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Abstract

In this paper, we develop a cosymplectic inhomogeneous formulation for a (reg-

ular) Lagragian system whose Lagrangian is a section of an AV-bundle Z1 over the

evolution space and such that Z1 satisfies certain properties. The Lie algebroid the-

ory is used. This general construction is applied to a particular example: Newtonian

mechanics in a Newtonian space-time.
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1 Introduction

The most natural geometric framework for studying mechanical systems is a fibred

manifold π : E → R. In fact, E is the configuration manifold and the 1-jet manifold

J1π of 1-jets of local sections of π is the evolution space. The Lagrangian function will

be a real C∞-function L : J1π → R defined on J1π and in the particular case when

L is regular the corresponding Hamiltonian section h : V ∗π → T ∗E is a section of the

canonical projection µ : T ∗E → V ∗π, where V π is the vertical bundle to π. Moreover,

one may construct a cosymplectic structure on J1π (respectively, V ∗π) and the solutions

of the Euler-Lagrange equations (respectively, the Hamilton equations) are the integral

curves of the corresponding Reeb vector field (see [9, 10]; see also [1, 3]). Note that J1π is

an affine bundle over E modelled on the vector bundle V π → E and that µ : T ∗E → V ∗π

is a AV -bundle (in the terminology of [5]). So, the affine character is present in the

theory (we recall that AV -bundles were introduced in [5] as affine line bundles which are

modelled on trivial vector lines bundles).
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On the other hand, there are some physical theories where we find difficulties when

we interpret the Lagrangian as a real function on J1π. For instance, in the standard

geometric inhomogeneous formulation of Newtonian Mechanics in a Newtonian space-

time. In fact, in this formulation there is a strong dependence on the inertial frame

chosen. Different Lagrangian (and different Hamiltonians) are used for different inertial

frames. In [6], a nice frame independent inhomogeneous (homogeneous) formulation of

analytical mechanics in Newtonian space-time is presented. The AV -differential geometry

is widely used. In fact, the inhomogenous (homogeneous) Lagrangian is interpreted as a

section of a certain AV -bundle.

The aim of this Note is to develop a cosymplectic inhomogeneous formulation for a

(regular) Lagrangian system whose Lagrangian is a section l of an AV -bundle Z1 over J1π,

Z1 satisfying certain properties. For this purpose, the Lie algebroid theory will be used.

The resultant general construction may be applied to the particular example which was

discussed in [6] and, as consequence, we obtain a cosymplectic inhomogeneous formulation

of Newtonian Mechanics in a Newtonian space-time. In addition, in the particular case

when the AV-bundle Z1 is trivial then the section l is a Lagrangian function on J1π

and one recovers some classical results about the standard cosymplectic inhomogeneous

formulation of time-dependent Mechanics.

The Note is structured as follows. In Section 2, we recall some definitions and results

about Lie algebroids and linear Poisson structures, AV -bundles and some geometrical

structures on J1π. In Section 3, we discuss the inhomogeneous cosymplectic formulation

of the Lagrangian (Hamiltonian) dynamics on jet manifolds and its relation with the AV

differential geometry and the Lie algebroid theory. Finally, in Section 4 we apply our

results to a particular example: Newtonian mechanics in a Newtonian space-time.

2 Preliminaries

2.1 Lie algebroids and linear Poisson structures

Let A be a vector bundle of rankm over the manifold E of dimension n and τA : A→ E

be the vector bundle projection. Denote by Γ(τA) the C∞(E)-module of sections of

τA : A → E. A Lie algebroid structure ([[·, ·]]A, ρA) on A is a Lie bracket on the space

Γ(τA) and a bundle map ρA : A→ TE, called the anchor map, such that if we also denote

by ρA : Γ(τA) → X(E) the homomorphism of C∞(E)-modules induced by the anchor

map then [[X, fY ]]A = f [[X, Y ]]A + ρA(X)(f)Y, for X, Y ∈ Γ(τA) and f ∈ C∞(E). The

triple (A, [[·, ·]]A, ρA) is called a Lie algebroid over E (see [11]). In such a case, the anchor

map ρA : Γ(τA) → X(E) is a homomorphism between the Lie algebras (Γ(τA), [[·, ·]]A) and

(X(E), [·, ·]). A natural example of Lie algebroid is the tangent bundle TE of a manifold

