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Abstract

A geometric algorithm of integrability for partial differential and algebraic equa-

tions (PDAEs), together with the connection approach and the covariant derivative

machinery, is applied to the Helmholtz conditions for the inverse problem of the cal-

culus of variations. A huge bundle of families of algebraic conditions for integrability

is generated.
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1 The Algorithm of integrability

For a system of linear PDAEs, defined by an affine subbundle R1 ⊂ J1π associated

to a fibre bundle π : E → B, dimB = n, with πo
1(R1) = E0 ⊂ E algebraic constraints,

necessary conditions of integrability are determined by a recursive algorithm of consistency

J1E0 ∩R1 = R
(1)
1 , πo

1(R
(1)
1 ) = E1, . . . , such that, at each step we select form the family of

n-dimensional distributions R
(l−1)
1 in El−1, a subfamily R

(l)
1 = J1El−1 ∩ R

(l−1)
1 of tangent

distributions to El−1, and those points El where this subfamily exist. Once a consistent

system (R
(f)
1 ⊂ J1πf , Ef , πf = π|Ef

) is obtained (if constraints appear at B the system is

inconsistent, but this does not happen for linear homogeneous PDAEs), we can look for

involution of the distributions.

By rubbing out the counter, R1 ≡ R
(f)
1 , E ≡ Ef , π ≡ πf , we lift the PDEs J1R1 ⊂

J1π1, and add the holonomy conditions R2 = J1R1 ∩ J2π, with i : J2π → J1π1 the

natural injection [22, 6]. If new algebraic constraints appear πo
2(R2) ⊂ E, the former

algorithm of consistency at the first level must be applied again. Otherwise, R1
1 = π1

2(R2)
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determines distributions algebraically involutive, where all possible crossed partial deriv-

atives (p.d.) have been checked (all of them for normal form PDEs). By restrict-

ing the family of distributions, new crossed p.d. can be checked, R1
2 = J1R1

1 ∩ J2π,

. . . Once again, by recursive liftings at the first and second level, a consistent system

(R2 ≡ Rf
2 ⊂ J2πf , R1 ≡ Rf

1 ⊂ J1πf , E ≡ Ef , π ≡ πf ) is obtained. However, unless

the final system is in normal form, algebraic involution does not guarantee the existence

of solutions, and the third level must be checked, J2(R1) ∩ J3π, etc. A PDE system is

formally integrable if πl
l+1(Rl+1) = Rl, ∀l > 0. It means that in a formal power series

expansion, each step of the recursive equations determining the coefficients of a higher

level is a compatible (generically undetermined) system of linear equations. The infinite

step algorithm of formal integrability becomes finite for PDEs with involutive symbol

N1 = TR1 ∩ V (πo
1) [2, 3, 7, 8, 10, 12, 16] (Cartan-Kuranishi algorithm).

There are two natural projections from J1(π1) ≡ J1(J1π) to J1π, (π1)
o
1 by selecting

just the base point for the jet bundle system associated to the fiber bundle π1 : J1π → B,

and j1π, the prolongation of the projection π, j1π(j1s1(x)) = j1(πo
1 ◦ s1)(x). In local

coordinates

(π1)
o
1(x

i, ya, za
i ; v

a
,i, w

a
j,i) = (xi, ya, za

i )

and

j1π(xi, ya, za
i ; v

a
,i, w

a
j,i) = (xi, ya, va

,i)

The fibres of both projections intersect in a manifold K = [(π1)
o
1]
−1 ∩ [j1π]−1, with coor-

dinates (xi, ya, za
i ; v

a
,i ≡ za

i , w
a
j,i). In the transformation of a second order PDE into a first

order one, it represents the (first) holonomy condition za
i = ∂ya

∂xi , and K matches J2π for

dimB = 1. In the general case J2π is a subset of K determined by the identity of crossed

p.d. wa
j,i = wa

i,j, second holonomy or integrability conditions. The prolongation J1R1 can

be restricted to R2 = J1R1 ∩ J2π, or to (R1)1 = J1R1 ∩K. Both R2 and (R1)1 are affine

subbundles over (a subset of) R1, R2 representing either a second order PDAE over E or

a first order PDAE over J1π, and (R1)1 a first order PDAE over J1π. In R2 we have all

the integrability conditions, and its solution sections (as a first order PDE over J1π) will

be the lifting of solution sections for R1. The symbol N2 = TR2∩V (π1
2) is a subspace (at

each fibre) of N1,1 = T (R1)1 ∩ V (K), and dimN2 ≤ dimN1,1.

