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Abstract

By using the theory of Lie algebroids, the momentum equation for a nonholo-

nomically constrained mechanical system with symmetry is reinterpreted in terms

of parallel transport with respect to a connection. Such connection is canonically

asociated to the geometry of the problem.
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1 Introduction

The concept of the momentum map is one of the most important concepts in the study

of the differential geometric properties of Hamiltonian systems with symmetry(see [13,

17, 19]. In the case of a free Hamiltonian system the momentum map associated to the

symmetry group is a constant of the motion, and hence the dynamics reduces to the

level sets of the momentum map. In the case of a nonholonically constrained system

this property does not hold. On the contrary, the momentum map satisfies a differential

equation known as the momentum equation [2] and hence the dynamics is not easily

reduced to a submanifold defined by the momentum.

The main problem in the constrained case is that the momentum map takes values on

the dual of a bundle of Lie algebras, instead of taking value in the dual of a Lie algebra.

This fact nearly forces us to use a more general structure, the Lie algebroid structure, in

which tangent bundles, Lie algebras, bundles of Lie algebras, quotients of tangent bundles

by symmetry groups and other more general situations fit in a natural way.

The purpose of this notes is to unveil the situation by using modern differential geo-

metric tools. We will show that a momentum map can be associated to every ideal of a
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Lie algebroid, and that there exists a natural linear connection (in the sense of Lie al-

gebroid connection theory [10]) such that the momentum equation is just the expression

of the vanishing of the covariant derivative of the momentum map with respect to such

connection. In other words, the evolution of the momentum map is given by parallel

transport along solutions of the dynamics. As a consequence of this fact, we will obtain

that the dynamics restricts to the inverse image of each holonomy subbundle on the dual

bundle of the ideal we have considered. Finally, the situation of the constrained case is

also analysed.

Along this paper all manifolds and maps are assumed to be smooth. We will consider

actions of Lie groups on manifolds and we will assume that the action of the Lie group is

free and proper. If G is a Lie group acting on a manifold Q, the fundamental vector

field associated with an element ξ ∈ g of the Lie algebra g of G will be denoted by ξQ.

2 The momentum map

Lagrangian Mechanics. We consider a manifold Q, its tangent bundle τQ : TQ → Q

and a Lagrangian L ∈ C∞(TQ) defined on it. Lagrange’s equations are the equations

for the critical points of the action functional S =
∫

Ldt, and in local coordinates these

equations read

δL =

[
d

dt

(
∂L

∂vi

)
− ∂L

∂qi

]
dqi = 0. (1)

To obtain them we just have to consider (infinitesimal) variations δq of the coordinates q

with fixed endpoints, from where the variations δq̇ of the velocities q̇ are obtained as the

derivative of the variations of the q coordinates, that is, δq̇ = d
dt

δq.

In geometric terms, we can define the Cartan 1-form θL, which in this paper will be

identified with a map θL : TQ → T ∗Q (the Legendre transformation), whose coordinate

expression is θL = ∂L
∂vi dqi. The variation of coordinates defines a vector field X = X i ∂

∂qi on

M , and the complete lift XC = X i ∂
∂qi +Ẋ i ∂

∂q̇i of such vector field describes the joint varia-

tion of coordinates and velocities. Then the Euler-Lagrange equations can be conveniently

written as the equations

LΓ〈 θL , X 〉 = LXCL for all X ∈ X(Q), (2)

where the unknown is the dynamical vector field Γ ∈ X(TQ).

Momentum map. Noether’s theorem can be easily deduced from the above equation.

If X is a vector field such that the Lagrangian is invariant in the sense that LXCL = 0, then

we deduce that the function 〈 θL , X 〉 is a constant of the motion, that is LΓ〈 θL , X 〉 = 0.

In many cases symmetries of the Lagrangian are associated to Lie groups and Lie

algebras. When we have a Lie group G acting on the manifold Q by symmetries of the
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Lagrangian, the Noether constants of motion can be collectively considered as components

of the momentum map. Slightly more generally, if we have an action of a finite-dimensional

Lie algebra g on Q, given by a morphism of real Lie algebras ξ ∈ g 7→ Xξ ∈ X(Q), and

such that LXC
ξ
L = 0 for every ξ ∈ g, then Noether’s theorem implies that LΓ〈 θL , Xξ 〉 = 0.

