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1 Introduction

In this essay, written to commemorate the sixtieth birthday of J. Cariñena, we discuss

several elementary issues in one-dimensional supersymmetric quantum mechanics. The

rôle of the Riccati equation in this framework has been thoroughly analyzed by Cariñena

and collaborators at the highest level of mathematical rigor by approaching topics such

as the factorization method or shape invariance from a group-theoretical point of view,

see [1], [2] and [3]. Our purpose here is to approach these matters from a rather physical

point of view. To construct a supersymmetric quantum mechanical system starting from a

physical potential energy we shall be led to deal with the Hamilton-Jacobi or the Poisson

equations, although in both cases there is an associated Riccati equation.

We shall focus on studying the relationship between supersymmetric classical and

quantum mechanical systems, following the standard References [4] and [5] and the more

recent Lectures of A. Wipf [6]. In particular, models where supersymmetry is unbroken

and instantons exist will be analyzed at length. Aother issue to be treated with care is

the semiclassical behavior of supersymmetric quantum systems, this done with the help

of the enlightening paper of A. Comtet et al. [10].

2 Rôle of the Hamilton-Jacobi, Riccati and Poisson

equations in SUSY quantum mechanics

Let us start with a natural Lagrangian of one degree of freedom and the action functional:

S =

∫
dt

[
m

2

dx

dt

dx

dt
− V (x;λ, k)

]
, [λ] = ML−2T−2 , [k] = MT−2 . (1)

We shall consider potential energies V (x;λ, k) that depend on two parameters λ and k of

dimensions given in (1) and we shall introduce the non-dimensional variables: x→
√

k
λ
·x,

t →
√

m
k
· t, V (x;λ, k) = k2

λ
V (x), such that the action and the Hamiltonian read (non-

dimensional variables will be used in what follows):

S =
k

3
2m

1
2

λ
·
∫

dt

[
1

2

dx

dt

dx

dt
− V (x)

]
, H(p, x) =

k2

λ

(
1

2
p2 + V (x)

)
, p =

∂L

∂ẋ
=
dx

dt
.
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2.1 One-dimensional N = 2 SUSY classical mechanics

A N = 2 supersymmetric extension of a classical mechanical system of one degree of

freedom is constructed as follows:

1. We add two “fermionic” degrees of freedom to the “bosonic” degree of freedom with

the real coordinate x. The fermionic coordinates form a Grassman Majorana spinor:

θ =

(
θ1

θj

)
, θαθβ + θβθα = 0 , ∀α, β = 1, 2 .

2. A superPoisson structure is defined in the phase superspace with coordinates p, x, θ1,θ2.

Given two superfunctions F and G on the superspace, the Poisson superbracket

{F,G}P =
∂F

∂p

∂G

∂x
− ∂F

∂x

∂G

∂p
+ i

2∑
α=1

F

←
∂

∂θα

→
∂

∂θα

G

is read from the basic brackets: ∀α, β = 1, 2, {p, x}P = 1, {x, x}P = {p, p}P = 0,

{θα, θβ}P = iδαβ. Note that in the “soul” of the system - the subspace of the superspace

spanned by the Grassman variables - the configuration space and the phase space coincide.

The reason is that the Lagrangian ruling the dynamics of the fermionic variables is of first

order in time derivatives. Thus, the time derivatives of Grassman variables will not appear

in the Hamiltonian.

3. The classical SUSY charges: Q1 = pθ1 − dW
dx
θ2, Q2 = pθ2 + dW

dx
θ1, close the classical

supersymmetric algebra: {Q1, Q1}P = {Q2, Q2}P = 2iHS, {Qα, HS}P = {Q1, Q2}P = 0.

4. The classical Hamiltonian HS

HS =
1

2
p2 +

1

2

dW

dx

dW

dx
− i

d2W

dx2
θ2θ1 (2)

is invariant by construction with respect to the super-transformations generated byQ1 and

Q2. Besides the kinetic energy of the bosonic variables, there are two interaction energy

terms in the Hamiltonian (2) proportional to the (square of) the derivative and the second

derivative of the arbitrary function W (x), usually referred to as the superpotential.

Therefore, a given classical Hamiltonian: H = 1
2
p2 + V (x), admits an extension to a

N = 2 supersymmetric partner HS if and only if the superpotential satisfies

1

2

dW

dx
· dW
dx

= V (x) (3)

Note that d2W
dx2 enters in HS as the expectation value in Grassman states and disappears

in a purely bosonic setting.