Geometric Cartan test of involution[11]

The symbol N1 = TR1 ∩ V (πo
1) of a PDE is involutive if N2 = N1,1

We are next going to apply the algorithm of integrability for Helmoltz conditions up

to the second level; a general classification scheme, as the one given by Douglas [5] for

n = 2, would be possible if the resulting system is involutive.
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2 The inverse Problem of the Calculus of Variations

Given a fibre bundle π : E → IR, and a one form along the projection π1 : J1π → IR,

we have a Lagrangian dynamical system L(t, x, v)dt, with the well known associated Euler-

Lagrange equations. The inverse problem is to determine if, for a system of second order

ordinary differential equations in normal form d2xi

dt2
= f i(t, x, v = dx

dt
), there exist (regular)

Lagrangian functions whose Euler-Lagrange equations are equivalent to the given system.

d

dt
(
∂L

∂vi
) =

∂L

∂xi

d

dt
≡= Γ = ∂t + vi∂xi + f i(t, x, v)∂vi

with the substitutions dxi

dt
= vi and dvi

dt
= f i(t, x, v), becomes a system of second order

linear homogeneous PDEs in one unknown L(t, x, v), in the bundle T ∗IR×IR J1π → J1π,

with 2n + 1 independent variables, dimE = n + 1. We can transform it into a system of

first order PDEs, with new variables

Pi = ∂viL Qi = ∂xiL Qo = ∂tL

The equivalent system is

ΓPi = Qi ∂vjPi = ∂viPj ∂xjPi = ∂viQj ∂xjQi = ∂xiQj ∂tPi = ∂viQo ∂tQi = ∂xiQo

i.e., the original system plus the holonomy conditions. The bundle now is τ : T ∗(J1π) →
J1π, by identifying T ∗IR with IR× IR, that is, the form Ldt with a function L in J1π. The

unknown functions are the components of a locally exact one form α ' dL. The lifting

of ΓPi = Qi by ∂xj and ∂vj , commutation relations [Γ, ∂vj ] and [Γ, ∂xj ], and the holonomy

conditions allow to obtain

Γ(∂vjPi) + (∂xj + ∂vjfk∂vk)Pi − ∂xiPj = 0 (1)

and

Γ(∂xjPi) + ∂xjfk∂vkPi = Γ(∂xiPj) + ∂xifk∂vkPj (2)

where only p.d. of the Pi components appear. Moreover, by splitting (1) into its symmetric

and skew-symmetric components, and using (2), we find the Helmholtz conditions for the

inverse problem [18] (symmetry of gij = ∂viPj is understood)

Γ(gij) = gikΓ
k
j + gjkΓ

k
i

∂gij

∂vk
=

∂gik

∂vj
gikΦ

k
j = gkjΦ

k
i , (3)

with Φj
i = −∂xif j − Γj

kΓ
k
i − Γ(Γj

i ) the components of the Jacobi endomorphism Φ =

Φj
id

i ⊗ ∂j.
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3 “Connection” approach to the Helmholtz conditions

The reader is invited to consult [1, 9, 15, 17, 21] for a panoramic review about the

inverse problem of the calculus of variations. The main references followed in this work are

[4, 20], where the connection approach to Helmholtz conditions is applied, and [13, 14, 19]

for properties of the covariant derivations of tensors along the tangent bundle projection.

A system of SODEs in normal form d2xi

dt2
= f i(t, x, v ≡ dx

dt
) determines a non linear

connection, with coefficients Γi
k = −1

2
∂f i

∂vk . A geometric representation can be obtained

through the bundle π : E → IR of space-time over time; in this framework, the SODE

system Γ = ∂t+vi∂xi +f i(t, x, v)∂vi is a vector field on J1π, the first jet bundle. There, the

non linear connection can be read as a linear connection on πo∗
1 (τE), with πo

1 : J1π → E

and τE : TE → E. The associated covariant derivative splits into a dynamical derivation