Taking into account the linearity of the action map, we can define the momentum map

J : TM → g∗ by 〈 θL , Xξ 〉 = 〈 J , ξ 〉, or more exactly, 〈 J(v) , ξ 〉 = 〈 θL(v) , Xξ(q) 〉 for

every v ∈ TQ and where q = τ(v). Then every component of J is a constant of the

motion and hence conservation of the momentum can be expressed in the form

LΓJ = 0. (3)

Nonholonomic mechanics. The situation is more complicated in nonholonomic La-

grangian Mechanics [1, 4]. In addition to the Lagrangian L ∈ C∞(TQ) we have some

constraints that are to be satisfied by the solution curves and the equations of motion

are obtained by means of D’Alembert principle. We will consider only the case of linear

constraints, which geometrically correspond to a subbundle D ⊂ TM , and the curves

are constrained to have velocity in D. Virtual displacements are just elements of D and

d’Alembert principle states that the work of the constraint forces vanishes along virtual

displacements, from where we get Lagrange-D’Alembert equations in the form δL ∈ D◦,

where D◦ is the annihilator of the distribution D. Equivalently, if we take only variations

which are virtual displacements, we arrive to

LΓ〈 θL , X 〉 = LXCL for all X ∈ Sec(D). (4)

This equation is similar to equation (2), but now it has to be satisfied only for vector

fields X taking values in D, and in addition one has to take into account that the curves

must remain in D, that is Γ must be tangent to the submanifold D ⊂ Q.

Nonholonomic momentum. The physical properties of a nonholonomic system are

not determined by the value of the Lagrangian on the constraint manifold. They are

determined by the constraint manifold D and by the value of Lagrangian on the full

manifold TQ (or on an open neighborhood containing D). Consequently, by a symmetry

of a nonholonomic system we mean a vector field X which is a symmetry of the Lagrangian

LXCL = 0 and a symmetry of the constraint distribution, i.e X takes values in D and

XC is tangent to the submandifold D ⊂ TQ. For such a vector field, equation (4) implies

that the function 〈 θL , X 〉 is a constant of the motion, which is the statement of the

nonholonomic Noether’s theorem.

The difference with respect to the situation in the unconstrained case comes from the

definition of the momentum map and its conservation properties. Assume that we have a

Lie algebra g acting on Q by symmetries of the Lagrangian L, i.e. LXC
ξ
L = 0. In general,
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we cannot ensure that the momentum is conserved, LΓ〈 θL , Xξ 〉 6= 0 because the vector

field Xξ does not take values in D.

At every point q ∈ Q, we have to select those symmetry directions ξ ∈ g such that

Xξ(q) is in Dq. Thus one can proceed as in [2] by defining for every q ∈ Q the vector

subspace,

gq = { ξ ∈ g | Xξ(q) ∈ Dq } (5)

and gD = ∪q∈Qgq. If the dimension of gq is constant (does not depend of q), then gD → Q

is a vector bundle.

The nonholonomic momentum map is the map Jnh : TQ → (gD)∗ defined by

〈 Jnh(v) , ξ 〉 = 〈 θL(v) , Xξ(q) 〉 for every q ∈ Q, v ∈ TqQ and ξ ∈ gq. (6)

Notice that Jnh takes values on a vector bundle instead of on the dual of a Lie algebra as

it is the case in the unconstrained counterpart.

The momentum equation. As explained above, in general we cannot find an element

ξ of the Lie algebra g such that Xξ(q) ∈ Dq for every q ∈ Q. In other words, if we find a

vector field X symmetry of the nonholonomic systems, the symmetry direction ξ changes

from point to point, so that Xξ(q)(q) ∈ Dq. We are therefore forced to treat with a section

of gD → Q instead of with a fixed element of g. This implies that the momentum map is

not conserved, and the evolution of the momentum is governed by an equation which is

known as the momentum equation [2].

