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Abstract

We present a Drinfeld double structure for the Cartan series An of semisimple Lie

algebras (that can be extended to the other three series). This algebraic structure is

obtained from two disjoint solvable subalgebras s± related by a Weyl transformation

and containing the positive and negative roots, respectively. The new Lie algebra

ḡ = s+ + s− is a central extension of the corresponding semisimple Lie algebra An

by an Abelian kernel, whose dimension is the rank of An. In order to construct such

Drinfeld double algebra we need a particular basis: all its generators are explicitly

described, the generators of the extended Cartan subalgebra are orthonormal and

the length of all the root vectors is fixed.

1 Introduction

An important object in quantum groups is the quantum double [1]. Thus, the Drinfeld-

Jimbo deformations, Uh(g), of semisimple Lie algebras g [2, 3] as well their universal

quantum R-matrices can be computed [1, 4, 5] using the properties of the structure of

quantum doubles. However, in [5] it is shown that Uh(g) is ‘almost’ a quantum double,

since the positive and negative quantum Borel subalgebras U±
h (g) have in common the

Cartan subalgebra, and the corresponding Drinfeld double cannot be properly defined.

Effectively, remember that a semisimple Lie algebra can be decomposed in the following

way

g = n+ + h + n−
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where h is the Cartan subalgebra and n+ and n− are the nilpotent subalgebras of the

positive and negative roots, respectively. The subalgebras n+ +h and n− +h are solvable

(Borel subalgebras).

We present here a way to solve such problem by enlarging the Cartan subalgebra h

by an Abelian algebra t generated by the central elements Ii (i = 1, . . . , rank(g)) in such

a way [6, 7]

H+
i =

1√
2
(Hi + iIi), H−

i =
1√
2
(Hi − iIi), i = 1, . . . , rank(g)

(i is the imaginary unit and Hi are the Cartan generators) that two disjoint solvable

algebras, isomorphic to Borel subalgebras, can be properly defined

s+ = n+ + h+, s− = n− + h−.

Thus, we obtain a new Lie algebra ḡ = s+ + s−, which is a central extension of g by an

Abelian algebra t such that Uh(ḡ) is a quantum doble.

A quantum double in the limit of the deformation parameter h going to zero gives

rise to a Drinfeld double [1], i.e. a Lie algebra ḡ equiped with a Manin triple structure

[1, 4, 5]. A Manin triple is a set of three Lie algebras (s+, s−, ḡ) such that s+ and s− are

disjoint subalgebras of ḡ having the same dimension, ḡ = s+⊕ s− as vector space and the

crossed commutations are defined in terms of the commutators of both subalgebras.

Among the Drinfeld doubles we can distinguish those with the structure tensors of

s+ and s−, f and c, respectively, verifying c = −f . In this case we shall say that ḡ is a

Weyl-Drinfeld double. Incidentally, the positive and negative Borel subalgebras b± of a

classical Lie algebra g have c = −f , however the Cartan subalgebra is common for both.

Hence, b± cannot be identified as s±. For this reason g is ‘almost’ a Drinfeld double.

It is worthy to note that to obtain a Drinfeld double it is necessary to use an appropri-

ate basis. For the case of the simple Lie algebras the Chevalley-Cartan basis (and Serre

relations) is not suitable. We are forced to use bases defined in terms of bosonic or fermi-

onic oscillator realizations. The indetermination originated by the nonfixed length of the

root vectors in the Cartan approach is removed by imposing to be a Weyl-Drinfeld double

structure. While the algebra structure of a semisimple algebra fixes the commutation re-

lations only up to factors, the latter condition determines univocally the whole structure

up to a unique global scale factor. A canonical basis is, hence, completely determined by

the Weyl-Drinfeld structure. We shall call it Cartan-Weyl basis.

On the other hand, if ḡ is a Drinfeld double, it can be always endowed with a (quasitri-

angular) Lie bialgebra structure (ḡ, δ), which contains two Lie sub-bialgebras (s±,∓δ|s±).

Since the quantum double Uz(g) [1] is the quantization of the Lie bialgebra (ḡ, δ) in

the limit Ii → 0, we can see the results presented in this work as part of a program of

constructing quantum deformations of semisimple algebras. The quantization procedure
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would be simplified because all the root vectors are explicitly considered, the underly-

ing Lie bialgebra is Weyl-Drinfeld and instead of q-commutators standard commutators

appear.

