
A unified treatment for some ring-shaped potentials as a

generalized 4-D isotropic oscillator

Sebastián Ferrer
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Abstract

A generalized integrable biparametric family of 4-D isotropic oscillators is pro-

posed which allows to treat, in a unified way, Pöschl-Teller, Hartmann and other

ring-shaped systems. This approach, based in the use of two canonical extensions,

helps to simplify known studies of classical and quantum aspects of those systems.

Keywords: Four dimension isotropic oscillatorsRing-shaped systemsGeneralized Hart-

mann potentials.

1 Introduction

This paper deals with with a 4-D integrable dynamical system defined by the para-

metric Hamiltonian function

HO =
1

2

(

Q2

1 +Q2

2 +Q2

3 +Q2

4 + ω (q2

1 + q2

2 + q2

3 + q2

4) +
a

q2
1 + q2

2

+
b

q2
3 + q2

4

)

, (1)

(where ω, a and b are parameters), and its relation with two families of 3-D integrable

Hamiltonian systems H = 1

2
‖X‖2 + Vi with axial symmetry, namely systems with poten-

tials given by

V1 = − µ
√

x2
1 + x2

2 + x2
3

+
P

x2
1 + x2

2

+
Qx3

(x2
1 + x2

2)
√

x2
1 + x2

2 + x2
3

, (2)

dubbed as Smorodinsky-Winternitz potential (see Mardoyan 2003), and

V2 =
Ω2

2
(x2

1 + x2

2 + x2

3) +
P

2x2
3

+
Q

2(x2
1 + x2

2)
, (3)

∗sferrer@um.es

11



(where µ, Ω, P and Q are parameters). Notice that, written in spherical variables,

potentials V1 also appear in the literature under the Pöschl-Teller form

V1 = −µ
r

+
P +Q

4 r2 sin2 φ

2

+
P −Q

4 r2 cos2 φ

2

.

The particular case the the system (1) when a = b was considered by Kibler and

Négadi (1984a) when they studied the Hartman potential using KS transformation. In

this sense, the proposed Hamiltonian (1) represents a generalization of theirs.

Potentials Vi belong to a larger family of integrable systems which are known to be

separable from the work done by Makarov et al. (1967). Potentials (2) and (3) have

received special attention since the pioneer work of Hartmann and collaborators because

they are related with the benzene molecule, as well as other models in quantum chemistry

and nuclear physics. When we take Q = 0 in potential V1 we have the Hartmann (1972)

model. Continuing the work done by Kibler and Négadi (1984a), the solution is given in

detail in Kibler and Winternitz (1987), now in parabolic coordinates. With respect to

potential V2, the case P = 0 has been studied by Quesne (1988), and the study of both

models is given in Kibler et al. (1992). The ring-shaped features come from the fact that

coefficients have to be taken then within specific ranges.

Systems defined by those potentials are super-integrable, but not maximally super-

integrable, having four globally defined single-valued integrals of motion. They admit

two maximally super-integrable systems as limiting cases, viz, the Coulomb-Kepler sys-

tem and the isotropic harmonic oscillator system in three dimensions. This relates with

the fact that Schrödinger equation is separable, among others, in spherical, parabolic

and spheroidal coordinates. All finite trajectories are quasi-periodical; they become truly

periodical if a commensurability condition is imposed on an angular momentum compo-

nent. For potential V1 the coefficients of the interbasis expansions between three bases

(spherical, parabolic and spheroidal) are studied in detail by Kibler et al. (1994). For

the path integral approach applied to these and related systems we mention the review

paper of Grosche (1992) and references therein. Recently the normalized wavefunctions

and explicit expressions for their radial average values have been presented by Chen et

al. (2002), where an updated list of references on these problem is given. Similar studies

for potential V2 were done by Kibler et al. (1996); see also Kibler and Winternitz (1990).

As we have said above this paper deals with the relation of those 3-D systems with a

4-D integrable dynamical system defined by the Hamiltonian function (1). More precisely

we will focus on aspects related to classical dynamics. The paper is organized as follows.

