Symmetries, bi-Hamiltonian Structures and Harmonic Oscillators

Manuel F. Rañada
Departamento de Física Teórica, Facultad de Ciencias Universidad de Zaragoza, 50009 Zaragoza, Spain
e-mail: mfran@unizar.es

Abstract

The properties of the bi-Hamiltonian structures of the harmonic oscillator are studied using the geometric theory of symmetries as an approach. Two superintegrable systems related with the harmonic oscillator are also analyzed.

Keywords: Dynamical symmetries, Non-symplectic symmetries, Bi-Hamiltonian structures, Harmonic oscillators.

PACS: 02.30.Ik, 02.40.Yy, 45.20.Jj
MSC (2000): 37J15, 37J35, 70H06, 70H33

1 Introduction

It is well known that there is a close relation between integrability and the existence of alternatives structures and also that integrable systems are systems endowed with a great number of symmetries. The purpose of this lecture is to present a brief survey of some properties relating the existence of additional structures with the theory of dynamical symmetries in the particular case of the two-dimensional harmonic oscillator.

2 Non-symplectic symmetries

In differential geometric terms, the dynamics of a time-independent Hamiltonian system is determined by a vector field on the $2 n$-dimensional cotangent bundle $T^{*} Q$ of a $n-$ dimensional manifold Q. Cotangent bundles are manifolds endowed, in a natural or canonical way, with a symplectic structure ω_{0} that, in coordinates $\left\{\left(q_{j}, p_{j}\right) ; j=1,2, \ldots, n\right\}$, is given by

$$
\omega_{0}=d q_{j} \wedge d p_{j}, \quad \omega_{0}=-d \theta_{0}, \quad \theta_{0}=p_{j} d q_{j}
$$

(we write all the indices as subscripts and we use the summation convention on the repeated index). Given a differentiable function $F=F(q, p)$, the vector field X_{F} defined as the solution of the equation

$$
i\left(X_{F}\right) \omega_{0}=d F
$$

is called the Hamiltonian vector field of the function F. There are two important properties:
(i) The Hamiltonian vector field of a given function is well defined without ambiguities. This uniqueness is a consequence of the symplectic character of the two-form ω_{0}.
(ii) Suppose that we are given a Hamiltonian $H=H(q, p)$. Then the dynamics is given by the Hamiltonian vector field Γ_{H} of the Hamiltonian function. That is, $i\left(\Gamma_{H}\right) \omega_{0}=d H$.

At this point we recall that a (infinitesimal) dynamical symmetry of a Hamiltonian system $\left(T^{*} Q, \omega_{0}, H\right)$ is a vector field Y such that it satisfies $\left[Y, \Gamma_{H}\right]=0$. On the other hand it is known that, in some very particular cases, the Hamiltonian systems can admit dynamical but non-symplectic symmetries (for a classification of the symmetries in geometric terms see [1] and [2]). In this case we have the following property.

Proposition 1 Suppose there is a vector field Y that is a dynamical symmetry of Γ_{H} but does not preserve the symplectic two-form

$$
\mathcal{L}_{Y} \omega_{0}=\omega_{Y} \neq 0
$$

Then (i) the dynamical vector field Γ_{H} is bi-Hamiltonian, and (ii) the function $Y(H)$ is the new Hamiltonian, and therefore it is a constant of motion.

Proof: For a proof of this proposition see [3]-[8], and references therein. A similar property is studied in $[9,10]$ for the case of Poisson manifolds. A sketch of the proof of this statement is as follows: The vector field Y does not preserve ω_{0} and, as it is a noncanonical transformation, it determines a new 2-form $\omega_{Y}=\mathcal{L}_{Y} \omega_{0}$ (\mathcal{L}_{Y} denotes de Lie derivative with respect to $Y)$. As Y is a symmetry, $\left[Y, \Gamma_{H}\right]=0$, then $\mathcal{L}_{Y} \circ i_{\Gamma_{H}}=i_{\Gamma_{H}} \circ \mathcal{L}_{Y}$, and, consequently,

$$
i_{\Gamma_{H}} \omega_{Y}=i_{\Gamma_{H}} \mathcal{L}_{Y} \omega_{0}=\mathcal{L}_{Y} i_{\Gamma_{H}} \omega_{0}=\mathcal{L}_{Y}(d H)=d(Y H) .
$$