In this paper we present the case of gl(2) that can be easily generalized for gl(n)) =

An + H, where H is the one-dimensional Lie algebra generated by
∑

Hi [6]. The same

approach is valid for the Cartan series of semisimple Lie algebras: Bn, Cn and Dn [7].

However, the case of An is developed in a different way of the gl(2) by using a basis in

terms of bosonic or fermionic oscillator representations in order to present an approach

valable for the other Cartan series.

The paper is organized as follows. In section 2 we introduce the notation for the

Weyl-Drinfeld doubles. In section 3 we show that gl(2)⊕ t2 is a Weyl-Drinfeld double. In

section 4 we start introducing for An a suitable basis allowing the Weyl-Drinfeld double

construction. This kind of bases will be also useful for the other Cartan series. Later we

rewrite An in terms of Weyl-Drinfeld double algebras.

2 Drinfeld doubles

Let us consider two Lie algebras s+ and s− with bases {Zp} and {zp}, respectively,

and Lie commutators

[Zp, Zq] = f r
p,q Zr, [zp, zq] = cp,q

r zr. (2.1)

Let us suppose that there exists a non-degenerate symmetric bilinear form on the vector

space s+ ⊕ s− for which s± are isotropic). In other words, there is a pairing between s+

and s− defined by

〈Zp, Zq〉 = 0, 〈Zp, z
q〉 = δq

p, 〈zp, zq〉 = 0. (2.2)

Then, provided that the compatibility relations (crossed Jacobi identities)

cp,q
r f r

s,t = cp,r
s f q

r,t + cr,q
s fp

r,t + cp,r
t f q

s,r + cr,q
t fp

s,r (2.3)

are fulfilled, ḡ is a Lie algebra with crossed commutation rules

[zp, Zq] = fp
q,rz

r − cp,r
q Zr, (2.4)

such that the pairing is invariant under the adjoint representation of ḡ (i.e., 〈[a, b], c〉 =

−〈a, [b, c]〉], ∀a, b, c ∈ ḡ).

The coalgebra, i.e., the cocommutator δ, is determined by both algebras s± by

δ(Zp) = −cq,r
p Zq ⊗ Zr, δ(zp) = fp

q,r zq ⊗ zr. (2.5)
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Hence, (ḡ, δ) is a Lie bialgebra and, it has the Lie sub-bialgebras (s+,−δ|s+) and (s−, δ|s−).

While s+ and s− determine univocally ḡ, for a given ḡ its associated Manin triple structure

is not unique [8]-[11].

The cocommutator (2.5) can be derived either from the classical r-matrix
∑

p zp ⊗ Zp,

or from its skew-symmetric form

r =
1

2

∑
p

zp ∧ Zp . (2.6)

Any Drinfeld double is an even dimensional Lie algebra with a quadratic Casimir that

in a certain basis {Zp, z
p} can be written as

CD =
∑

{zp, Zp}. (2.7)

This property shall be used in our approach.

3 The Drinfeld double gl(2)⊕ t2

Let us start with an example: the case of gl(2). Let s+ = {Z1, Z2, Z3} and s− =

{z1, z2, z3} be solvable algebras with commutation rules

[Z1, Z2] = 0, [Z1, Z3] =
1√
2
Z3, [Z2, Z3] = − 1√

2
Z3, (3.1)

[z1, z2] = 0, [z1, z3] = − 1√
2
z3, [z2, z3] =

1√
2
z3. (3.2)

The structure tensors for s+, fp
q,r, and s−, cp,r

q , (2.1) are

f 3
1,3 = −f 3

3,1 =
1√
2
, f 3

2,3 = −f 3
3,2 = − 1√

2
, cp,q

r = −f r
p,q.

We can construct the triple (s+, s−, ḡ = s+ + s−) equiped with a non-degenerate

symmetric bilinear form on ḡ defined through (2.2). Jacobi identities (2.3) are easily

checked and the crossed commutation rules between s+ and s− are given by (2.4):

[z1, Z3] = −[z2, Z3] = 1√
2
Z3,

[z3, Z1] = −[z3, Z2] = 1√
2
z3,

[z3, Z3] = − 1√
2
(z1 + Z1) + 1√

2
(z2 + Z2).

(3.3)

Since s+ and s− are isomorphic, we obtain a Weyl-Manin triple. Note that the 1/
√

2

factor in the commutation rules (3.1) and (3.2) is essential in our construction.