5, a vertical DV and a horizontal DH derivations. For the inverse problem, and many

other questions of interest, the relevant operations are restricted to the space of π-vertical

vector fields along πo
1, and its dual space of one forms over the fibres. The covariant

derivations are determined by its particular action on functions, a basis of vertical vector

fields ∂i = ∂xi , and a dual basis of one forms di (identified with the contact forms θi =

dxi − vidt for the restriction):

5F = Γ(F ) DV
i F = ∂viF DH

i F = (∂xi − Γj
i∂vj)F

5∂i = Γj
i∂j DV

i ∂j = 0 DH
i ∂j =

∂Γk
j

∂vi ∂k

5di = −Γi
jd

j DV
i dj = −δj

i dt(≡ 0) DH
i dj = −∂Γj

k

∂vi dk

(4)

In particular, Helmholtz conditions for the inverse problem represent a system of

PDAEs on the unknown multipliers gij(t, x, v), the components of a symmetric two co-

variant tensor field g = gijd
i.dj along πo

1, corresponding to the Hessian of the Lagrangian;

we will mainly restrict the operations (contractions and derivatives) to this space of tensors

and their derivatives. With this tools, Helmholtz conditions have a covariant formulation

5g = 0 DV g(X, Y, Z) = DV g(Y, X, Z) (Φ1 − Φ2).g(X, Y ) = 0 (5)

where DV T (X, Y, . . .) = (DV
XT )(Y, . . .) and Φk.T (X1, X2, . . .) = T (X1, . . . , Φ(Xk), . . .).

The second order PDEs associated to the (second) holonomy conditions are obtained

by taking into account the commutation relations of the dynamical, vertical and horizontal

derivations:

[
5, DV

]
= −DH

[
5, DH

]
= DV

Φ − µ(Ψ) (6)

[
DV , DV

]
= 0

[
DH , DH

]
= DV

R + µ(Rie) (7)
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[
DV , DH

]
= µ(θ) , (8)

with

R(X, Y ) =
1

3
(DV Φ(X, Y )−DV Φ(Y,X)) (9)

Rie(X, Y, Z) = −(DV
Z R)(X, Y ) Ψ(X,Y ) = R(X, Y ) + DV

Y Φ(X) (10)

and θ a (1, 3) tensor with components θl
ijk = −1

2
∂3

vivjvkf l, and therefore totally symmetric

(t.s.). Notice that all these structural tensors, except for θ, are derived from the Jacobi

endomorphism Φ. The former expressions are understood acting on (1, p) or (0, p) type

tensor fields T according to the following rules

DV
AT (X1, · · · , Xq, Y, · · ·) = DV

A(X1,···,Xq)T (Y, · · ·) (11)

for a (1, q) tensor field A; µ(A)T = a(A)T − i(A)T with

a(A)T (X1, · · · , Xq−1, Y1, · · · , Yp) = A(X1, · · · , Xq−1, T (Y1, · · · , Yp)) (12)

(and vanishing for (0, p) type T ), and

i(A)T (X1, · · · , Xq−1, Y1, · · · , Yp) =
p∑

i=1

T (Y1, · · · , A(X1, · · · , Xq−1, Yi), · · · , Yp) (13)

Bianchi identities for the connection represent some relations among the structural tensors,

e.g.
∑

cycl D
V R(X, Y, Z) = 0, and will be introduced when necessary.

4 Generating integrability conditions

Helmholtz conditions represent a system of PDAEs for the multipliers, the components

of a symmetric (0, 2) vertical tensor g along the πo
1 projection. The covariant framework

is therefore the bundle ν : V ≡ S2(V ∗E)×E J1π → J1π ≡ M , with S2(V ∗E) the manifold

of symmetric two covariant tensors on the fibres of π : E → IR (E is the configuration

space-time), g = gijd
i.dj, and sections of ν are symmetric (0, 2) tensor fields (acting on

π-vertical vectors) along the tangent bundle projection πo
1 : J1π → E. Elements of V will

be denoted by g (the base point is understood); elements in the fibres of νo
1 : J1ν → V

can be described by three tensors zo = 5g, zv = DV g and zh = DHg, of (0, 2) and (0, 3)

type respectively; finally, elements in the fibres of (ν1)
o
1 : J1ν1 → J1ν (ν1 : J1ν → M)

are described by three tensors wo = 5g, wv = DV g and wh = Dhg (identified with the

corresponding z in K ⊂ J1ν1), and nine tensors uoo = 5zo, uoh = DHzo, uov = DV zo,
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uho = 5zh, uvo = 5zv, uhh = DHzh, uhv = DV zh, uvh = DHzv and uvv = DV zv of types

(0, 2), (0, 3) and (0, 4). All tensors are symmetric in their last two indices.