Following [7], we take a local basis {ea} of sections of gD → Q and hence we can write

Jnh = pbe
b. (7)

One can show (see [7]) that the components pa of the nonholonomic momentum map

satisfy the equation
dpb

dt
= 〈 p , [v, eb] + ėb 〉. (8)

which is known as the nonholonomic momentum equation.

While this equation has a very clear origin (the symmetry direction ξ changes from

point to point), it has an unclear geometrical meaning. In the next section we will write

a similar momentum equation in a more clear geometrical set up, by making use of the

geometry of Lie algebroids. We will concentrate in the unconstrained case, and at the

end of the paper we consider the nonholonomically constrained case.

3 Mechanics on Lie algebroids

A natural setting. As we are assuming that the action of the group is free and proper,

the bundle π : Q → M = Q/G is a principal bundle. The lifted action of G on TQ is also
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free and proper and the quotient τ : E = TQ/G → M is a vector bundle. The Lagrangian

L being invariant defines a function l ∈ C∞(E) by projection onto the quotient. The

tangent map to the principal bundle projection π induces a map ρ : E → TM given by

ρ([v]) = Tπ(v).

Moreover, a section of E can be identified with an equivariant vector field, and it is well

known that the bracket of equivariant vector fields is also equivariant, from where we get

a bracket [[ , ]] canonically defined on the set of sections of E which endows the C∞(M)-

module Sec(E) with a Lie algebra structure. In addition such a Lie bracket satisfy the

following property

[[σ, fη]] = f [[σ, η]] +
(
ρ(σ)f

)
η,

for every σ, η ∈ Sec(E) and f ∈ C∞(M), and where ρ(σ) ∈ X(M) is the vector field

ρ(σ)(m) = ρ(σ(m)). It follows that the vector bundle τ : E → M has a structure of Lie

algebroid [3, 12] with anchor ρ and bracket [[ , ]], known as the Atiyah or gauge Lie

algebroid.

Notice that the kernel of the map ρ is precisely the set of infinitesimal symmetry di-

rections (equivariant vector fields tangent to the orbits of the group) and can be identified

with the adjoint bundle (Q×g)/G. Moreover, we have an exact sequence of Lie algebroids

(the Atiyah sequence)

0 −→ ker ρ
i−→ TQ/G

j−→ TM −→ 0, (9)

where i is the canonical inclusion and j = ρ. In other words, the relevant object is

K = ker ρ and the relevant property of K is that it is an ideal of the Lie algebroid

E = TQ/G. Finally, in the constrained case, the constraint subbundle D ⊂ TQ projects

to a subbundle D/G ⊂ E. The following sections develop the idea indicated in this

motivating example.

Lagrangian Mechanics on Lie algebroids. On a Lie algebroid E one can also define

Lagrangian systems. This theory was introduced by A. Weinstein [18] and later developed

by this author [14, 11, 9]. For such a system, Lagrange’s equations are the equations for

the critical points of the action functional defined on an appropriate Banach manifold of

admissible curves with fixed endpoints [18, 5, 15, 16, 6].

If we fix a local coordinate system (xi) on M and we choose a basis of local sections

{eα}, then we have a local coordinate system (xi, yα) on E and the structure of Lie

algebroid is locally determined by the so-called structure functions ρi
α and Cα

βγ, given by

ρ(eα) = ρi
α

∂

∂xi
and [[eα, eβ]] = Cγ

αβeγ. (10)
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With this conventions the Euler-Lagrange equations read δL = 0, where

δL =

{
d

dt

(
∂L

∂yα

)
− ∂L

∂yγ
Cγ

βαyβ − ρi
α

∂L

∂xi

}
eα, (11)

together with the admissibility constraint ẋi = ρi
αyα. In geometric terms, we can define

the Cartan 1-form θL (again interpreted as a map form E to E∗) whose local components

are ∂L/∂yα, and hence θL is related to the momenta. The variations are defined by the

complete lift σC of a section σ of E and the Euler-Lagrange equations can be written in

the form

dΓ〈 θL , σ 〉 = dσCL, (12)

which resembles that of a standard Lagrangian system on the tangent bundle. In this

expression, Γ is a sode section [14] whose integral curves are the solution of the dynamics.