In Section 2 we establish the relation between the oscillator and the systems defined by

potentials (2) and in Section 3 we do the same with potentials (3), making use of well

known point transformations in 4-D and their canonical extensions; for each case there

is a linear system which relates parameters P and Q of the potentials with integrals
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and parameters of the 4-D oscillator. In Section 4, assuming ω > 0, we carry out the

integration of system defined by Hamiltonian (1), which is given by means of elementary

functions. With respect to quantum mechanic approach, we refer to the classic paper of

Calogero (1969) (Sect. 2) which, with minor changes, can be applied to the two coupled

1-DOF systems defining our model.

2 The oscillator and the generalized Hartmann potentials

We show first the relation of the Hamiltonian system defined by (1) and the generalized

Hartmann potentials defined by the potentials V1. In order to do that we make use the

transformation: (r, φ, λ, ψ) → (q1, q2, q3, q4) given by

q1 =
√
r sin

φ

2
cos

λ− ψ

2
, q3 =

√
r cos

φ

2
sin

λ+ ψ

2
,

q2 =
√
r sin

φ

2
sin

λ− ψ

2
, q4 =

√
r cos

φ

2
cos

λ+ ψ

2
,

(4)

with (r, φ, λ, ψ) ∈ R+×(0, π)× [0, 2π]×
(

−π
2
,
π

2

)

and whose jacobian is −r sin φ/8. Later

on we will need the inverse transformation given by

r = q2
1 + q2

2 + q2
3 + q2

4,

sinφ =
2
√

(q2
1 + q2

2)(q
2
3 + q2

4)

q2
1 + q2

2 + q2
3 + q2

4

, cosφ =
q2
3 + q2

4 − q2
1 − q2

2

q2
1 + q2

2 + q2
3 + q2

4

,

sinλ =
q1q3 + q2q4

√

(q2
1 + q2

2)(q
2
3 + q2

4)
, cosλ =

q1q4 − q2q3
√

(q2
1 + q2

2)(q
2
3 + q2

4)
,

sinψ =
q1q3 − q2q4

√

(q2
1 + q2

2)(q
2
3 + q2

4)
, cosψ =

q1q4 + q2q3
√

(q2
1 + q2

2)(q
2
3 + q2

4)
.

(5)

These variables are well known in the literature. Kibler and Négadi point out that

they were used by Ikeda y Miyachi (1971), and these authors refer them to a classical

physics book of Synge (1960). In Cornish (1984), we find a reference to the work of Barut

et al. (1979), and are introduced starting from the transformation (ζA, ζB) → (x, y, z, σ)

x+ iy = 2ζAζ̄B, z = ζAζ̄A − ζB ζ̄B, σ = arg ζAζB,

where ζA y ζB are two complex variables. We find them also in Stiefel and Scheifele

(1971), although no further use of them. As these variables are related to Euler angles of

rotation, we propose to dube them as Euler projective variables.

The canonical extension associated to the transformation (4) is readely obtained as a

Mathieu transformation, satisfying
∑

Qidqi = Rdr + Φdφ + Λdλ + Ψdψ. The relations
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among the momenta are given by

R =
1

2
∑

q2
i

(q1Q1 + q2Q2 + q3Q3 + q4Q4),

Φ =
(q1Q1 + q2Q2)(q

2
3 + q2

4) − (q3Q3 + q4Q4)(q
2
1 + q2

2)

2
√

(q2
1 + q2

2)(q
2
3 + q2

4)
,

Λ =
1

2
(−q2Q1 + q1Q2 + q4Q3 − q3Q4),

Ψ =
1

2
(q2Q1 − q1Q2 + q4Q3 − q3Q4),

(6)

The Hamiltonian (1) in the new variables may be written as

H = 4r

[

ω

8
+

1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

+
Ψ2 − 2 ΛΨ cosφ

2 r2 sin2 φ
+
c+ d cosφ

2r2 sin2 φ

]

(7)

where

c =
a+ b

2
, d =

a− b

2
.

Note that λ and ψ are cyclic variables, with Λ and Ψ as first integrals. In other words

the differential systems is

dr

dτ
=
∂HO

∂R
,

dφ

dτ
=
∂HO

∂Φ
,

dR

dτ
= −∂HO

∂r
,

dΦ

dτ
= −∂HO

∂φ

and two quadratures λ =
∫

(∂HO/∂Λ) dτ and ψ =
∫

(∂HO/∂Ψ) dτ .