The initial algebraic Helmholtz condition in V is expressed as

(Φ1 − Φ2).g = 0 (14)

and the initial PD Hemlholtz equations in J1ν are determined by

zo = 0 zv t.s. (15)

We also have to consider the holonomy conditions, the equations defining the subbundle

J2ν ⊂ K ⊂ J1ν1. The first family of equations, for K ⊂ J1ν1, identify the tensors w with

the corresponding z, and is trivially applied. The second family, the one corresponding

to the identification of the mixed partial derivatives, is determined by the commutation

relations (6), (7) and (8), when applied to g:

uvo(X, Y, Z)− uov(X,Y, Z) = −zh(X, Y, Z) (16)

uho(X,Y, Z)− uoh(X,Y, Z) = zv(Φ(X), Y, Z) +

+g(Ψ(X, Y ), Z) + g(Y, Ψ(X,Z)) (17)

uvv(X, Y, Z, W )− uvv(Y,X, Z, W ) = 0 (18)

uhh(X, Y, Z, W )− uhh(Y,X, Z, W ) = zv(R(X, Y ), Z, W )−

g(Rie(X, Y, Z), W ) − g(Z,Rie(X, Y, W )) (19)

uhv(X, Y, Z, W )− uvh(Y,X, Z, W ) =

−g(θ(X, Y, Z), W ) − g(Z, θ(X,Y, W )) (20)

Prolongations of the equations to the next upper level is obtained by applying the

dynamical, vertical and horizontal derivations, and a systematic use of Leibnitz rule. We

will, by aesthetic reasons, make first the lifting DV (zo) = uov = 0, and 5(zv) = uov t.s.

to obtain from (16) a new first order PDE: zh t.s. The following properties are easily

proven by systematic computation:

Property 1 For any algebraic condition, i.e., some contraction A � g = 0 of g with

another tensor field A, new algebraic conditions (5pA) � g = 0, p ≥ 0 are generated by

5 lifting and the zo = 0 equation.

Property 2 For any (1, q) tensor field A, the algebraic condition

(A1−A2)�g(X1, · · · , Xq−1, Y1, Y2) ≡ A�g(X1, · · · , Xq−1, Y1, Y2)−A�g(X1, · · · , Xq−1, Y2, Y1)

generates, by DV lifting and the zv t.s. equation, the new condition
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∑
cycl(1,2,3)

(
[DV

Y1
A]� g(X1, · · · , Xq−1, Y2, Y3)− [DV

Y2
A]� g(X1, · · · , Xq−1, Y1, Y3)

)
= 0

where
∑

cycl(1,2,3) means a cyclic sum for the three vectors (Y1, Y2, Y3).

Property 3 For any (1, q) tensor field A, the algebraic condition

(A1−A2)�g(X1, · · · , Xq−1, Y1, Y2) ≡ A�g(X1, · · · , Xq−1, Y1, Y2)−A�g(X1, · · · , Xq−1, Y2, Y1)

generates, by DH lifting and the zh t.s. equation, the new condition

∑
cycl(1,2,3)

(
[DH

Y1
A]� g(X1, · · · , Xq−1, Y2, Y3)− [DH

Y2
A]� g(X1, · · · , Xq−1, Y1, Y3)

)
= 0

where
∑

cycl(1,2,3) means a cyclic sum for the three vectors (Y1, Y2, Y3).

Property 4 For any algebraic condition A � g = 0, with A � g a (0, q) type tensor,

a new algebraic condition i(θ)[A � g] = 0 is generated by applying the second holonomy

condition
[
DV , DH

]
= µ(θ).

Property 1 applied to the initial condition (Φ1 − Φ2).g = 0 generates the family

F1 = {(5pΦ1 −5pΦ2).g = 0}p=0 (21)

A second family

F2 = {
∑

cycl(1,2,3)

(5pR)12 � g = 0}p=0 (22)

is generated by applying Property 2 to (Φ1−Φ2).g = 0, taking into account the expression

(9) for R ([R12 � g](X, Y, Z) = g(R(X,Y ), Z)), and Property 1. Property 3 over (Φ1 −
Φ2).g = 0 does not give new independent conditions because of the Bianchi identity

(DHΦ)(X, Y )− (DHΦ)(Y, X) = (5R)(X, Y ).

