoclinic connections as zeros of a suitable function.
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