E.
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If ([[·, ·]]A, ρA) is a Lie algebroid structure on a vector bundle τA : A → E then the

dual bundle τ ∗A : A∗ → E admits a linear Poisson structure ΠA∗ . Moreover, if {·, ·}A∗

is the Poisson bracket associated with ΠA∗ then {·, ·}A∗ is characterized by the following

relations

{f ◦ τ ∗A, g ◦ τ ∗A}A∗ = 0, {X̂, g ◦ τ ∗A}A∗ = ρA(X)(g) ◦ τ ∗A, {X̂, Ŷ }A∗ = ̂[[X, Y ]]A, (2.1)

for X, Y ∈ Γ(τA) and f, g ∈ C∞(E). Here, X̂ denotes the linear function on A∗ induced

by X. In the particular case when A is the tangent bundle to E then the linear Poisson

structure of A∗ = T ∗E is just the canonical symplectic structure on T ∗E (see [2]).

On the other hand, if ΠA∗ is a linear Poisson structure on the vector bundle τ ∗A : A∗ →
E then ΠA∗ induces a Lie algebroid structure ([[·, ·]]A, ρA) on the vector bundle τA : A→ E

which is given by (2.1) (see [2]).

Finally, if ([[·, ·]]A, ρA) and ([[·, ·]]A′ , ρA′) are Lie algebroid structures on the vector bun-

dles τA : A → E and τA′ : A′ → E and Φ : A → A′ is a vector bundle morphism

(over the identity of E) between A and A′ then Φ is a Lie algebroid morphism (that is,

Φ[[X, Y ]]A = [[ΦX,ΦY ]]A′ and ρA′(ΦX) = ρA(X), for X, Y ∈ Γ(τA)) if and only if the dual

map Φ∗ : (A′)∗ → A∗ is a Poisson morphism (that is, {f ◦Φ∗, g ◦Φ∗}(A′)∗ = {f, g}A∗ ◦Φ∗,

for f, g ∈ C∞(A∗)).

2.2 AV-bundles

Let τZ : Z → M be an affine bundle of rank 1 over a manifold M modelled on the

trivial vector bundle τM×R : M × R → M , that is, τZ : Z → M is an AV-bundle in the

terminology of [4]. Then, we have an action of R on each fiber of Z. This action induces

a vector field XZ on Z which is vertical with respect to the projection τZ : Z →M.

On the other hand, there exists a one-to-one correspondence between the space of

sections of τZ : Z → M , Γ(τZ), and the set {Fl ∈ C∞(Z)/XZ(Fl) = 1}. In fact, if

l ∈ Γ(τZ) and (xi, s) are local fibred coordinates on Z such that XZ =
∂

∂s
then l may be

considered a local function L on M , xi → L(xi), and the function Fl on Z is locally given

by Fl(x
i, s) = L(xi) + s (for more details, see [4]).

2.3 Some geometrical structures on J1π

Let E be an (n+1)-dimensional fibred manifold over R, i.e., there exists a surjective

submersion π : E → R. We denote by J1π the 1-jet manifold of local sections of π, namely

J1π = {j1
t φ/φ : U ⊆ R → E, π ◦ φ = idU , U open neighbourhood of t}.

If (t, qA) are fibred coordinates on E, then J1π has local coordinates (t, qA, vA). In fact, if

φ(s) = (s, φA(s)), s ∈ U , then j1
t φ has coordinates (t, φA(t),

dφA

ds
(t)). Therefore, J1π has
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dimension 2n+1 and it is a fibred manifold over E and R with canonical projections π1,0 :

J1π → E and π1 : J1π → R, respectively. In local coordinates we have π1,0(t, q
A, vA) =

(t, qA) and π1(t, q
A, vA) = t. We define a canonical embedding i : J1π → TE as follows

i(j1
t φ) = φ̇(t), where φ̇(t) ∈ Tφ(t)E is the tangent vector at t of the curve s → φ(s). If

we take local coordinates (t, qA, τ, τA) on TE, we have i(t, qA, vA) = (t, qA, 1, vA). Now,

denote by ηE the 1-form on E given by ηE = π∗(dt) and by V π the vertical bundle of

π : E → R. It follows that

J1π ∼= i(J1π) = {v ∈ TE/ηE(v) = 1}, V π = {v ∈ TE/ηE(v) = 0}.

Thus, J1π is an affine subbundle (over E) of the vector bundle τTE : TE → E which is

modelled over the vector subbundle τV π : V π → E. Note that the dual bundle (J1π)+ to

J1π is isomorphic to the cotangent bundle T ∗M to M . So, the bidual bundle to J1π may

be identified with the tangent bundle TE of E.

