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Abstract

It is known that a geometric counterpart for classical stability criteria for two

degrees of freedom Hamiltonian systems exists for resonances of order bigger than

two. In this paper we show that this geometric approach can be extended for

resonances of order one and two, based on the same idea, by considering the flow

on the integral manifold where the origin lies after a normalization procedure.

1 Introduction

The determination of nonlinear stability of equilibrium positions in Hamiltonian sys-

tems is a classical problem. The question is trivial for one degree of freedom Hamiltonian

systems but it turns to be intricate for more degrees of freedom. In this paper we will

focus in two degrees of freedom Hamiltonian systems. We will suppose that the origin is

an equilibrium position and that the Hamiltonian function H can be expanded around it

in the form

H = H2 + H3 + · · · ,

where each Hi is a homogeneous polynomial of degree i in coordinates and momenta.

It is well known that a necessary condition for the origin to be stable is that all the

characteristic multipliers of the corresponding linear system, associated to the quadratic

term H2, have zero real part. Besides, if H2 is sign defined Dirichlet’s theorem ensures the

stability of the origin in the Lyapunov sense [10]. For the remaining cases specialized re-

sults, based on KAM theory, are required. Thus, we are left with the case of characteristic

multipliers of the form ±ω1, ±ω2 and H2 not sign defined.

The way this situation is treated strongly depends on the normal form of the quadratic

part of H2. In fact the normal form of H2 determines the further reduction of the Hamil-

tonian function and the subsequent reduced phase space. In this way, several situations
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must be considered. The first one takes place when ω1 and ω2 are independent over the

rationals. In this case Arnold’s theorem ensures the stability of the origin if certain non-

degeneracy condition is fulfilled [1, 7]. The second one takes place when ω1 and ω2 are

not independent over the rationals and they satisfy a resonant condition of order s, that

is there exist m and n, coprime integers, such that

mω1 − nω2 = 0

and m + n = s. For these cases, Markeev provided appropriate results for resonances of

third and four order [6], and later on Sokolski gave conditions of stability for first and

second order resonances [12, 11].

However, if ω1, ω2 6= 0 and the corresponding linear system is semisimple, that is the

canonic Jordan matrix is diagonal, the normal form of the quadratic part H2 can be

written in polar coordinates as

H2 = ω1Ψ1 − ω2Ψ2, (1)

it does not matter if a resonant condition is satisfied or not. This fact was exploited by

Cabral and Meyer [3] to give a general stability criterion, including Arnold’s theorem and

Markeev’s results. It was proven by Elipe et al. [4, 5] and Pascual [9] that this result has

a geometric counterpart giving rise to a geometric criterion of stability; it is enough to

characterize the phase flow of the Hamiltonian system, normalized up to an appropriate

order, in a neighborhood of the origin on the manifold of the reduced phase space where

the origin lies.

Nevertheless, if ω1 or ω2 are zero or the corresponding linear system is not semisimple,

that is in the case of first order resonance and second order resonance in the not semisimple

case, the normal form of H2 is no longer (1) and the previous results are not of applicability

and Sokolski’s theorems have to be taken into account. The question is if these theorems

have the same geometric counterpart as that of Cabral and Meyer.

In this paper we will show that if we apply the simple ideas of the geometric criterion

we find the same conditions of stability that in the Sokolski’s theorems. To this end, we

will consider the Birkhoff normal form [2] up to a certain order, and the corresponding set

of invariants associated to the reduction that generates the reduced phase space. Finally

we will study the phase flow on the integral manifold where the origin lies.