Momentum map on Lie algebroids. Following the ideas in our motivating example,

we consider an ideal K ⊂ E of the Lie algebroid E, that is [[σ, η]] ∈ Sec(K) for every

σ ∈ Sec(E) and every η ∈ Sec(K). If E is a regular Lie algebroid (the rank of ρ is

constant) we can take K = ker ρ but in the general case we have to choose a subbundle

K ⊂ ker ρ which is invariant under the formation of brackets.

Associated to K we can define a map J : E → K∗ by the restriction of θL to K. In

other words

〈 J(a) , k 〉 = 〈 θL(a) , k 〉 =
d

ds
L(a + sk)

∣∣
s=0

, (13)

for every a ∈ E and k ∈ K with τ(a) = τ(k).

The map J is said to be the momentum map with respect to the ideal K.

The canonical connection. Given a Lie algebroid τ : E → M , a linear E-connection

on a vector bundle ν : F → M is a C∞(M)-linear map σ ∈ Sec(E) 7→ ∇σ ∈ Der(Sec(E))

such that the associated vector field is ρ(σ), that is, it satisfies the condition ∇σ(fζ) =(
ρ(σ)f

)
ζ + f∇σζ. See [10] for details about E-connections.

If K is an ideal of E, on the bundle K → M , we can define a canonical linear

E-connection be means of

∇ση = [[σ, η]], (14)

for σ a section of E and η a section of K. This connection can be locally described as

follows. We can take a local basis {eα} = {eI , ea} of sections of E such that the first

elements {eI} are a local basis of K. We have that the connection coefficients are just a

subset of the structure functions,

∇eαeI = [[eα, eI ]] = CJ
αIeJ . (15)
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As any linear E-connection, it can be extended to the dual bundle by the rule

〈∇σθ , η 〉 = dσ〈 θ , η 〉 − 〈 θ ,∇σ 〉η, (16)

where θ is a section of E∗. If {eI} is the dual basis of {eI} then

∇eαeI = −CI
αJeJ . (17)

The canonical connection ∇ is flat, that is,

[∇σ,∇ξ] = ∇[[σ,ξ]] .

Indeed, the difference between both terms applied to a section η of K gives

[∇σ,∇ξ]η −∇[[σ,ξ]]η = [[σ, [[ξ, η]]]] − [[ξ, [[σ, η]]]] − [[[[σ, ξ]], η]],

which vanishes by the Jacobi identity for σ, ξ and η.

The momentum equation. With the help of the above tools we can easily find a

generalization of the momentum equation which unveils its geometrical origin.

We first notice that the map J can be understood as a section of the vector bundle

τ ∗(K∗) → E, i.e. as a section of K∗ along τ . In this way we can take the covariant

derivative of J with respect to the dynamical section Γ.

Theorem 1 The momentum map satisfies the momentum equation

∇ΓJ = 0. (18)

Proof. If we take local coordinates associated to a local basis of sections {eI , ea} as

explained above, then we have

〈∇ΓJ , eI 〉 = dΓ〈 J , eI 〉 − 〈 J ,∇ΓeI 〉.

Taking into account that 〈 J , eI 〉 = ∂L
∂yI and ∇ΓeI = yαCJ

αIeJ we have that the covariant

derivative of J with respect to Γ has the local expression

∇ΓJ =

[
dΓ

(
∂L

∂yJ

)
− ∂L

∂yI
CI

αJyα

]
eJ .

On the other hand, taking into account that K is an ideal we have that the structure

functions ρi
I and Ca

αJ vanish, in view of which the first set of Euler-Lagrange equations (11)

reads

〈 δL , eI 〉 = dΓ

(
∂L

∂yJ

)
− ∂L

∂yγ
Cγ

βJyβ − ρi
J

∂L

∂xi

= dΓ

(
∂L

∂yJ

)
− ∂L

∂yI
CI

βJyβ.