Therefore, the 2-form ω_{Y} is admissible for the dynamical vector field Γ_{H}, i.e. $\mathcal{L}_{\Gamma_{H}} \omega_{Y}=0$, which is weakly bi-Hamiltonian with respect to the original symplectic 2 -form ω_{0} and the new structure ω_{Y}. Of course the particular form of ω_{Y} depends on Y and, in some cases, it can be just a constant multiple of ω_{0} (trivial bi-Hamiltonian system). In some other cases ω_{Y} may be a degenerate 2-form with a nontrivial kernel. In any case, the vector field Γ_{H} is a dynamical system solution of the following two equations

$$
i\left(\Gamma_{H}\right) \omega_{0}=d H \quad \text { and } \quad i\left(\Gamma_{H}\right) \omega_{Y}=d[Y(H)] .
$$

Therefore the function $H_{Y}=Y(H)$, that must be a constant of motion, can be considered as a new Hamiltonian for Γ_{H}.

In the next two sections we will consider the particular case of the harmonic oscillator. We will analyze the existence of some bi-Hamiltonian structures and we will prove that they can be considered as associated to non-symplectic symmetries. For these properties, and some other related results, see [4]-[8] and [11] and references therein.

3 The harmonic oscillator

The Hamiltonian of the two-dimensional harmonic oscillator

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} w^{2}\left(x^{2}+y^{2}\right),
$$

can be rewriten as follows

$$
H=\frac{1}{2}\left(K_{x} K_{x}^{*}+K_{y} K_{y}^{*}\right),
$$

where K_{x} and K_{y} are the two complex fuctions given by

$$
K_{x}=p_{x}+\mathrm{i} w x, \quad K_{y}=p_{y}+\mathrm{i} w y .
$$

Let us denote by Y_{x} and Y_{y} the Hamiltonian vector fields of the functions K_{x} and K_{y}

$$
i\left(Y_{x}\right) \omega_{0}=d K_{x}, \quad i\left(Y_{y}\right) \omega_{0}=d K_{y}
$$

with coordinate expressions

$$
Y_{x}=\frac{\partial}{\partial x}-\mathrm{i} w \frac{\partial}{\partial p_{x}}, \quad Y_{y}=\frac{\partial}{\partial y}-\mathrm{i} w \frac{\partial}{\partial p_{y}}
$$

and by Z the following vector field

$$
Z=K_{y}^{*} Y_{x}
$$

Then Z is neither locally-Hamiltonian with respect to ω_{0}

$$
\mathcal{L}_{Z} \omega_{0}=d\left(K_{y}^{*} i\left(Y_{x}\right) \omega_{0}\right)=d K_{y}^{*} \wedge d K_{x} \neq 0
$$

nor a infinitesimal symmetry of the Hamiltonian

$$
\mathcal{L}_{Z} H=K_{y}^{*} i\left(Y_{x}\right) d H=-\mathrm{i} w K_{x} K_{y}^{*} \neq 0 .
$$

Concerning the Lie bracket of Z with the dynamical vector field Γ_{H}, it is given by

$$
\left[Z, \Gamma_{H}\right]=K_{y}^{*}\left[Y_{x}, \Gamma_{H}\right]-\Gamma_{H}\left(K_{y}^{*}\right) Y_{x}
$$

but as

$$
\left[Y_{x}, \Gamma_{H}\right]=-\mathrm{i} w Y_{x} \quad \text { and } \quad \Gamma_{H}\left(K_{y}^{*}\right)=-\mathrm{i} w K_{y}^{*}
$$

we arrive to

$$
\left[Z, \Gamma_{H}\right]=0
$$

Hence, Z is a dynamical but non-symplectic (non-canonical) symmetry of Γ_{H}.
Thus, if we denote by Ω the complex 2 -form defined as