The paper is organized in four sections. In Section 2 we recall the geometric criterion

for the semisimple case. Section 3 is devoted to the low order resonances. The conclusions

are drawn in Section 4.
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2 The geometric criterion

Let us suppose that ω1 and ω2 satisfy a resonant condition of order greater or equal

than two, and that H2 can be written as (1). Then, H can be brought into its Birkhoff’s

normal form, where H2 is a formal integral. Moreover, the normal form is generated by

the so called invariants we denote M1, M2, C and S (see [5] for details) and the normal

form up to order N is written as

H = H2 +
N

∑

j=3

Hj

where H2 = 2ωM2 (m = ωn), and

Hj =
∑

2(γ1+γ2)+(n+m)(γ3+γ4)=j

aγ1γ2γ3γ4
M

γ1

1 M
γ2

2 Cγ3Sγ4 , 3 ≤ j ≤ N.

The invariants are not independent and they satisfy the equation

C2 + S2 = (M1 + M2)
n(M1 − M2)

m, (2)

together with the relation

M1 ≥ |M2|. (3)

Note that the reduced phase space is given by the equation (2) and the restriction (3). It

is a set of surfaces of revolution, one for each constant value of M2. Fixed a value for M2,

(2) is a surface of revolution with a vertex in the point M1 = |M2|, C = S = 0. In the

figure 1 we see different surfaces of revolution for a 1:3 resonance depending on the value

of M2.
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Figure 1.— The reduced phase space in 1:3 resonance for different values of M2.

Once the reduced phase space is determined, it is possible to know the flow of the

normalized system, when it is truncated to a prescribed order. Indeed, the flow results as

the intersection of the normalized Hamiltonian function with the surface defined by (2).

Based on this idea, the following stability result can be established (for more details, see

[5, 9]).
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Theorem 1 Let us assume that the Hamiltonian is normalized up to a certain order

N ≥ s, being HN the first term that does not vanish for M2 = 0. Let us consider the two

surfaces

G1 = {(C, S, M1) ∈ R
3; HN (C, S, M1, 0) = 0},

and

G2 = {(C, S, M1) ∈ R
3; C2 + S2 = Ms

1}.

If the origin is an isolated point of intersection, then it is stable. In other case, and the

two surfaces are not tangent, the origin is unstable.

3 Low order resonances

This section is devoted to extend theorem 1 to the cases studied by Sokolski for low

order resonances. In this way, we will look for the set of invariants associated to each

resonance and the corresponding reduced phase space. Being I the new formal integral

we define the two surfaces

- G1, defined by the first term in normal form does not vanish for I = 0.

- G2, the manifold of the reduced phase space for I = 0.

If the two surfaces have the origin as an isolated intersection point, the origin is stable.

In other case, if they are not tangent, the origin is unstable.

Now we are in position to recover stability criteria of Sokolski for first and second

order resonances from a geometric point of view. We will do this in the two following

subsections.

3.1 Resonance of order 2

In this case we focus on the non semisimple case because the semisimple one is solved

by the results given in section 2.

To begin with, we state the Sokolski’s theorem [11] for the non semisimple case.

Theorem 2 Let us consider a Hamiltonian system under a 1:1 resonance whose normal

form up to order 4 is written in terms of the cartesian variables as

H =
d

2
(x2 + y2)+ω(xY − yX)+ (X2 +Y 2)[A(X2 +Y 2)+B(xY − yX)+C(x2 + y2)]+H,

where d = ±1 and H = O(x, X, y, Y, 6). If dA > 0, then the origin is stable. If dA < 0,

then the equilibrium is unstable.
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Now, we will show that the same result is obtained from a geometric point of view. To

do this, we follow the work of Palacián and Yanguas [8] about the reduction of polynomial

planar Hamiltonians with quadratic unperturbed part. In this way, we will introduce the

semisimple part of H2, namely xY − yX, as a formal integral in order to reduce the

Hamiltonian system to another one with one degree of freedom. In this case, there are

four linearly independent invariants I1, I2, I3, I4 that in terms of cartesian variables can

be written as
I1 = x2 + y2, I3 = xX + yY,

I2 = X2 + Y 2, I4 = xY − yX.

Using invariants, the Hamiltonian normal form (up to order 4) is written as

H =
d

2
I1 + ωI4 + AI2

2 + BI2I4 + CI1I2 + H.