In [20] it is proven that, up to degeneration of the second order holonomy condition

concerning θ, no new algebraic conditions appear when taking into account the appropriate

Bianchi identities. For example, DV and DH lifting of F2|p=0 and appropriate use of

the total symmetry of zv and zh do not generate new conditions because of the Bianchi

identities
∑

cycl D
V R(X, Y, Z) = 0 and

∑
cycl D

HR(X, Y, Z) = 0. Similarly, Property 3 over

elements p > 0 of F1, commutation of 5 and DH , and the expression for Ψ reproduces

again elements of F2. Notice that when making use of the commutation relations we are

in fact lifting to the second level and making use of the holonomy conditions.

Application of Proposition 4 to the first family F1 generates

F o
3 = {0 = i(θ)[(5pΦ1 −5pΦ2).g](X1, X2, Y1, Y2) =
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= [(5pΦ1 −5pΦ2).g](θ(X1, X2, Y1), Y2) + [(5pΦ1 −5pΦ2).g](Y1, θ(X1, X2, Y2)) =

= g(5pΦ[θ(X1, X2, Y1)], Y2)− g(θ(X1, X2, Y1),5pΦ(Y2)) +

+ g(5pΦ(Y1), θ(X1, X2, Y2))− g(Y1,5pΦ[θ(X1, X2, Y2)]) ≡

Ω(θ,5pΦ)� g(X1, X2, Y1, Y2)− Ω(θ,5pΦ)� g(X1, X2, Y2, Y1)} (23)

where

Ω(θ,5pΦ)� g(X1, X2, Y1, Y2) = g(5pΦ[θ(X1, X2, Y1)], Y2) + g(5pΦ(Y1), θ(X1, X2, Y2))

When applying 5 to (Ω1 − Ω2)(θ,5pΦ)� g = 0 we find a term (Ω1 − Ω2)(θ,5p+1Φ)� g

plus a new condition (Ω1 − Ω2)(5θ,5pΦ) � g = 0, which can be rewritten through the

Bianchi identity 5θ = −1
3

∑
DV DV Φ. Recursive application of 5 by Proposition 1 gives

the family

F3 = {Ω(5qθ,5pΦ)� g(X1, X2, Y1, Y2)− Ω(5qθ,5pΦ)� g(X1, X2, Y2, Y1) = 0} (24)

which perhaps contains not independent integrability conditions because of some Bianchi

identities.

Application of Proposition 4 to the second family F2 generates

F o
4 = {

∑
cycl(1,2,3)

i(θ)[(5pR)12 � g](X1, X2, Y1, Y2, Y3) =

=
∑

cycl(1,2,3)

[(5pR)12 � g(θ(X1, X2, Y1), Y2, Y3) +

+ (5pR)12 � g(Y1, θ(X1, X2, Y2), Y3) +

+ (5pR)12 � g(Y1, Y2, θ(X1, X2, Y3))] = 0 ≡

≡ ∆(5pR, θ)� g(X1, X2, Y1, Y2, Y3)} (25)

Again, Proposition 1 generates

F4 = {∆(5pR,5qθ)� g(X1, X2, Y1, Y2, Y3) = 0} (26)

We can also apply Propositions 2 and 3 to F3 by skew-symmetry, determining the

corresponding families F V
3 and FH

3 , and recursively Proposition 4 to the new conditions

F3,T = i(θ)rF3, F4,T = i(θ)rF4, F V
3,T = i(θ)rF V

3 , FH
3,T = i(θ)rFH

3 . Moreover, F3,T being also

in skew-symmetric form, Propositions 2 and 3 should give additional conditions, [F3,T ]V

and [F3,T ]H , and again i(θ)r[F3,T ]V , etc.

It is a non trivial task to clean the former conditions of possible dependencies, by the

use of Bianchi identities and commutation relations. The desirable objective of determin-

ing the consistency of the complete system up to second order, and eventually testing for
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the involution condition, seems to be far form the results already presented. Together

with the algebraic conditions, new first and second order PDE conditions are determined

along the path, either by prolongation of lower order (zero or first) conditions to the

next level, or by projection of second order ones through combinations that eliminate the

second order terms.
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