On the other hand, there exists a canonical endomorphism S̃ of TJ1π which is called

the vertical endomorphism. S̃ is a vector field of type (1, 1) on J1π defined as follows. If

X̃ ∈ Tj1
t φ(J

1π) then (Tπ1,0)(X̃)− Tφ((Tπ1)(X̃)) ∈ (V π)φ(t) and we define

S̃X̃ = ((Tπ1,0)(X̃)− Tφ((Tπ1)(X̃)))v
j1
t φ,

where v
j1
t φ

: (V π)φ(t) → Tj1
t φ(J

1π) denotes the vertical lift. The local expression of S̃ is

S̃ = (dqA − vAdt)⊗ ∂

∂vA
.

A vector field ξ on J1π is a non-autonomous second order differential equation (NSODE

for simplicity) if S̃(ξ) = 0 and η(ξ) = 1, η being the 1-form on J1π given by η = (π1)
∗(dt).

The vector field ξ is a NSODE if and only if it has the following local expression

ξ(t, qA, vA) =
∂

∂t
+ vA ∂

∂qA
+ ξA ∂

∂vA
.

A local section φ is π : E → R is an integral section of a NSODE ξ if the 1-jet prolongation

j1φ of φ to J1π is an integral curve of ξ. Thus, t→ φ(t) = (t, φA(t)) is an integral section

of ξ if and only if it satisfies the following system of non-autonomous differential equations

of second order
d2φA

dt2
= ξA(t, φB,

dφB

dt
),

dφA

dt
= vA.

It should be remarked that an integral curve γ of a NSODE ξ is necessarily a 1-jet

prolongation, say γ = j1φ, where φ is an integral section of ξ (for more details, see [13]).

3 AV-bundles, Lie algebroid theory and the inhomogeneous cosymplectic

formulation of the Lagrangian (Hamiltonian) dynamics

Let π : E → R be a fibration from a manifold E of dimension n + 1 on R. Suppose

that ζZ1 : Z1 → E is an affine bundle modelled on the vector bundle ζV 1 : V 1 → E of
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rank n + 1. Assume also that τZ1 : Z1 → J1π is an epimorphism of affine bundles, that

τV 1 : V 1 → V π is the corresponding epimorphism of vector bundles and that e0 : E → V 1

is a section of ζV 1 : V 1 → E such that ker τV 1(y) =< e0(y) >, for all y ∈ E. Now, let

ζZ : Z → E be the bidual bundle to ζZ1 : Z1 → E. Then, the epimorphism of affine

bundles τZ1 : Z1 → J1π induces an epimorphism of vector bundles τZ : Z → TE and

ker τZ(y) =< e0(y) >, for all y ∈ E (we recall that the bidual bundle to J1π is isomorphic

to the tangent bundle of E). Moreover, it is clear that τZ1 : Z1 → J1π and τZ : Z → TE

are AV -bundles.

On the other hand, if i1 : V 1 → Z is the canonical inclusion then, since the pair

(Z, i1 ◦e0) is an special vector bundle over E (in the terminology of [4]), one may consider

the affine dual bundle of Z as the affine subbundle Z‡ of Z∗ defined by

Z‡ = {ϕ ∈ Z∗/ ̂(i1 ◦ e0)(ϕ) = 1}.

Z‡ is an affine bundle modelled on the vector bundle τT ∗E : T ∗E → E. As we know, T ∗E

admits a canonical symplectic structure.

Next, we will analyse a particular class of affine symplectic structures on Z‡.

Let ΩZ‡ be an affine symplectic structure on Z‡. In other words, ΩZ‡ is a closed

nondegenerate 2-form on Z‡ and the Poisson bracket of two affine functions on Z‡ is an

affine function. Then, using some results which were proved in [7] (see Corollary 3.9 in

[7]), we deduce that ΩZ‡ induces a linear Poisson structure ΠZ∗ on Z∗ such that

ker ΠZ∗ =< d ̂(i1 ◦ e0) > . (3.1)

Conversely, if ΠZ∗ is a linear Poisson structure on Z∗ and (3.1) holds then, using again

Corollary 3.9 in [7], we have that ΠZ∗ restricts to a nondegenerate affine Poisson structure

on Z‡. In other words, ΠZ∗ induces an affine symplectic structure on Z‡.

Thus, we conclude that there exists a one-to-one correspondence between affine sym-

plectic structures on Z‡ and linear Poisson structures on Z∗ such that (3.1) holds.

Now, we will consider Lie algebroid structures ([[·, ·]]Z , ρZ) on the vector bundle ζZ :

Z → E such that:

(C1) The map τZ : Z → TE is an epimorphism of Lie algebroids (over the identity of E)

and

(C2) The section i1 ◦ e0 is a central element in the Lie algebra (Γ(ζZ), [[·, ·]]Z).