$$
\Omega=d K_{x} \wedge d K_{y}^{*}=\Omega_{1}+\mathrm{i} \Omega_{2}
$$

where the two real 2-forms, $\Omega_{1}=\operatorname{Re}(\Omega)$ and $\Omega_{2}=\operatorname{Im}(\Omega)$, take the form

$$
\Omega_{1}=d x \wedge d y+d p_{x} \wedge d p_{y}, \quad \Omega_{2}=d x \wedge d p_{y}+d y \wedge d p_{x}
$$

then we have the following bi-Hamiltonian structure

$$
i\left(\Gamma_{H}\right) \Omega_{1}=-w d I_{3}, \quad i\left(\Gamma_{H}\right) \Omega_{2}=w d I_{4}
$$

where the functions $I_{3}=\operatorname{Im}\left(K_{x} K_{y}^{*}\right)$ and $I_{4}=\operatorname{Re}\left(K_{x} K_{y}^{*}\right)$ are two constants of the motion given by

$$
I_{3}=x p_{y}-y p_{x}, \quad I_{4}=p_{x} p_{y}+w^{2} x y
$$

4 Two superintegrable potencials

Fris, Mandrosov et al [12] studied the Euclidean $n=2$ systems which admit separability in two different coordinate systems, and obtained four families $V_{r}, r=a, b, c, d$, of superintegrable potentials with constants of motion linear or quadratic in the momenta. In fact, if we call superseparable to a system that admits Hamilton-Jacobi separation of variables (Schrödinger in the quantum case) in more than one coordinate system, then quadratic superintegrability (superintegrability with linear or quadratic constants of motion) can be considered as a property arising from superseparability. The two first families, V_{a} and V_{b}, were directly related with the Harmonic oscillator

$$
\begin{aligned}
& V_{a}=\left(\frac{1}{2}\right) w^{2}\left(x^{2}+y^{2}\right)+\frac{k_{2}}{x^{2}}+\frac{k_{3}}{y^{2}} \\
& V_{b}=\left(\frac{1}{2}\right) w^{2}\left(4 x^{2}+y^{2}\right)+k_{2} x+\frac{k_{3}}{y^{2}}
\end{aligned}
$$

and can be considered as the more general deformations of the 1:1 and 2:1 oscillators (k_{2}, k_{3}, representing the intensity of the deformation) preserving quadratic superintegrability (the three-dimensional generalizations of these potentials have been studied in [13]).

4.1 Potential V_{a}

The potential V_{a}, is superintegrable with three quadratic constants of motion, I_{r}^{a}, $r=1,2,3$. Since $V_{x y}=0$, the two first constants of motion are $I_{1}^{a}=H_{x}^{a}$, and $I_{2}^{a}=H_{y}^{a}$. Concerning I_{3}^{a}, it takes the following form

$$
I_{3}^{a}=\left(\frac{1}{2}\right)\left(x p_{y}-y p_{x}\right)^{2}+k_{2}\left(\frac{y}{x}\right)^{2}+k_{3}\left(\frac{x}{y}\right)^{2} .
$$

The function I_{3}^{a} arises from a symplectic symmetry. This symmetry is geometrically represented by the Hamiltonian vector field X_{3}^{a} of the function I_{3}^{a}

$$
i\left(X_{3}^{a}\right) \omega_{0}=d I_{3}^{a}, \quad X_{3}^{a}\left(H_{a}\right)=0 .
$$

We can write the vector field X_{3}^{a} as follows

$$
X_{3}^{a}=Y_{a}+Y_{a}^{\prime}
$$

with Y_{a} and Y_{a}^{\prime} given by

$$
\begin{aligned}
Y_{a} & =\frac{\partial I_{3}^{a}}{\partial p_{x}} \frac{\partial}{\partial x}-\frac{\partial I_{3}^{a}}{\partial x} \frac{\partial}{\partial p_{x}} \\
Y_{a}^{\prime} & =\frac{\partial I_{3}^{a}}{\partial p_{y}} \frac{\partial}{\partial y}-\frac{\partial I_{3}^{a}}{\partial y} \frac{\partial}{\partial p_{y}}
\end{aligned}
$$