Using Poincaré notation and introducing a change of independent variable τ → s given

by dτ = 4r ds, the Hamiltonian takes the form

KO =
1

4r
(HO − hO)

=
ω

8
+

1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

+
Ψ2 − 2 ΛΨ cosφ

2 r2 sin2 φ
+
c+ d cosφ

2r2 sin2 φ
− hO

4r
, (8)

where hO is a fix value of the Hamiltonian HO for chosen initial conditions, and the flow

is defined now on the manifold KO = 0. We prefer to use a slightly different form; we

consider the Hamiltonian

K̃O =
1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

− hO

4r
+

(Ψ2 + c)/2

r2 sin2 φ
+

(d/2 − ΛΨ) cos φ

r2 sin2 φ
(9)

in the manifold K̃O = −ω
8

. Denoting

HK =
1

2

(

R2 +
Φ2

r2
+

Λ2

r2 sin2 φ

)

− hO

4r
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the differential system defined by (9) is given by

dr

ds
=
∂K̃O

∂R
= R,

dφ

ds
=
∂K̃O

∂Φ
=

Φ

r2
,

dR

ds
= −∂K̃O

∂r
= −∂HK

∂r
+ 2

(Ψ2 + c)/2

r3 sin2 φ
+ 2

(d/2 − ΛΨ) cosφ

r3 sin2 φ

dΦ

ds
= −∂K̃O

∂φ
= −∂HK

∂φ
+

(Ψ2 + c)/2

r2

∂

∂φ

( 1

sin2 φ

)

+
(d/2 − ΛΨ)

r2

∂

∂φ

( cosφ

sin2 φ

)

(10)

and two quadratures

λ =
∫

∂K̃O

∂Λ
ds =

∫

( Λ

r2 sin2 φ
− Ψ cosφ

r2 sin2 φ

)

ds, (11)

ψ =
∫ ∂K̃O

∂Ψ
ds =

∫ Ψ − Λ cosφ

r2 sin2 φ
ds, (12)

If we consider now the differential system defined by the Hamiltonian with potential

V1, Eq. (2) in spherical variables (r, φ, λ),

x1 = r sin φ cosλ, x2 = r sinφ sin λ, x3 = r cosφ, (13)

and their momenta (R,Φ,Λ), we check that those equations coincide with equations (10)

and (11), when we restrict to the manifold Ψ = 0 and we take the following values for the

coefficients

hO = 4µ, c = 2P, d = 2Q,

and we identify the variable s with the physical time t.

Notice that we may also choose Ψ 6= 0. In that case the values will be

hO = 4µ, c = 2P − Ψ2, d = 2(Q+ ΛΨ),

and for λ, instead of (11), we take

λ =
∫

Λ

r2 sin2 φ
ds,

with r(s) and φ(s) given by the solution of the system (10). It is an open question if there

is any advantage in proceeding this way.

Thus, we have shown that the dynamics of the oscillator defined by Hamiltonian (1)

corresponds to the family of the generalized Hartmann potentials. If we assume Ψ = 0,

the particular case of the Hartmann model is obtained when d = 0, i. e. when we take

for the oscillator the following values

HO = 4µ ω = −8K̃O a = b = P.
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3 Relation with generalized 3-D isotropic potentials

There is still another family of potentials related to our system (1). Let us consider

now the transformation (used by Kibler and Negali, 1984)

q1 = r cosα cosβ, q2 = r cosα sin β, q3 = r sinα cos γ, q4 = r sinα sin γ (14)

with Jacobian: −r3 sin 2α/2, in other words α ∈ (0, π/2)
⋃

(π/2, π). The associated canon-

ical extension (q1, q2, q3, q4, Q1, Q2, Q3, Q4) → (r, α, β, γ, R,A∗, B∗, C∗) reads

R =
1

∑

q2
i

(q1Q1 + q2Q2 + q3Q3 + q4Q4),

A =
(q3Q3 + q4Q4)(q

2
1 + q2

2) − (q1Q1 + q2Q2)(q
2
3 + q2

4)
√

(q2
1 + q2

2)(q
2
3 + q2

4)
,

B = −q2Q1 + q1Q2,

C = −q4Q3 + q3Q4,

(15)

The inverse transformation, needed for the construction of the explicit transformation

with the old variables takes the form

r = q2
1 + q2

2 + q2
3 + q2

4,

sinα =

√

q2
1 + q2

2

q2
1 + q2

2 + q2
3 + q2

4

, cosα =

√

q2
3 + q2

4

q2
1 + q2

2 + q2
3 + q2

4

cosβ =
q1

√

q2
1 + q2

2

, sin β =
q2

√

q2
1 + q2

2

,

cos γ =
q3

√

q2
3 + q2

4

, sin γ =
q4

√

q2
3 + q2

4

.