In fact, we will introduce the set AZ given by

AZ = {([[·, ·]]Z , ρZ)/([[·, ·]]Z , ρZ) is a Lie algebroid structure on Z

which satisfies (C1) and (C2)}.
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On the other hand, we will denote by SZ the set defined by

SZ = {ΩZ‡/ΩZ‡ is an affine symplectic structure on Z‡

and τ ∗Z : T ∗E → Z∗ is a Poisson morphism }.

Then, using the above results (see also Section 2.1), we have

Proposition 3.1 There exists a one-to-one correspondence between the sets AZ and SZ .

Using the Poincaré Lemma, one may prove the following result.

Proposition 3.2 If ([[·, ·]]Z , ρZ) is an element of the set AZ then the Lie algebroid (Z, [[·, ·]]Z ,
ρZ) is locally isomorphic to the standard Lie algebroid τTE ◦ pr1 : TE × R → E.

We recall that the standard Lie algebroid structure ([[·, ·]]TE×R, ρTE×R) on the vector

bundle τTE ◦ pr1 : TE × R → E is given by

[[(X, f), (Y, g)]]TE×R = ([X,Y ], X(g)− Y (f)), ρTE×R(X, f) = X,

for (X, f), (Y, g) ∈ X(E)× C∞(E).

In the rest of this Section, we will assume that ΩZ‡ is an element of SZ or, equivalently,

that we have a Lie algebroid structure ([[·, ·]]Z , ρZ) on the vector bundle ζZ : Z → E which

belongs to the set AZ .

Remark 3.3 Since τ ∗Z(ηE) is a 1-cocycle for the Lie algebroid (Z, [[·, ·]]Z , ρZ), we deduce

that Z1 is a Lie affgebroid (see [5, 12]) for the definition of a Lie affgebroid) and that the

map τZ1 : Z1 → J1π is an epimorphism of Lie affgebroids (see [8] for the definition of a

morphism of Lie affgebroids). ♦

Next, we consider the affine dual bundle (V 1)‡ of the special vector bundle (V 1, e0),

that is, (V 1)‡ = {ψ ∈ (V 1)∗/ê0(ψ) = 1}. Then, one may define an epimorphism µ : Z‡ →
(V 1)‡ between the affine bundles Z‡ → E and (V 1)‡ → E given by

µ(ϕ) = ϕ|V 1
y
, for ϕ ∈ Z‡

y and y ∈ E.

Now, we will obtain the local expressions of the 2-form ΩZ‡ and the projection µ :

Z‡ → (V 1)‡.

Using Proposition 3.2, we may choose local coordinates (t, qA, vA) on J1π as in Section

2.3 and a local basis {e, eA, e0} of Γ(ζZ) such that τZ(e) = ∂
∂t
, τZ(eA) = ∂

∂qA and [[e, eA]]Z =

[[eA, eB]]Z = 0, for all A and B (note that e is a local section of the affine bundle ζZ1 : Z1 →
E). Thus, we have the corresponding local coordinates (t, qA, vA, v0) on V 1 and Z1 and

the dual local coordinates (t, qA, pA, p0) on (V 1)∗. We also may consider the corresponding

local coordinates (t, qA, v, vA, v0) on Z and the dual local coordinates (t, qA, p, pA, p0) on
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Z∗. Moreover, the local equation defining Z‡ (respectively, (V1)
‡) as an affine subbundle

of Z∗ (respectively, (V 1)∗) is p0 = 1. Therefore, (t, qA, p, pA) (respectively, (t, qA, pA)) are

local coordinates on Z‡ (respectively, (V 1)‡). Finally, using the above coordinates, we

deduce that

ΩZ‡ = dqA ∧ dpA + dt ∧ dp, µ(t, qA, p, pA) = (t, qA, pA). (3.2)

Remark 3.4 Suppose that Z1 is the trivial affine bundle J1π×R, that τZ1 : J1π×R →
J1π is the canonical projection onto the first factor, that e0 : E → V π × R is the section

given by e0(y) = (0y, 1), for y ∈ E and that ([[·, ·]]Z , ρZ) is the standard Lie algebroid

structure on the vector bundle TE ×R → E. Then, Z‡ and (V 1)‡ may be identified with

T ∗E and V ∗π, respectively, and, under these identifications, ΩZ‡ is just the canonical

symplectic 2-form on T ∗E and µ is the canonical projection from T ∗E on V ∗π. ♦

3.1 The Lagrangian formalism

3.1.1 Poincaré-Cartan 2-form and Legendre transformation

Suppose that l : J1π → Z1 is a section of the projection τZ1 : Z1 → J1π. l will be called

the affine Lagrangian for the inhomogeneous formulation of the dynamics (independent

on the choice of the inertial frame).