It can be proved that

$$
\left[Y_{a}, \Gamma_{H}\right]=0, \quad\left[Y_{a}^{\prime}, \Gamma_{H}\right]=0
$$

So we have the following proposition
Proposition 2 The symplectic symmetry X_{3}^{a} can be decomposed as a sum of two different "dynamical but non-symplectic symmetries" in such a way that the following properties are satisfied

$$
\text { (i) } \mathcal{L}_{Y_{a}} \omega_{0}=\omega_{a} \neq 0, \quad \text { (ii) } Y_{a}\left(H_{a}\right)=H_{Y}^{a}=I_{4}^{a}, \quad \text { (iii) } \Gamma_{H}\left(I_{4}^{a}\right)=0
$$

The vector filed Y_{a}, that turns out to be the $\left(x, p_{x}\right)$-dependent part of X_{3}^{a}, is given by

$$
Y_{a}=\left(y^{2} p_{x}-x y p_{y}\right) \frac{\partial}{\partial x}+\Gamma_{H}\left(y^{2} p_{x}-x y p_{y}\right) \frac{\partial}{\partial p_{x}}
$$

The new symplectic form and the new Hamiltonian, now denoted by ω_{a} and H_{Y}^{a}, become

$$
\begin{aligned}
\omega_{a}= & p_{x} p_{y} d x \wedge d y+4\left(\frac{k_{2} y}{x^{3}}+\frac{k_{3} x}{y^{3}}\right) d x \wedge d y+\left(y p_{x}-2 x p_{y}\right) d x \wedge d p_{y} \\
& +\left(2 y p_{x}-x p_{y}\right) d y \wedge d p_{x}+x y d p_{x} \wedge d p_{y} \\
H_{Y}^{a}= & p_{x}^{2} p_{y}+w^{2}\left(y p_{x}-x p_{y}\right) x y+\frac{2 k_{2} y p_{y}}{x^{3}}-\frac{2 k_{3} x p_{x}}{y^{3}}
\end{aligned}
$$

and the bi-Hamiltonian structure for $H^{a}=T+V^{a}$ is given by

$$
i\left(\Gamma_{H}^{a}\right) \omega_{0}=d H^{a}, \quad \text { and } \quad i\left(\Gamma_{H}^{a}\right) \omega_{a}=d H_{Y}^{a} .
$$

4.2 Potential V_{b}

The potential V_{b} is superintegrable with three quadratic constants of motion, $I_{r}^{b}, r=$ $1,2,3$,

$$
I_{1}^{b}=H_{x}^{b}
$$

$$
\begin{aligned}
I_{1}^{b} & =H_{y}^{b} \\
I_{3}^{b} & =\left(x p_{y}-y p_{x}\right) p_{x}+w^{2} x^{2} y+\left(\frac{1}{2}\right) k_{2} x^{2}-2 k_{3}\left(\frac{y}{x^{2}}\right) .
\end{aligned}
$$

The function I_{3}^{b} arises from a symplectic symmetry. This symmetry is geometrically represented by the Hamiltonian vector field X_{3}^{b} of the function I_{3}^{b}

$$
i\left(X_{3}^{b}\right) \omega_{0}=d I_{3}^{b}, \quad X_{3}^{b}\left(H_{b}\right)=0
$$

We can write the vector field X_{3}^{b} as follows

$$
X_{3}^{b}=Y_{b}+Y_{b}^{\prime}
$$

with Y_{b} and Y_{b}^{\prime} given by

$$
\begin{aligned}
Y_{b} & =\frac{\partial I_{3}^{b}}{\partial p_{x}} \frac{\partial}{\partial x}-\frac{\partial I_{3}^{b}}{\partial x} \frac{\partial}{\partial p_{x}} \\
Y_{b}^{\prime} & =\frac{\partial I_{3}^{b}}{\partial p_{y}} \frac{\partial}{\partial y}-\frac{\partial I_{3}^{b}}{\partial y} \frac{\partial}{\partial p_{y}}
\end{aligned}
$$

It can be proved that

$$
\left[Y_{b}, \Gamma_{H}\right]=0, \quad\left[Y_{b}^{\prime}, \Gamma_{H}\right]=0 .
$$