(16)

The Hamiltonian (1) in these variables is given by

HOP =
1

2

(

R2 +
A∗2

r2
+

C∗2

r2 sin2 α

)

+
ω

2
r2 +

B∗2 + a

2r2 cos2 α
+

b

2r2 sin2 α
. (17)

Note that β and γ are cyclic, thus B∗ and C∗ are first integrals. In other words the

differential systems is

dr

dτ
=
∂HO

∂R
,

dα

dτ
=
∂HO

∂A∗

,
dR

dτ
= −∂HO

∂r
,

dA∗

dτ
= −∂HO

∂α

and two quadratures β =
∫

(∂HO/∂B
∗) dτ and γ =

∫

(∂HO/∂C
∗) dτ .

If we restrict to the subsystem defined by (r, α, γ, R,A∗, C∗), and we consider the

transformation defined by

x1 = r sinα cos γ, x2 = r sinα sin γ, x3 = r cosα,
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the system defined corresponds to the one given by family of potentials V2, choosing the

constants as follows

ω = Ω2, a = P −B∗2 y b = Q,

and we identify τ with the physical time t. Notice that the 3-D isotropic oscillator is

obtained either choosing B∗ = a = b = 0 or if b = 0 and a = −B∗. Kibler and Winternitz

(1990) studied the case P = 0, and a similar analysis for the general case may be found

in Kibler et al. (1996).

4 The biparametric oscillator and its integration

Having already shown the relation of both families of ring-shaped systems with the

oscillator, we focus now the integration of our oscillator. The Hamiltonian function (1)

defines an integrable system in ∆ = IR4 − {(0, 0)×IR2}⋃ {IR2×(0, 0)}.

4.1 First integrals in involution

There is a large literature on the issue of integrability and superintegrability which we

do not consider necessary to treat here. We wish only to mention that Liouville-Arnold

contidions for integrability are satisfied for our system. Indeed, we chek immediately that

the functions

I1 = −Q1q2 + q1Q2, I3 =
1

2

(

Q2

1 +Q2

2 + ω(q2

1 + q2

2) +
ω1

q2
1 + q2

2

)

, (18)

I2 = −Q3q4 + q3Q4, I4 =
1

2

(

Q2

3 +Q2

4 + ω(q2

3 + q2

4) +
ω2

q2
3 + q2

4

)

, (19)

are invariants which are in involution. Moreover, in order to see that they are independent,

the dimension where rank of the Jacobian defined by those functions is not four is of

dimension 2. In other words, there is an open domain in the cotangent space where the

rank defined by these invariants is maximal equal to four. Finally, as

H = I3 + I4,

we may take as the basic set of four first integrals the functions

H =
1

2

(

Q2

1 +Q2

2 +Q2

3 +Q2

4

+ω (q2

1 + q2

2 + q2

3 + q2

4) +
ω1

q2
1 + q2

2

+
ω2

q2
3 + q2

4

)

, (20)

I1 = −Q1q2 + q1Q2, (21)

I2 = −Q3q4 + q3Q4, (22)

I3 =
1

2

(

Q2

1 +Q2

2 + ω(q2

1 + q2

2) +
ω1

q2
1 + q2

2

)

. (23)

17



If this Hamiltonian defines a superintegrable system will not be study here. Those systems,

apart from being integrable in the Liouville-Arnold sense, they possess more constants

of motion than degrees of freedom. Moreover, if the number N of independent constants

takes the value N = 2n − 1, then the system is called maximally superintegrable. Join

with the three well known classic cases, more recently the existence of other less simple

such as the Calogero-Moser, the Smorodinsky-Winternitz and the hyperbolic Calogero-

Sutherland-Moser models have been identify as superintegrable n-dimensional systems

(for more details we refer to López et al. 1999).

