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Abstract

In this paper we show that a geometrical description of quantum mechanics

is possible. A Jacobi bracket emerges quite naturally from the reduction of the

Hilbert space to the complex projective space of pure states. The momentum map

associated with the action of the unitary group allows the identification of the

complex projective space with the minimal orbit of the co-adjoint action on the

dual of the Lie algebra. From here, it is possible to build the convex body of

density states which is found to carry many interesting new geometrical structures.
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1 Introduction

This paper is based on the view that our description of the external world is ultimately

geometrical. We know that in some fields of physics such as general relativity or classical

mechanics and classical field theories geometric ideas have been very useful. Nevertheless,

the deepest physical theory we have today is quantum theory where geometric ideas are

not readily available. More likely this state of affairs has to-do with the fact that our stan-

dard descriptions of quantum systems deals with Hilbert spaces and the algebra of linear

operators acting on them. We shall argue, however, that there are interesting geometri-

cal structures in quantum mechanics also, and that perhaps we should look at quantum

theory as a geometric theory. To this aim we may be guided by the “correspondence

principle” as stated by Dirac [1]:

“Classical Mechanics must be a limiting case of quantum mechanics. We should expect

to find that important concepts in classical mechanics correspond to important concepts

in quantum mechanics and, from the understanding of the general nature of the analogy

between classical and quantum mechanics, we may hope to get laws and theorems in

quantum mechanics appearing as simple generalizations of well-known results in classical

mechanics.”
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According to this point of view, it is quite natural to investigate and unveil geometric

structures in quantum mechanics which may be the analogue of analogous structures

present in classical mechanics.

A very important aspect of quantum mechanics is the probabilistic interpretation, this

requires that physical states should be interpreted as rays in the Hilbert space. This set

may be given a manifold structure, the structure of a complex projective space. Being

“non-linear”, the notion of operator as a linear map will not make sense anymore, therefore

we are obliged to introduce concepts and mathematical tools appropriate for a (differen-

tial) manifold. It is convenient to deal with the complex projective space considered as a

real differential manifold. In this picture we may consider flows, infinitesimal generators,

Hamiltonian vector fields and generating functions along with Poisson tensors, metric ten-

sors and complex structures. To avoid all technicalities arising from infinite dimensions

we shall restrict ourselves to complex projective spaces arising from finite dimensional

Hilbert spaces. However we notice that by now manifold aspects of infinite dimensional

Hilbert spaces are available in textbooks, as for instance Ref.s [2, 3, 4, 5, 6].

To clearly identify geometric structures on the complex projective space considered

as a real differential manifold we shall consider related structures on the “realified” ver-

sion of the complex Hilbert space and consider their projectability under the quotienting

procedure.

2 Preliminaries

Let H be the Hilbert space of a quantum system, by H− {0} we denote the space of

normalizable states. We define rays to be the equivalence classes of normalizable states

differing only by multiplication by a nonzero complex number. We say that |ψ1〉 and |ψ2〉
are equivalent if |ψ1〉 = λ |ψ2〉 , where λ ∈ C0 (the group of nonzero complex numbers).

The ray space PH is defined as the quotient by this equivalence relation

PH = (H− {0})/C0. (1)

The natural projection π : H− {0} → PH maps each normalized state |ψ〉 to the ray [ψ]

on which it lies.

The Hilbert space structure carries an Hermitian product denoted as usual in Dirac’s

notation of bra and ket as h (ψ, ϕ) = 〈ψ|ϕ〉 . This Hermitian structure may be decomposed

into real and imaginary part, giving rise to an Euclidean product and a symplectic product

respectively. This Hermitian product allows to define a realization of the unitary group

in terms of isometries h (Φ (ψ) ,Φ (ϕ)) = h (ψ, ϕ) . Being symplectic, this action carries

along a momentum map µ : H−{0} → u∗ (H) , where by u (H) we denote the Lie algebra

of the unitary group and by u∗ (H) we denote its dual. Here the finite dimensionality of
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H is crucial to identify u∗ (H) uniquely from the linearity requirement. We may collect

these various spaces in the following commutative diagram:

U(H)

↘
C0 −→ H− {0}

π ↓ ↘µ

PH −→ u∗(H)

(2)

To make sense of the geometrical structures arising from the Hermitian structure on

H at the manifold level of PH , we have to promote it to a tensor field. After we have

introduced tensor fields on H , we may consider the projectability properties with respect

to C0 or to the real version of it, S1 × R+. The association of operators and vectors

with tensorial quantities, already at the level of H , will allow us to perform non-linear

transformations and will pave the way to the transition to PH where concepts linked

to the linear structure do not make sense. Let us recall two examples of non-linear

transformations which are already widely considered in the quantum framework.