It is worth to note that invariants are not independent but they verify the relation

I1I2 = I2
3 + I2

4 . (4)

Moreover,

I1, I2 ≥ 0. (5)

Because of the formal integral, the reduced phase space is regarded as a family of elliptic

hyperboloids defined by (4) and (5) and labeled by I4. In figure 2 we show the two different

types of surfaces defined by (4); for I4 6= 0 we have a two sheet elliptic hyperboloid and

for I4 = 0 the two sheets meet at the origin. It is worth to note that, because of (5), only

one of the sheets corresponds to the reduced phase space.

Figure 2.— I1I2 = I
2
3 + I

2
4 for I4 = 0 (left) and I4 6= 0 (right).

In order to derive a geometric criterion we focus on the phase flow on the manifold

where the origin lies, the corresponding to I4 = 0. In this way, we define the following

two surfaces

G1 = {(I1, I2, I3) ∈ R
3; H(I1, I2, I3, 0) = 0},

and

G2 = {(I1, I2, I3) ∈ R
3; I1I2 = I2

3 , I1, I2 ≥ 0}.
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The phase flow on the manifold I4 = 0 is given by the intersection of these two surfaces.

In order to have stability it is necessary the orbits around the origin are closed, which

implies the origin is an isolated intersection point of G1 and G2. The intersection of the

two surfaces is given by the set of points

G1 ∩ G2 =

{

(I1, I2, I3) ∈ R
3;

d

2
I1 + AI2

2 + CI1I2 = 0, I1I2 = I2
3 , I1, I2 ≥ 0

}

,

so it is clear that a point belonging to G1 ∩ G2 must satisfy the second degree polynomial

equation in I2
d

2
I1 + AI2

2 + CI1I2 = 0 (6)

for I1, I2 ≥ 0. As it is expected, the origin is one of the solutions, but we are interested

in determine whether this solution is isolated or not. To solve this question we consider

the discriminant D of equation (6),

D = I1(C
2I1 − 2dA)

If A = 0, the set of points I1 = I3 = 0 belongs to G1∩G2 and the two surfaces are tangent;

no information about stability is obtained. If A 6= 0, we have intersection points different

to the origin if D ≥ 0. Here two cases must be distinguished.

On the one hand, if dA < 0 it follows that D ≥ 0 it does not matter the value of I1 ≥ 0.

As a consequence, for each value of I1 we obtain an intersection point and the origin is

not isolated. Because the two surfaces G1 and G2 are not tangent there are asymptotic

orbits to the origin and it is unstable.

On the other hand, if dA > 0 the discriminant is greater or equal than zero if I1 ≥
2dA
C2

(when C 6= 0) or if I1 = 0 (when C = 0). Thus, it is possible to find a neighborhood of

the origin U such that U ∩ (G1 ∩ G2) = {(0, 0, 0)} and the origin is isolated. In this case

a family of closed orbits exists around the origin and it is stable.

In the figures 3 and 4 we see the four different situations for the surfaces G1 and G1∩G2

when they are projected onto the plane I3 = 0. We note that if dA > 0, the origin is an

isolated point of the intersection, and therefore stable. Otherwise, if dA < 0, the origin

is not an isolated intersection point, and therefore unstable. These conditions completely

agree with those given by Sokolski.

3.2 Resonance of order 1

For a resonance of order one, two situations must be considered depending if the

corresponding linear system is semisimple or not. Both situations were studied by Sokolski

[12] where he provided two stability criteria, one for each case. Following the same line

as in the previous section we will see that a geometric counterpart can be given for these

results.
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Figure 3.— G1 projected onto the plane I3 = 0.
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Figure 4.— G1 ∩ G2 projected onto the plane I3 = 0.