If T+E is the open subset of TE defined by T+E = {v ∈ TE/ηE(v) > 0} then l may

be extended to a section l+ : T+E → Z of τZ : Z → TE (over T+E) given by

l+(v) = ηE(v)iZ1(l(i−1(
v

ηE(v)
))), for v ∈ T+E,

where i : J1π → TE and iZ1 : Z1 → Z are the canonical inclusions. Note that
v

ηE(v)
∈

i(J1π).

l+ will be called the affine Lagrangian for the homogeneous formulation of the dynamics

(independent on the choice of the inertial frame).

Since τZ : Z → TE is an AV-bundle one may consider the vector field XZ on Z

induced by the action of R on Z and the real function Fl+ : τ−1
Z (T+E) → R induced by

the section l+ : T+E → Z. We have that XZ(Fl+) = 1 and, thus, we may define the map

Legl : J1π → Z‡ given by

Legl(j
1
t φ)(z′) =

d

ds |s=0
Fl+(z + sz′),

for z, z′ ∈ Zφ(t), with τZ(z) = i(j1
t φ).

The map Legl is called the extended Legendre transformation associated with l.

The Poincaré-Cartan 2-form associated with l is the 2-form Ωl on J1π given by Ωl =

Leg∗l (ΩZ‡). The Legendre transformation associated with l is the map legl : J1π → (V 1)‡

defined by legl = µ ◦ Legl.
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If we choose local coordinates as above such that the local expression of l is

l(t, qA, vA) = (t, qA, vA, L(t, qA, vA))

then

l+(t, qA, ṫ, q̇A) = (t, qA, ṫ, q̇A, ṫL(t, qA,
q̇A

ṫ
), for ṫ > 0,

Fl+(t, qA, v, vA, v0) = vL(t, qA,
vA

v
) + v0, for v > 0

and

Legl(t, q
A, vA) = (t, qA, L− vA ∂L

∂vA
,
∂L

∂vA
),

legl(t, q
A, vA) = (t, qA,

∂L

∂vA
),

ΩL(t, qA, vA) = (
∂2L

∂t∂vA
+ vB ∂2L

∂qB∂vA
− ∂L

∂qA
)wA ∧ dt

− ∂2L

∂vB∂qA
wA ∧ wB +

∂2L

∂vA∂vB
wA ∧ dvB,

(3.3)

where wA = dqA − vAdt.

Remark 3.5 Under the same hypotheses as in Remark 3.4, the lagrangian section l may

be considered as a Lagrangian function L : J1π → R and the 2-form Ωl on J1π and the

map legl : J1π → (V 1)‡ ∼= V ∗π are just the standard Poincaré-Cartan 2-form and the

standard Legendre transformation associated with L. ♦

3.1.2 Euler-Lagrange equations and regular Lagrangians

If φ : I ⊆ R → E is a section of the projection π : E → R then one may consider the

1-jet prolongation of φ, j1φ : I ⊆ R → J1π and its tangent lift d(j1φ)
dt

: I ⊆ R → TJ1π.

The curve φ is a solution of the Euler-Lagrange equations for l if and only if

i d
dt

(j1φ)Ωl(j
1
t φ) = 0, for all t.

If (t, qA, vA) are local coordinates on J1π, l(t, qA, vA) = (t, qA, vA, L(t, qA, vA)) and

φ(t) = (t, qA(t)) then, using (3.3), we deduce that φ is a solution of the Euler-Lagrange

equations for l if and only if

d

dt
(
∂L

∂vA
)− ∂L

∂qA
= 0, vA =

dqA

dt
, for all A.

We may assume that the above curves φ are the integral sections of a NSODE ξ. In such

a case, ξ satisfies the following equation iξΩl = 0. In other words, we may reformulate

geometrically our problem as search for a vector field ξ on J1π satisfying the following

conditions

iξΩl = 0, iξη = 1, S̃ξ = 0,
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where η is the 1-form on J1π defined by η = (π1)
∗(dt) and S̃ is the vertical endomorphism.

The affine Lagrangian section l is said to be regular if the pair (Ωl, η) is a cosymplectic

structure on J1π, that is, η ∧ Ωn
l = η ∧ Ωl ∧ . . .(n . . . ∧ Ωl is a volume form on J1π.