3 Non linear transformations

3.1 The eikonal transformation

This transformation [7] is usually considered when one is interested in the WKB

approximation or, more generally, in the quantum-classical transition. It amounts to

write the wave function in terms of its amplitude and phase:

Ψ = A (~r, t) eiS(~r,t)/~. (3)

It is well known that by setting

π =
S

2~J
, χ = A2, (4)

where χ is the probability density and J is the current density

J = ~χ
∇S
m

, (5)

the equation of Schrödinger may be recast in the form

dπ

dt
=

{
~

2m

4√χ
√
χ

}
− ~
m

(∇π)2 − U

~
dχ

dt
= −2~

m
div (χ∇π) (6)

where the term in curl brackets is usually called the quantum potential and it is the

starting point to obtain an approximate solution in terms of the solutions of the associated

Hamilton-Jacobi equation.
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3.2 Wigner function

Another instance of a widely used non-linear transformation is the description of the

wave function in terms of the Wigner function [8]. We recall that this function (quasi-

distribution on phase space) is defined in the following way:

W (q, p) =
1

2π

∫ ∞

−∞
dye−ipy

〈
q +

~
2
y|Ψ

〉 〈
Ψ|q − ~

2
y

〉
, (7)

it is the Weyl transform of the projector |Ψ〉 〈Ψ| .
This correspondence allows, more generally, to associate functions on phase space with

operators. We have that

W : Â(H) −→ F(T ∗M) (8)

allows to represent operators as functions on phase space.

Indeed

W (q, p) = W (|Ψ〉 〈Ψ|) (9)

provides charts for the complex projective space, and

A (q, p) =

∫ ∞

−∞
dzeipz

〈
q − z

2

∣∣∣Â∣∣∣ q +
z

2

〉
(10)

represents the operator Â as a function on phase space.

4 Tensorial quantities in the abstract setting

Our aim in this section is to associate tensorial quantities with standard objects on

the Hilbert space (states, observables and evolutionary equations). This association will

be useful to consider the possibility of defining corresponding objects on PH. In the real

manifold setting we have the following diagram

(S1 × R+) −→ HR − {0}
↓

(PH)R

(11)

The Hermitian structure on H

h (x, y) = g (x, y) + iω (x, y) (12)

gives rise to contravariant corresponding structures, i.e. defined on H∗
R = LinR (HR,R) .

We shall denote by G the one corresponding to g, and by Λ the one corresponding to ω.

The composition of G with ω gives the complex structure. The two structures G and Λ

allow to define an Hermitian structure on H∗. We have

J = G ◦ ω with J2 = −I. (13)
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On H∗ we have the contravariant Hermitian structure:

G+ iΛ (14)

To make more smooth the transition to real differential manifolds, we consider HR as a

realification of H and as a Kähler manifold

(HR, J, g, ω) . (15)

The transition to tensorial objects requires preliminarily the introduction of the tangent

bundle of HR :

THR 
 HR ×HR. (16)

As it is well known, maps

X : HR −→ THR (17)

are vector fields. With any vector x, y we associate constant vector fields by setting

Xx : HR −→ THR, ψ 7→ (ψ, x) ∀ψ ∈ HR,

Xy : HR −→ THR, ψ 7→ (ψ, y) ∀ψ ∈ HR. (18)

Therefore with the Hermitian structure

h (x, y) = 〈x|y〉 = g (x, y) + iω (x, y) (19)

we associate the tensor

h (ψ) (Xx (ψ) , Xy (ψ)) = h (x, y) = 〈x|y〉 . (20)

By using

J(x) = ix; J2 = −I, (21)

we define a (1, 1)−tensor field

J : THR −→ THR, (22)

by setting

J(ψ) (ψ, x) = (ψ, ix) . (23)

Thus, we may consider all expressions defined on HR, say

ω (x, Jy) = g (x, y) , g (Jx, Jy) = g (x, y) , ω (Jx, Jy) = ω (x, y) , (24)

as the expressions of the corresponding tensor fields evaluated at a generic point ψ ∈ HR.

Similarly we may write the contravariant form:

〈α|β〉H∗
R

= G (α, β) + iΛ (α, β) (25)
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on the dual real Hilbert space H∗
R.