The pair (s+, η) is a Lie bialgebra with cocommutator η(Zp) = −cq,r
p Zq⊗Zr. Explicitly:

η(Z1) = η(Z2) = 0, η(Z3) =
1√
2
Z3 ∧ (Z1 − Z2).
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Respectively, (s−, δ) is the dual Lie bialgebra with cocommutator δ(zp) = fp
q,rz

q ⊗ zr,

which reads

δ(z1) = δ(z2) = 0, δ(z3) = − 1√
2
z3 ∧ (z1 − z2).

Taking into account the change of basis

H1 = 1√
2
(Z1 + z1), I1 = 1

i
√

2
(Z1 − z1),

H2 = 1√
2
(Z2 + z2), I2 = 1

i
√

2
(Z2 − z2),

F12 = Z3, F21 = z3,

and rewriting the commutation relations (3.1), (3.2) and (3.3) we obtain

[Ii, ·] = 0, [H1, H2] = 0, [H1, F12] = F12, [H1, F21] = −F21,

[H2, F12] = −F12, [H2, F21] = F21, [F12, F21] = H1 −H2,

which are the commutation rules for the Lie algebra ḡ = gl(2)⊕t2 in the basis {H1, H2, F12,

F21} ⊕ {I1, I2}.
Hence, the two solvable algebras s+ and s− together with the pairing (2.2) endow

ḡ = gl(2) ⊕ t2 with a Drinfeld double structure. Note that s+ and s− have been chosen

to be isomorphic to the upper and lower triangular 2× 2 matrices of gl(2), respectively.

The cocommutator associated to the bialgebra (ḡ, δ) is given by

δ(Ii) = 0,

δ(Hi) = 0,

δ(F12) = −1
2
F12 ∧ (H1 −H2)− i

2
F12 ∧ (I1 − I2),

δ(F21) = −1
2
F21 ∧ (H1 −H2) + i

2
F21 ∧ (I1 − I2).

It can also be derived from the r-matrix (2.6) that in the basis {H1, H2, F12, F21}⊕{I1, I2}
takes the form

r̃ =
1

2
F21 ∧ F12 +

i

4
(H1 ∧ I1 + H2 ∧ I2) = r̃s + r̃t,

where r̃s generates the standard deformation of gl(2) and r̃t denotes a twist, that becomes

trivial in the representation of t2 where I1 − I2 = 0.

This procedure can be generalized for gl(n). In this case it is necessary to consider two

n(n+1)/2-dimensional solvable Lie algebras s± isomorphic to the subalgebras defined by

upper and lower triangular n×n matrices of gl(n). Now we obtain the Weyl-Manin triple

(s+, s−, gl(n)⊕ tn = s+ + s−) (for more details see Ref. [6]).
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4 An series as Weyl-Drinfeld doubles

The results presented above for gl(n) or An can be generalized for the remaining

Cartan series: Bn, Cn and Dn. However, as we mentioned before, we need to introduce a

kind of bases in terms of bosonic or fermionic oscillator realizations [12, 13, 14] in such a

way to be compatible with the bialgebra structure. Since these bases are suitable for the

four Cartan series An we shall present here the case of An (for a description of the other

three cases see Ref. [7]).

It is worthy noticing that property (2.7) requires the use of an orthonormal basis

for the elements of the Cartan subalgebra and fixes univocally the normalization of the

generators associated to the root vectors. In this way the bases are completely fixed, up

to a factor, by the Weyl-Drinfeld double structure.

4.1 Weyl-Drinfeld double basis forAn series

This series is the only one that supports bosonic and fermionic oscillator realizations.

In terms of bosonic oscillators ([bi, b
†
j] = δij) the generators of An can be written

Hi :=
1

2
{b†i , bi}, Fij := b†i bj, i 6= j.

Using fermionic oscillators ({ai, a
†
j} = δij) we get

Hi :=
1

2
[a†i , ai], Fij := a†i aj, i 6= j,

where i, j = 1, . . . , n + 1.

In both cases we have n Cartan generators Hi (besides,
∑

Hi is an additional central

generator) and n(n + 1) “root” generators Fij.

The commutation rules in both realizations are

[Hi, Hj] = 0,

[Hi, Fjk] = (δij − δik)Fjk,

[Fij, Fkl] = (δjkFil − δilFkj) + δjkδil(Hi −Hj).

(4.1)

These bases can be generalized also for the other Cartan series. In all other cases we

shall have the generators Hi, Fij together with other sets of generators specific of each

series. Moreover Cn only admit bosonic representations and Bn and Dn only fermionic

ones [7].