From (3.3), it follows that l is regular if and only if for each system of local coordinates

(t, qA, vA) on J1π we have that the matrix (
∂2L

∂vA∂vB
) is regular.

If l is regular then there exists a unique solution ξl of the equations iξl
Ωl = 0 and

iξl
η = 1. In fact, ξl is the Reeb vector field of the cosymplectic structure (Ωl, η). In

addition, using (3.3), we deduce that ξl is a NSODE, that is, S̃ξl = 0. Therefore, the

integral sections of ξl are just the solutions of Euler-Lagrange equations for l. ξl is called

the Euler-Lagrange vector field associated with l.

Remark 3.6 Under the same hypotheses as in Remark 3.4, the regular affine Lagrangian

section l may considered as a regular Lagrangian function L : J1π → R and ξl is the

standard Euler-Lagrange vector field associated with L. ♦

3.2 The Hamiltonian formalism

The spaces Z‡ and (V 1)‡ are affine bundles over E modelled on the vector bundles

< (i1 ◦ e0) >0= {ϕ ∈ Z∗/ ̂(i1 ◦ e0)(ϕ) = 0}

and

< e0 >
0= {ψ ∈ (V 1)∗/ê0(ψ) = 0},

respectively. Moreover, the map µ : Z‡ → (V 1)‡ is an epimorphism of affine bundles and

the corresponding epimorphism of vector bundles µl :< i1 ◦ e0 >0→< e0 >
0 is given by

µl(ϕ) = ϕ|V 1
y
, for ϕ ∈ Z∗

y and y ∈ E.

Note that kerµl
y =< τ ∗Z(ηE)(y) >, for all y ∈ E. Thus, µ : Z‡ → (V 1)‡ is an AV-

bundle (this will be the bundle of the Hamiltonian section).

On the other hand, from (3.3), it follows that a Lagrangian section l : J1π → Z1 is

regular if and only if the Legendre transformation legl : J1π → (V 1)‡ is a local diffeomor-

phism.

Next, we will assume that l is hyperregular, that is, the map legl : J1π → (V1)
‡ is

a global diffeomorphism. Then, one may consider the section h : (V 1)‡ → Z‡ of the

AV-bundle µ : Z‡ → (V 1)‡ given by h = Legl ◦ leg−1
l . h is the Hamiltonian section.

Now, we will introduce the 2-form Ωh on (V 1)‡ defined by

Ωh = h∗(ΩZ‡), (3.4)
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ΩZ‡ being the symplectic 2-form on Z‡. Suppose that (t, qA, p, pA) and (t, qA, pA) are local

coordinates on Z‡ and (V 1)‡ and that the local expression of the Hamiltonian section h is

h(t, qA, pA) = (t, qA,−H(t, qA, pA), pA).

Then, using (3.2) and (3.4), we deduce that

Ωh = dqA ∧ dpA + dH ∧ dt. (3.5)

Let π‡1 : V ‡
1 → R be the canonical projection and η‡1 be the 1-form on V ‡

1 given by

η‡1 = (π‡1)
∗(dt). From (3.5), it follows that the pair (Ωh, η

‡
1) is a cosymplectic structure on

(V 1)‡, that is, η‡1 ∧ Ωn
h = η‡1 ∧ Ωh ∧ . . .(n . . . ∧ Ωh is a volume form on (V 1)‡, dη‡1 = 0 and

dΩh = 0. Thus, we may consider the Reeb vector field ξh which is characterized by the

conditions

iξh
Ωh = 0, iξh

η‡1 = 1.

Using (3.5), we have that the local expression of ξh is

ξh =
∂

∂t
+
∂H

∂pA

∂

∂qA
− ∂H

∂qA

∂

∂pA

,

and, therefore, the integral curves of ξh satisfy the Hamilton equations

dqA

dt
=
∂H

∂pA

,
dpA

dt
= − ∂H

∂qA
, for all A.

ξh is called the Hamiltonian vector field associated with the Hamiltonian section h.

On the other hand, it is clear that leg∗l (Ωh) = Ωl and leg∗l (η
‡
1) = η. Consequently,

the Legendre transformation legl is a cosymplectomorphism between the cosymplectic

manifolds (J1π,Ωl, η) and ((V 1)‡,Ωh, η
‡
1). So, the Euler Lagrange vector field ξl and the

Hamiltonian vector field ξh are legl-related. This implies that if φ : I ⊆ R → E is a

solution of the Euler-Lagrange equations for l then γ = legl ◦ j1φ is a solution of the

Hamilton equations for h. Conversely, if γ : I ⊆ R → (V 1)‡ is a solution of the Hamilton

equations for h then leg−1
l ◦γ = j1φ, where φ is a solution of the Euler-Lagrange equations

for l.