So we have

$$
\text { (i) } \mathcal{L}_{Y_{b}} \omega_{0}=\omega_{b} \neq 0, \quad \text { (ii) } Y_{b}\left(H_{b}\right)=H_{Y}^{b}=I_{4}^{b}, \quad \text { (iii) } \Gamma_{H}\left(I_{4}^{b}\right)=0 \text {. }
$$

The vector filed Y_{b} is given by

$$
Y_{b}=\left(y^{2} p_{x}-x y p_{y}\right) \frac{\partial}{\partial x}+\Gamma_{H}\left(y^{2} p_{x}-x y p_{y}\right) \frac{\partial}{\partial p_{x}}
$$

The new symplectic form and the new Hamiltonian, now denoted by ω_{b} and H_{Y}^{b}, become

$$
\begin{aligned}
\omega_{b} & =-2\left(w^{2} y+\frac{2 k_{3}}{y^{3}}\right) d x \wedge d y+2 p_{y} d x \wedge d p_{y}+p_{y} d y \wedge d p_{x}-y d p_{x} \wedge d p_{y} \\
H_{Y}^{b} & =p_{x} p_{y}^{2}+\left(\frac{2 k_{3}}{y^{2}}-w^{2} y^{2}\right) p_{x}+\left(4 w^{2} x+k_{2}\right) y p_{y}
\end{aligned}
$$

and the bi-Hamiltonian structure for $H^{b}=T+V^{b}$ is given by

$$
i\left(\Gamma_{H}^{b}\right) \omega_{0}=d H^{b}, \quad \text { and } \quad i\left(\Gamma_{H}^{b}\right) \omega_{b}=d H_{Y}^{b} .
$$

Acknowledgments.

Support of projects BFM-2003-02532, FPA-2003-02948 and E23/1 (DGA) is acknowledged.

References

[1] M. Crampin, "Tangent bundle geometry for Lagrangian dynamics", J. Phys. A 16, 3755-3772 (1983).
[2] G. Prince, "Toward a classification of dynamical symmetries in classical mechanics", Bull. Austral. Math. Soc. 27, 53-71 (1983).
[3] J.F. Cariñena and L.A. Ibort, "Non-Noether constants of motion", J. Phys. A 16, 1-7 (1983).
[4] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo, and C. Rubano, "The inverse problem in the calculus of variations and the geometry of the tangent bundle", Phys. Rep. 188, 147-284 (1990).
[5] C. López, E. Martínez and M.F. Rañada, "Dynamical symmetries, non-Cartan symmetries, and superintegrability of the n-dimensional Harmonic Oscillator", J. Phys. A 32, 1241-1249 (1999).
[6] M.F. Rañada, "Dynamical symmetries, bi-Hamiltonian structures, and superintegrable $n=2$ systems", J. Math. Phys. 41, 2121-2134 (2000).
[7] J.F. Cariñena, G. Marmo, and M.F. Rañada, "Non-symplectic symmetries and bi-Hamiltonian structures of the rational harmonic oscillator", J. Phys. A 35, L679-L686 (2002).
[8] G. Marmo, G. Morandi, A. Simoni, and F. Ventriglia, "Alternative structures and bi-Hamiltonian systems", J. Phys. A 35, 8393-8406 (2002).
[9] R.G. Smirnov, "Bi-Hamiltonian formalism: a constructive approach", Lett. Math. Phys. 41, 333-347 (1997).
[10] A. Sergyeyev, "A simple way of making a Hamiltonian system into a biHamiltonian one", Acta Appl. Math. 83, 183-197 (2004).
[11] M.F. RAÑADA, "A system of $n=3$ coupled oscillators with magnetic terms: symmetries and integrals of motion", SIGMA (Symmetry Integrability Geom. Meth. Appl.) 1, 4 (2005).
[12] T.I. Fris, V. Mandrosov, Y.A. Smorodinsky, M. Uhlir, and P. Winternitz, "On higher symmetries in quantum mechanics", Phys. Lett. 16, 354-356 (1965).
[13] N.W. Evans, "Superintegrability in classical mechanics", Phys. Rev. A 41, 56665676 (1990).