4.2 An series as Weyl-Manin triples

Essentially we shall follow the same procedure that we used in [6] for the Lie algebra

gl(n), but using the new basis described in the previous subsection.
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We introduce n + 1 central generators Ii and define the new generators Xi and xi in

terms of the Hi and Ii as follows

Xj =
1√
2
(Hj + iIj), xj =

1√
2
(Hj − iIj).

Let us consider two n(n+1)/2-dimensional solvable Lie algebras s+ and s− (isomorphic

to the subalgebras defined by upper and lower triangular n × n matrices of gl(n)) with

generators

s+ : {Xi, Fij}, i, j = 1, . . . , n + 1, i < j,

s− : {xi, f ij}, i, j = 1, . . . , n + 1, i < j,

where f ij := Fji (i < j). Note that gl(n) ⊕ tn+1 = s+ ⊕ s− as vector spaces, being tn+1

the Abelian Lie algebra generated by the Ii’s.

Assuming that the two algebras s+ and s− are paired by

〈xi, Xj〉 = δi
j, 〈f ij, Fkl〉 = δi

kδ
j
l , (4.2)

we can define a bilinear form on the vector space s+⊕ s− in terms of (4.2) such that both

s± are isotropic.

The commutation rules for s+ and s− are

[Xi, Xj] = 0, [Xi, Fjk] = 1√
2
(δij − δik) Fjk, [Fij, Fkl] = (δjkFil − δilFkj),

[xi, xj] = 0, [xi, f jk] = − 1√
2
(δij − δik) f jk, [f ij, fkl] = −(δjkf

il − δilf
kj).

Taking into account (2.4) one can easily write the crossed commutation rules. The

compatibility relations (2.3) are fulfilled as one can check. Hence, we obtain the Lie

algebra gl(n) ⊕ tn+1, whose commutation rules in the initial basis {Hi, Fij, Ii} are given

in (4.1) plus [Ii, ·] = 0. Thus, (s+, s−, gl(n)⊕ tn+1) is a Weyl-Manin triple.

There is a bialgebra structure for gl(n)⊕tn+1 determined by the cocommutator δ (2.5)

δ(Ii) = 0,

δ(Hi) = 0,

δ(Fij) = −1
2
Fij ∧ (Hi −Hj)− i

2
Fij ∧ (Ii − Ij) +

∑j−1
k=i+1 Fik ∧ Fkj, i < j,

δ(Fij) = 1
2
Fij ∧ (Hi −Hj)− i

2
Fij ∧ (Ii − Ij)−

∑i−1
k=j+1 Fik ∧ Fkj, i > j.

Easily one sees that (s+,∓δ|s+) and its dual (s−, δ|s−) are Lie sub -bialgebras.

The classical r-matrix (2.6) is given by

r =
1

2

∑
i<j

Fji ∧ Fij +
i

2

∑
i

Hi ∧ Ii = rs + rt.

The term rs generates the standard deformation of gl(n) and rt is a twist (not of Reshe-

tikhin type [15]). When all the Ii are equal the twist rt becomes trivial.

Note that the chain gl(m) ⊂ gl(m + 1) is preserved at the level of Lie bialgebras.
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5 Remarks

It is obvious that the Weyl-Drinfeld double structure that we have introduced for An,

and also valable for the remaining Cartan series, is not the only one possible. However,

it looks to be very natural since allow to give a “canonical” treatment.

For semisimple Lie algebras with rank even it is not necessary to introduce central

generators. For instance, this is the case of A2: using the Gell-Mann basis ({λi}8
i=1 [13])

the two solvable algebras can be chosen (up to a global factor) as

s± = {λ3 ± iλ8, λ1 ± iλ2, λ4 ± iλ5, λ6 ± iλ7}.

For odd dimensional Lie algebras at least one central generator must be introduced in

order to get a global even dimension.

However, in general, all the intermediate cases among the “canonical” case (introduc-

ing central generators as much as the rank of the Lie algebra g) and the case of “non

central generators” may be considered. Now, the two solvable algebras can be defined as

s± = { 1√
2
(Hi ± iHj),

1√
2
(Hk ± iIk), X

±
r },

where there are m (0 ≤ m ≤ n = rank(g) and (n + m)/2 ∈ Z+) central elements Ij. The

Abelian subalgebra has (n−m)/2 generators without Ik and m generators containing Ik.

When m < n the algebra does not exist for the real field but, in any case, the basis can

be constructed considering that c = −f ∗.
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