Remark 3.7 Under the same hypotheses as in Remark 3.4, the Hamiltonian section may

be considered as a section h : V ∗π → T ∗E of the canonical projection µ : T ∗E → V ∗π

and, under this identification, the pair (Ωh, η
‡
1) is a cosymplectic structure on V ∗π and ξh

is the Reeb vector field of (Ωh, η
‡
1). ♦

4 An example

In order to illustrate the results obtained in Section 3 we will consider an example

which was discussed in [6].
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The Newtonian space-time is a system (E, τ, g), where E is a four-dimensional affine

space with the model vector space V , τ is a non-zero element of V ∗ and g : E0 → (E0)∗

is an scalar product on E0 = ker τ.

We will denote by E1 the affine subspace of V given by E1 = {u ∈ V/τ(u) = 1}
and for each u ∈ E1 we will introduce the linear epimorphism iu : V → E0 defined by

iu(v) = v − τ(v)u. An element u of E1 may be interpreted as an inertial reference frame.

The space-time E is fibred over the time T = E/E0 which is an affine space of

dimension 1 modelled on R. So, the fibration π : E → T is just the canonical projection.

Note that

TE ∼= E × V, J1π ∼= E × E1, V π ∼= E × E0.

Now, for each u ∈ E1, we will consider the inhomogeneous Lagrangian function Lu :

J1π ∼= E × E1 → R given by

Lu(y, w) =
m

2
g(w − u)(w − u)− ϕ(y),

where ϕ : E → R is a potential.

The Lagrangian function Lu is hyperregular. Thus, in order to obtain the well-known

equations of motion, one may apply the classical Lagrangian (Hamiltonian) inhomoge-

neous formalism of the dynamics. These geometrical constructions will depend on the

inertial reference frame u. However, we can develop an inhomogeneous formulation of the

dynamics independent on the choice of the inertial frame as follows (see [6]).

If u and u′ are two inertial reference frames then we deduce that

Lu(y, w)− Lu′(y, w) = mσ(u′, u)(w), for (y, w) ∈ E × E1,

where σ : E1 × E1 → V ∗ is the map defined by

σ(u′, u)(v) = g(u′ − u)(iu+u′
2

(v)), for v ∈ V.

This result suggests to consider the equivalence relation ∼ on the set E1× V ×R defined

by

(u, v, r) ∼ (u′, v′, r′) ⇔ v = v′ and r = r′ +mσ(u′, u)(v).

It follows that the quotient set W = (E1 × V × R)/ ∼ is a real vector space with

w0 = [(u, 0, 0)] as the zero vector and w1 = [(u, 0, 1)] 6= 0, u being an arbitrary element of

E1. Moreover, one may prove that W/ < w1 >∼= V and, therefore, we have a canonical

projection τW : W → V (see [6]). Thus, it is clear that W 1 = τ−1
W (E1) is an affine space

modelled on the vector space W 0 = τ−1
W (E0). We will denote by τW 1 : W 1 → E1 and by

τW 0 : W 0 → E0 the canonical projections.

Then, in this particular example, the affine bundle Z1 (in Section 3) is just the trivial

affine bundle ζZ1 : Z1 = E ×W 1 → E which is modelled on the trivial vector bundle
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ζV1 : V 1 = E ×W 0 → E. The bidual bundle to Z1 is the trivial vector bundle ζZ : Z =

E ×W → E.

The projections τZ : Z = E×W → TE ∼= E×V, τZ1 : Z1 = E×W 1 → J1π ∼= E×E1

and τV 1 : V 1 = E×W 0 → V π ∼= E×E0 are just the product maps Id× τW , Id× τW1 and

Id × τW 0 , respectively. The section e0 : E → V 1 = E ×W 0 of ζV 1 : V 1 = E ×W 0 → E

is given by e0(y) = (y, w1), for all y ∈ E. On the other hand, the affine bundle Z‡ → E

is isomorphic to the trivial affine bundle pr1 : E × P → E, where P is the quotient affine

space P = (E1 × V ∗)/ ∼1 and ∼1 is the equivalence relation on E1 × V ∗ defined by

(u, p) ∼1 (u′, p′) ⇔ p = p′ +mσ(u′, u)

(see [6]). Note that P is an affine space modelled on V ∗. In addition, the affine bundle