4.2 The explicit solution

Related to the previous integrals, we make use of the polar-polar transformation

(q1, q2, q3, q4) → (ρ1, ρ2, α1, α2), considered by Kibler and Winternitz (1987), formulae

(18), given by:

q1 = ρ1 cosα1, q2 = ρ1 sinα1, q3 = ρ2 cosα2, q4 = ρ2 sinα2 (24)

and its canonical extension, (q1, q2, q3, q4, Q1, Q2, Q3, Q4) → (P1, P2, A1, A2)

P1 =
q1Q1 + q2Q2
√

q2
1 + q2

2

, A1 = q1Q2 − q2Q1, P2 =
q3Q3 + q4Q4
√

q2
3 + q2

4

, A2 = q3Q4 − q4Q3

Then,the Hamiltonian (1) in the new variables reads

HO =
1

2

(

P 2

1 + P 2

2 +
A2

1

ρ2
1

+
A2

2

ρ2
2

+ ω(ρ2

1 + ρ2

2) +
a

ρ2
1

+
b

ρ2
2

)

(25)

Note that α1 and α2 are cyclic, thus A1 and A2 are first integrals. In other words,

the system is made separable in two subsystems of 1-DOF, defined by the Hamiltonian

functions

Ha =
1

2

(

P 2

1 +
A2

1

ρ2
1

+ ωρ2

1 +
a

ρ2
1

)

, Hb =
1

2

(

P 2

2 +
A2

2

ρ2
2

+ ωρ2

2 +
b

ρ2
2

)

, (26)

such that

HO = Ha + Hb.

We integrate the differential system defined by (25) immediately, following closely the

steps of Deprit (1991). Introducing

Q̃ = 2Ha − ωρ2

1 −
A2

1 + a

ρ2
1

,

and the quantities a1 and b1 by

a1 + b1 =

√

√

√

√

2
(Ha

ω
+

√

A2
1 + a

ω

)

, a1 − b1 =

√

√

√

√

2
(Ha

ω
−
√

A2
1 + a

ω

)

,
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then, we may write

Q̃ =
ω

ρ2
1

(a2

1 − ρ2

1)(ρ
2

1 − b21).

We see that the equation Q̃ = 0 has real roots when Ha ≥
√

ω (A2
1 + a). The system

defined by Ha reduces to

ρ̇1 = P1 =
√

Q̃, α̇1 =
A1

ρ2
1

,

i.e., to two quadratures. From the first quadrature we obtain immediately

ρ1(τ) =
√

a2
1 sin2

√
ω τ + b21 cos2

√
ω τ

where ρ1(0) = b1 and the angle α1 = α1(τ), after some computations, is given by

sin(α1) = a1

sin
√
ω τ

ρ1(τ)
, cos(α1) = b1

cos
√
ω τ

ρ1(τ)
. (27)

where we have chosen α0
1 = 0. Similar expressions are obtained for ρ2 and α2. With the

quantities a2 and b2 given by

a2 + b2 =

√

√

√

√

2
(Hb

ω
+

√

A2
2 + b

ω

)

, a2 − b2 =

√

√

√

√

2
(Hb

ω
−
√

A2
2 + b

ω

)

,

we have

ρ2(t) =
√

a2
2 sin2

√
ω τ + b22 cos2

√
ω τ

where ρ2(0) = b2 and the angle α2 = α2(τ), after some computations, is given by

sin(α2) = a2

sin
√
ω τ

ρ2(τ)
, cos(α2) = b2

cos
√
ω τ

ρ2(τ)
. (28)

where we have chosen α0
2 = 0. Finally replacing in Eqs. (24) we obtain the qi variables.

Conclusion and future work

We have established the relation of two families of ring-shaped type systems with a 4-D

isotropic oscillator. This allows a unified treatment which is of interest both in quantum

and classical studies. We may even consider a slightly more general potential

HOP =
1

2

(

Q2

1 +Q2

2 +Q2

3 +Q2

4 + ω (q2

1 + q2

2 + q2

3 + q2

4)
)

+
a

q2
1 + q2

2

+
b

q2
3 + q2

4

+
c∗

q2
1 + q2

2 + q2
3 + q2

4

. (29)

and this will be presented in a future paper now in progress by Ferrer and Lara (2007),

identifying common features of them such as conditions periodic families and equilibria.
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