The metric tensor G will define the duality map T ∗HR −→ T ∗HR. The contravariant

tensor associated with the imaginary part Λ will allow the definition of Poisson brackets

{f, h}ω = Λ (df, dh) , (26)

while the symmetric tensor G allows for the definition of a symmetric (commutative

product) bracket

(f, h)g = G (df, dh) . (27)

This bracket is called the Riemann-Jordan bracket. Putting together the two products

gives us a new product on functions

((f, h))HR
= (f, h)g + i {f, h}ω . (28)

Now we are ready to consider the projectability of these tensorial structure to the quotient

manifold (PH)R . We consider the quotient map

π : (H− {0})R −→ (PH)R (29)

along with the associated tangent map

Tπ : T (H− {0})R −→ T (PH)R . (30)

The kernel of this map defines the quotienting distribution generated by the vector field

4 : HR −→ THR, |Ψ〉 −→ (|Ψ〉 , |Ψ〉) (31)

infinitesimal generator of the action of the R+ group, and the vector field

Γ = J(∆) (32)

infinitesimal generator of the action of S1. Having the involutive distribution responsible

for the quotienting procedure, we may look for projectable functions

L∆f = 0, LΓf = 0. (33)

These functions allow to investigate the projectability of the contravariant tensors asso-

ciated with the Hermitian structure. It is not difficult to see that

L∆ {π∗f, π∗h}ω = −2 {π∗f, π∗h}ω . (34)

Thus, the Poisson bracket on (H− {0})R is not projectable onto (PH)R.
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5 Recovering quantum mechanics from functions and vector fields

A large class of projectable functions has the form

fA (ψ) =
〈ψ|Aψ〉
〈ψ|ψ〉

(35)

for A any complex linear operator on H.When A is Hermitian, fA is a real valued function.

The Jacobi bracket on these functions reduces to the Poisson bracket and therefore

defines the Poisson bracket on the complex projective space. A similar statement holds

true for the commutative bracket associated with the contravariant tensor G.

Proposition. On PH, critical points of fA are the “eigenvectors” and their values at

these points are the “eigenvalues” corresponding to the Hermitian operator A.

The Poisson bracket on these functions corresponds to the commutator i [A,B] , while

the Riemann-Jordan bracket corresponds to the Jordan product AB + BA. The Hamil-

tonian vector field ΓA associated by the Poisson bracket with fA will define the Schrödinger

equation on the space of pure space (more precisely, will be the evolution equation in the

form given by Von Neumann).

Proposition.[9] A generic function on PH defines a quantum evolution, via the as-

sociated Hamiltonian vector field, if and only if the vector field is a derivation for the

Riemann-Jordan product.

In this case, thanks to Wigner’s theorem [10], we may show that any such function

has necessarily the form fA for some Hermitian operator A. Therefore, any such vector

field is complete and gives rise to a one-parameter groups of “unitary transformations”.

These one-parameter group of unitary transformations provide us with a realization of

the unitary group in terms of “non-linear” transformations.

Proposition Functions corresponding to integer powers of A, say fk (ψ) = fAk (ψ) ,

provide commuting functions with respect to the Poisson bracket. They are a maximal set

of commuting functions if and only if eigenvalues are simple, i.e. critical points on PH
are isolated.

It is not difficult to see that to make {·, ·}ω projectable we have to introduce a quadratic

factor for the natural Poisson bracket available on H

{f, h}D (Ψ) = 〈Ψ|Ψ〉 {f, h}ω (Ψ). (36)

Indeed in this way we obtain a bracket which is a binary product on projectable functions.

Having introduced a conformal factor we find that the bracket {·, ·}D is projectable but

does not satisfy the Jacobi identity. It defines a Jacobi bracket

[f, h] = {f, h}D + fLXh− hLXf (37)
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where

X = Λ(d 〈Ψ|Ψ〉) (38)

is the Hamiltonian vector field of 〈Ψ|Ψ〉 .
Thus the Poisson bracket on the complex projective space PH is not related to the

constant Poisson bracket on H but it is a reduction of a Jacobi bracket. For more details

on the reduction of Jacobi manifolds, see Ref.[11]. With the same trick we will be able to

consider the projection of the commutative bracket associated with G, we have to multiply

it by the conformal factor 〈Ψ|Ψ〉 .

6 The inverse problem for quantum systems

In this section we would like to consider the inverse problem for quantum systems, i.e.

under which conditions a given vector field will preserve some Hermitian structure. We

consider first the inverse problem directly on H. Let X be a vector field on H

X : H −→ TH = H×H, Ψ −→
(

Ψ,− i

~
ĤΨ

)
(39)

with corresponding equation of motion

d

dt
Ψ = − i

~
ĤΨ. (40)

We have [12, 13, 14] the following

Proposition. A complex linear field X generates a flow φt : H → H preserving some

Hermitian scalar product h,

φ∗th = h,

if and only if any one of the following equivalent conditions is satisfied:

i) Ĥ = Ĥ† with respect to some h, i.e.