Therefore 〈∇ΓJ , η 〉 = 〈 δL , η 〉 = 0 for every section η of K, and the result follows. �
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In general, the momentum equation does not provide with constants of the motion.

For a parallel section η of K, i.e., ∇η = 0, we have that 〈 J , η 〉 is a constant of the

motion. More generally, if η is a section of K along the projection τ such that ∇Γη = 0,

then the function 〈 J , η 〉 ∈ C∞(E) is a constant of the motion. In adapted coordinates,

the components ηJ ∈ C∞(E) of such a section η must satisfy

dΓηI + CI
αJyαηJ = 0. (19)

In case we have one or more of such sections η, the solutions of the Euler-Lagrange

equations remains on level sets of the function 〈 J , η 〉. To reduce the dynamics on the

general case we must proceed as follows.

Holonomy and orbit reduction. A linear E-connection on a vector bundle π : F → M

is equivalent to a horizontal lifting map λH : π∗E → TF such that Tπ(λH(v, a)) = ρ(a).

Given a section σ of E, the horizontal lift of σ is the vector field σh ∈ X(F ) determined

by the condition Lσh θ̂ = ∇̂σθ, and it is related to λH by σh(v) = λH(v, σ(π(v))) for

every v ∈ F . A curve v(t) is horizontal if there exists a curve a(t) in E such that

v̇ = λH(v(t), a(t)).

The following theorem is an obvious consequence of the momentum equation, and it

is the base of the reduction result that follows.

Theorem 2 Let a(t) be an integral curve of the sode Γ and let µ(t) be the curve in K∗

defined by µ = J ◦ a. Then the curve (µ(t), a(t)) is a horizontal curve in τ ∗K∗ → E.

Proof. First notice that the curve (µ(t), a(t)) is a horizontal curve if and only if

µ̇(t) = λH(µ(t), a(t)), where λH is the horizontal lifting maps defined by the connection,

or equivalently ∇aµ = 0. Thus, in coordinates

∇a(t)µ(t) =

[
d

dt
JA(a(t))− JB(a(t))CB

αAaα(t)

]
eA

=
[
dΓJA − JBCB

αAyα(t)
] ∣∣∣

a(t)
eA

= (∇ΓJ) ◦ a,

that is ∇a(J ◦ a) = (∇ΓJ) ◦ a, from where the result follows. �

Therefore, the solutions of the Euler-Lagrange equations are contained in subsets of

the form J−1(O), where O is a ’holonomy bundle’, that is, it is the set of points that can

be reached by a horizontal curve, or in other words, the orbits of a point under parallel

transport.

Thus, if O is regular in the sense that N = J−1(O) is a submanifold of E, then we

can restrict the dynamical vector field ρ1(Γ) to N . On the Lie algebroid setting, one must

impose that N is prolongable, that is T EN ≡ ρ−1(TN) has constant dimension, so that

the section Γ restricts to a section of T EN .
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Nonholonomic momentum equation. When we have a nonholonomically constrai-

ned system, we must restrict everything to a subbundle D ⊂ E. The momentum equation

is now∇ΓJ ∈ D◦. Therefore, we have to consider the intersection S = K∩D and we define

the nonholonomic momentum map Jnh : E → S∗ by restriction to S, i.e. Jnh(a) = J(a)
∣∣
S .

The connection ∇ restricts to S if and only if S is also an ideal of E, so that the non-

holonomic momentum map satisfies an equation of the same type as in the unconstrained

case, that is ∇ΓJnh = 0.

Nevertheless, in general S is not an ideal, and then we can write the momentum

equation in terms of a constrained connection. Given a projector P onto S, and the

complementary projector Q = I − P , we define the connection ∇̌ on K by means of

∇̌ση = P (∇ση) +∇σ(Qη). (20)

This connection restricts to S and its restriction is but ∇̌ση = P∇ση for η ∈ Sec(S).

In terms of this projected connection, the nonholonomic momentum map satisfies the

nonholonomic momentum equation

∇̌ΓJnh = J ◦H (21)

where H is the restriction of ∇ΓP to S.
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