(V 1)‡ → E is isomorphic to the trivial affine bundle pr1 : E × P0 → E, where P0 is the

quotient affine space P0 = E ′×(E0)∗/ ∼0 and ∼0 is the equivalence relation on E1×(E0)∗

defined by

(u, p0) ∼0 (u′, p′0) ⇔ p0 = p′0 +mg(u′ − u)

Now, for each u ∈ E1 and v ∈ V , we may consider the section s(u,v) of the vector bundle

ζZ : Z = E ×W → E given by s(u,v)(y) = (y, [(u, v, 0)]), for all y ∈ E. We remark that

if {vi} is a basis of V then {s(u,vi), e0} is a global basis of Γ(ζZ). So, one may introduce

a Lie algebroid structure ([[·, ·]]Z , ρZ) on the vector bundle ζZ : Z = E ×W → E which is

characterized as follows

[[s(u,v), s(u′,v′)]]Z = [[s(u,v), e0]]Z = 0, for u, u′ ∈ E1 and v, v′ ∈ V,

and ρZ(s(u,v)) and ρZ(e0) are the vector fields on E defined by

ρZ(s(u,v)) : E → TE ∼= E × V, y ∈ E → ρZ(s(u,v))(y) = (y, v) ∈ E × V,

ρZ(e0) : E → TE ∼= E × V, y ∈ E → ρZ(e0)(y) = (y, 0) ∈ E × V.

On the other hand, the Lagrangian functions Lu, u ∈ E1, define a section l : J1π ∼=
E×E1 → Z1 = E×W 1 of the projection τZ1 : Z1 = E×W 1 → J1π ∼= E×E1 as follows

l(y, w) = (y, [(u,w, Lu(y, w))]), for (y, w) ∈ E × E1.

l is the affine Lagrangian for the inhomogeneous formulation of the dynamics (see [6]).

The affine Lagrangian l is hyperregular. Furthermore, if Ωl : T (J1π) ×J1π T (J1π) ∼=
E × E1 × V × E0 × V × E0 → R is the Poincaré-Cartan 2-form, legl : J1π ∼= E × E1 →
(V 1)‡ ∼= E × P0 is the Legendre transformation and ξl : J1π ∼= E × E1 → TJ1π ∼=
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E ×E ′× V × V 0 is the Euler-Lagrange vector field associated with l then we obtain that

Ωl(y, w, ẏ, ẇ, ẏ
′, ẇ′) = ΩLu(y, w, ẏ, ẇ, ẏ′, ẇ′) = m{g(iu(ẏ))(ẇ′)− g(ẇ)(iu(ẏ

′))}
+τ(ẏ){(dsϕ(y))(iu(ẏ

′))−mg(ẇ′)(w − u)}
−τ(ẏ′){(dsϕ(y))(iu(ẏ))−mg(ẇ)(w − u)},

legl(y, w) = (y, [(u,mg(w − u))]),

ξl(y, w) = ξLu(y, w) = (y, w;w, 1
m
g−1(dsϕ(y))),

for (y, w) ∈ E × E1, (ẏ, ẇ), (ẏ′, ẇ′) ∈ V × E0. Here, dsϕ denotes the vertical differential

of ϕ with respect to the projection π (thus, dsϕ(y) ∈ (E0)∗).

Finally, we conclude that the Hamiltonian section hl : (V 1)‡ ∼= E×P0 → Z‡ ∼= E×P,
the 2-form Ωhl

: T (V 1)‡ ×(V 1)‡ T (V 1)‡ ∼= E × P0 × V × (E0)∗ × V × (E0)∗ → R and the

Hamiltonian vector field ξhl
: (V 1)‡ ∼= E × P0 → T (V 1)‡ ∼= E × P0 × V × (E0)∗ are given

by

hl(y, [(u, p)]) = (y, [(u, p ◦ iu − ( 1
2m
p(g−1(p)) + ϕ(y))τ)]),

Ωhl
(y, [(u, p)]; ẏ, ṗ, ẏ′, ṗ′) = iu(ẏ)(ṗ

′)− ṗ(iu(ẏ
′)) + τ(ẏ′){(dsϕ(y))(iu(ẏ)) + 1

m
ṗ(g−1(p))}

−τ(ẏ){(dsϕ(y))(iu(ẏ
′)) + 1

m
ṗ′(g−1(p))},

ξhl
(y, [(u, p)]) = (y, p;u+ 1

m
g−1(p),−dsϕ(y)),

for (y, p) ∈ E × (E0)∗, u ∈ E1 and (ẏ, ṗ), (ẏ′, ṗ′) ∈ V × (E0)∗.
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