LXh = 0;

ii) Ĥ is diagonalizable and has a real spectrum;

iii) all the orbits

e−itĤΨ0

are bounded sets for any initial condition Ψ0.

Vector fields preserving alternative Hermitian structures are called biHamiltonian

quantum systems. According to previous considerations on functions in involution we

deduce that any quantum system admits alternative Hermitian structures.
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7 Compatible Hermitian structures

In analogy with compatible Poisson structures arising from completely integrable sys-

tems in classical mechanics, we may define compatible Hermitian structures [13].

Definition Two Hermitian tensors h1 and h2 are compatible when

LΓ1h2 = LΓ2h1 = 0, (41)

where the Hamiltonian of Γ1 is 1
2
h1(∆,∆) and the Hamiltonian of Γ2 is 1

2
h2(∆,∆).

Proposition. The (1, 1)−tensor field

F = (G1 + iΛ1) ◦ (g2 + iω2)

is bounded, positive and self-adjoint with respect to both the Hermitian structures.

Remark. For h1 and h2 in generic position, the commutant and the bi-commutant of F

coincide. In this generic situation, F generates a maximal set of commuting observables.

A further consequence is the following :

Given two Hermitian tensors h1 and h2, we obtain two alternative realizations of the

unitary group, the common subgroup

U(H, h1) ∩ U(H, h2) (42)

is maximal Abelian if h1 and h2 are compatible and in generic position.

Compatible Hermitian tensors generate Jacobi brackets which are compatible: i.e., the

Jacobi bracket associated with

{f, h}D1
= g1(∆,∆) {f, h}ω1

(43)

is compatible with the Jacobi bracket associated with

{f, h}D2
= g2(∆,∆) {f, h}ω2

(44)

8 Momentum map and density states

Because the action of the unitary group is a symplectic action, it is possible to define

an associated momentum map. With the action

φ : U(H)×H −→ H (45)

we associate a momentum map

µ : H −→ u∗(H). (46)
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Let us first say something on u∗(H) [15]. The space of Hermitian operators is identified

with u∗(H), the dual of the real Lie algebra u(H), with duality map furnished by the trace

〈A|T 〉 =
i

2
Tr(ÂT̂ ), (47)

and the duality map

u(H) 3 T −→ iT ∈ u∗(H) (48)

identifies adjoint and co-adjoint action of U(H). This implies that u∗(H) becomes a Lie

algebra with the following bracket[
Â, B̂

]
= −i(ÂB̂ − B̂Â). (49)

The scalar product, making u∗(H) into a real Hilbert space, is the following

〈A|B〉u∗(H) =
1

2
Tr(ÂB̂). (50)

Eventually, we are able to write the momentum map in the form

µ : |Ψ〉 ∈ H −→ |Ψ〉 〈Ψ| ∈ u∗(H). (51)

On u∗(H) the Riemann-Jordan tensor

R(ξ)
(
Â, B̂

)
=

〈
ξ|

[
Â, B̂

]
+

〉
=

1

2
Tr

(
ξ(ÂB̂ + B̂Â)

)
(52)

and the Poisson tensor

Λ(ξ)
(
Â, B̂

)
=

〈
ξ|

[
Â, B̂

]〉
u∗(H)

=
1

2i
Tr

(
ξ(ÂB̂ − B̂Â)

)
(53)

together form a complex tensor

(R + iΛ)(ξ)
(
Â, B̂

)
=

〈
ξ|ÂB̂

〉
u∗(H)

= Tr
(
ξÂB̂

)
. (54)

The momentum map relates this complex tensor with the dual Hermitian product

µ∗(g
−1 + iω−1) = R + iΛ. (55)

The (1, 1)−tensor field

J(ξ)(A) =
1

‖ξ‖
[A, ξ] (56)

satisfies

J3 = −J (57)

and induces a complex structure on every symplectic orbit. If the norm of a generic

vector is r, ‖ξ‖ = r, the symplectic orbit passing through r is denoted by D1
r(H). When

we consider D1
1(H) we get the symplectic orbit of pure states which is diffeomorphic with

the complex projective space PH. As a subset of u∗(H) it is possible to consider all convex

combinations of elements in D1
1(H) to obtain the set of density states. further details on

this set may be found in Ref.[15].
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9 Conclusions

Our geometric version of quantum mechanics has allowed to unveil many interesting

geometrical structures. In particular we have obtained:

1) Alternative Jacobi structures

2) Bi-Kählerian manifolds

3) Generalized complex structures J3 = −J, on the space of density states.

We believe that the extension of these considerations to quantum field theories may

pave the way to better tackle a sound formulation of quantum gravity.
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