3.2.1 Semisimple case

For the semisimple case Sokolski established the following theorem

Theorem 3 Let us consider a Hamiltonian system under a 0:1 resonance whose normal

form up to order N is written in terms of the cartesian variables as

H(x, y, X, Y ) = H2(x, y, X, Y ) + H3(x, y, X, Y ) + · · ·+ HN (x, y, X, Y ) + H,

where

H2 =
d

2
(ω2

2y
2 + Y 2), Hj =

[j/2]
∑

k=0

h
(k)
j−2k(y

2 + Y 2)k, 3 ≤ j ≤ N,

being d = ±1 and h
(k)
j−2k a homogeneous polynomial of degree j − 2k in x, X and H =

O(x, X, y, Y, N + 1). If at least one coefficient of the polynomial h
(0)
N is nonzero and h

(0)
N

is a sign–defined function, then the origin is stable. If at least one coefficient of the

polynomial h
(0)
N is a sign–variable function, then the origin is unstable. In particular, if

N is an odd number, then the origin is unstable.
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As N is not explicitly specify in the theorem it is supposed to be the first term in

the normal form that is not the null function. Now, we are in conditions to recover the

conclusions of the theorem from the geometric approach. First of all we carry out a

normalization procedure by reducing the number of degrees of freedom by means of a

formal integral. Following [8], we take ω2
2y

2 + Y 2 as the formal integral. Besides, a set of

three independent invariants I1, I2, I3 is obtained, that in terms of cartesian variables can

be written as
I1 = x,

I2 = X,

I3 = ω2
2y

2 + Y 2.

(7)

Note that H2 becomes

H2 =
d

2
I3,

and it is no more than a multiple of the formal integral. Also note that the reduced phase

space is defined by I3 = c, with c a constant, and it is regarded to a family of parallel

planes, one for each constant value of I3.

In order to derive a geometric criterion, we take into account that the origin lies on

the plane I3 = 0 and we define the two surfaces

G1 = {(I1, I2, I3) ∈ R
3; H(I1, I2, 0) = 0},

and

G2 = {(I1, I2, I3) ∈ R
3; I3 = 0}.

As I3 = 0 it follows that y = Y = 0 and therefore, H(I1, I2, 0) = h
(0)
N (I1, I2). In this way,

the intersection of G1 and G2 can be described by the set

G1 ∩ G2 =
{

(I1, I2, I3) ∈ R
3; h

(0)
N (I1, I2) = 0, I3 = 0

}

.

Since h
(0)
N is a homogeneous polynomial of degree N in I1, I2 it can be written as

h
(0)
N (I1, I2) = aN,0I

N
1 + aN−1,1I

N−1
1 I2 + · · · + a0,NIN

2 .

It is clear that the origin, I1 = I2 = I3 = 0, belongs to G1 ∩ G2. Even more, if we fix

the value I1 = 0 it must be I2 = I3 = 0 unless a0,N = 0. If a0,N = 0 and at least one

coefficient in h
(0)
N is not zero, G1 and G2 intersect transversely along the line I1 = I3 = 0.

Therefore, there is an asymptotic orbit to the origin and it is unstable.

Now, we are interested in intersection points such that I1 6= 0. In this way, we

introduce a new variable z such that I2 = zI1 (z 6= 0). Dividing by IN
1 the function

h
(0)
N (I1, I2) we obtain the polynomial

pN(z) = aN,0 + aN−1,1z + · · ·+ a0,NzN .
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We note that if pN (z) has a real root, z0, then the straight line defined by I3 = 0, I2 = z0I1

belongs to G1 ∩ G2. As a consequence, there are asymptotic lines to the origin and it is

unstable. On the contrary, if pN(z) has no real roots, the origin is the unique intersection

point and a family of closed orbits exists around it. Then it is stable. However, the

existence or not of real roots for pN(z) depends if h
(0)
N (I1, I2) is sign defined or not. In

particular if h
(0)
N (I1, I2) is sign defined pN(z) has no real roots and the origin is stable.

On the other hand, if h
(0)
N (I1, I2) changes the sign, pN(z) has at least one real root and

the origin is unstable. We note that if N is an odd number, the polynomial pN(z) has at

least one real root, and therefore the origin is unstable.

3.2.2 Non semisimple case

For this case the result of Sokolski reads as

Theorem 4 Let us consider a Hamiltonian system under a 0:1 resonance whose normal

form up to order N is written in terms of the cartesian variables as

H(x, y, X, Y ) = H2(x, y, X, Y ) + H3(x, y, X, Y ) + · · ·+ HN (x, y, X, Y ) + H,

where

H2 =
d1

2
x2 +

d2

2
(ω2

2y
2 + Y 2), Hj =

[j/2]
∑

k=0

aj−2k,kX
j−2k(y2 + Y 2)k, 3 ≤ j ≤ N,

being d1, d2 = ±1 and H = O(x, X, y, Y, N + 1). If aN,0 6= 0, and N is an odd number,

then the origin is unstable. If aN,0 6= 0, N is an even number and d1aN,0 < 0, then the

origin is unstable. If aN,0 6= 0, N is an even number and d1aN,0 > 0, then the origin is

stable.

Note that, as in theorem 3, it is supposed that HN is the first term of the normal form

that is not the null function. Under this implicit hypothesis we proceed in the same way

as in the previous cases. As it is shown in [8], both the formal integral and the invariants

are the same that in the semisimple case, and are given by (7).

Now, the quadratic part of the Hamiltonian function H2 is written as

H2 =
d1

2
I2
1 +

d2

2
I3,

and the reduced phase space is again a collection of parallel planes, I3 = c with c a

constant.

Since the formal integral is I3 and the origin lies on the plane I3 = 0, we pay attention

to the flow on this manifold. Thus, we consider the two surfaces

G1 = {(I1, I2, I3) ∈ R
3; H(I1, I2, 0) = 0},
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and

G2 = {(I1, I2, I3) ∈ R
3; I3 = 0}.

To know their intersection it is worth to note that if I3 = 0, then y = Y = 0, and therefore

H(I1, I2, 0) = d1

2
I2
1 + aN,0I

N
2 . In this way the intersection is the set of points

G1 ∩ G2 =

{

(I1, I2, I3) ∈ R
3;

d1

2
I2
1 + aN,0I

N
2 = 0, I3 = 0

}

.

If N is an odd number, then the origin is not an isolated point of the intersection

because

G1 ∩ G2 =

{

(I1, I2, I3) ∈ R
3; I3 = 0, I2 = N

√

−d1

2aN,0
I2
1

}

.

Therefore, as the surfaces intersect transversely, the origin is unstable. In the figure 5 we

depict this set of points projected onto the plane I3 = 0 depending on the sign of d1aN,0.

d1 aN,0 >0

d1 aN,0 <0




Figure 5.— G1 ∩ G2 projected onto the plane I3 = 0 for N an odd number.

If N is an even number, the intersection G1 ∩ G2 changes depending on the sign of

d1aN,0. In this way, if d1aN,0 < 0, the intersection is given by

G1 ∩ G2 =

{

(I1, I2, I3) ∈ R
3; I3 = 0, I2 = N

√

−d1

2aN,0
I2
1

}

.

Therefore, the origin is unstable. In the figure 6 we depict this set of points projected

onto the plane I3 = 0.

Figure 6.— G1 ∩ G2 projected onto the plane I3 = 0 for N an even number.

If d1aN,0 > 0, the origin is an isolated point of intersection and then it is a stable equilib-

rium point.

4 Conclusions

For a two degrees of freedom Hamiltonian system it was known that stability criteria

for resonances of order bigger than two can be obtained from a geometric point of view

[5, 9]. In this paper the cases of low order resonances, those of order one and two, have
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been analyzed from a geometric approach, and it has been shown that the criteria given

by Sokolski [12, 11] can be recovered. The idea is based on the structure of the phase flow

after a normalization procedure. In this way the normal form of the quadratic part of the

Hamiltonian function plays an important role. In fact, this is the reason why the general

criterion of Cabral and Meyer [3], and its geometric counterpart [5, 9], is not valid for low

order resonances and ad hoc criteria must be given. Nevertheless, the geometric approach

is the same does not matter the order of the resonance. In this way it is revealed as a

powerful tool for studying stability properties of equilibrium positions.
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