Let us now consider the Hamiltonian for the “flipped” potential V (x) = −U(x) and the

associated Hamilton-Jacobi equation:

HF =
1

2
p2 + U(x) ;

∂S

∂t
+HF

(
∂S

∂x
, x

)
= 0 .
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The time-independence of the Hamiltonian suggests solutions of the form S(x, t) = −Et+
W (x), leading to the reduced HJ equation:

1

2

dW

dx
· dW
dx

+ U(x) = E . (4)

Therefore, the superpotential is no more than the Hamilton characteristic function for

E = 0 of the mechanical system with flipped potential. In sum, to find the superpotential,

allowing for the supersymmetric extension of a classical mechanical system, one must solve

a related Hamilton-Jacobi equation, see Reference [7]. In general, for any E, the Hamilton

characteristic function is: W (x;E) = ±
∫
dx
√

2(E − U(x)).

The energy E trajectories satisfy the ODE

dx

dt
= ±dW

dx
= ±

√
2(E − U(x)) ⇒ ±

∫
dx√

2(E − U(x))
= t+ t0 (5)

2.2 One-dimensional N = 2 SUSY quantum mechanics

Canonical quantization of the above system to obtain the analogous N = 2 quantum

supersymmetric system proceeds as follows, see, e.g., References [8] and [12]:

1. Replace Poisson brackets by commutators for the bosonic variables and anticommuta-

tors for the fermionic variables: [x̂, p̂] = x̂p̂ − p̂x̂ = i~̄, {θ̂α, θ̂β} = θ̂αθ̂β + θ̂β θ̂α = −~̄δαβ,

where the non-dimensional Planck constant ~̄ = λ~
m

1
2 k

3
2

has been introduced.

2. We choose the coordinate representation for the bosonic variables but the classical

Grassman variables become Fermi operators in the quantum domain: p̂ = ~̄
i

d
dx

, x̂ = x,

θ̂1 =
√

~̄ψ1, θ̂2 =
√

~̄ψ2, {ψ1, ψ2} = 0.

The Fermi operators are represented on the Euclidean spinors in R2 by the anti-Hermitian

2× 2 Pauli matrices:

ψ1 =
i√
2
σ1 , ψ2 = − i√

2
σ2 , θ̂

2
1 = θ̂2

2 = − ~̄
2

(
1 0

0 1

)
, {θ̂1, θ̂2} = 0 , [θ̂1, θ̂2] = i~̄σ3.

3. The quantum supercharges, Q̂1 = −θ̂1~̄ d
dx
− iθ̂2

dW
dx

, Q̂2 = θ̂2~̄ d
dx

+ iθ̂1
dW
dx

, are

Q̂1 = −i
√

~̄
2

(
0 ~̄ d

dx
− dW

dx

~̄ d
dx

+ dW
dx

0

)
, Q̂2 =

√
~̄
2

(
0 −~̄ d

dx
+ dW

dx

~̄ d
dx

+ dW
dx

0

)

and satisfy the quantum algebra: {Q̂1, Q̂1} = {Q̂2, Q̂2} = 2~̄ĤS, {Q̂1, Q̂2} = 0, [Q̂1, ĤS] =

[Q̂2, ĤS] = 0, with the quantum SUSY Hamiltonian:

ĤS =

(
ĥ(0) 0

0 ĥ(1)

)
=

1

2

(
−~̄2 d2

dx2 + dW
dx
· dW

dx
− ~̄d2W

dx2 0

0 −~̄2 d2

dx2 + dW
dx
· dW

dx
+ ~̄d2W

dx2

)
.

It is also interesting to work with non-hermitian supercharges Q̂± = 1
2
(Q̂1 ± iQ̂2), and

reshuffle the quantum superalgebra in the form: {Q̂+, Q̂−} = 2~̄ĤS, [Q̂+, ĤS] =

[Q̂−, ĤS] = 0.
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4. The quantum Hamiltonian is a block-diagonal 2× 2 matrix differential operator ĥ(f=0)

and ĥ(f=1) are ordinary Schrödinger operators acting respectively on the subspaces of the

Hilbert superspace labeled by the eigenvalues of the Fermi number operator:

f̂ = θ̂− · θ̂+ =
~̄
2
·

(
0 0

0 1

)
, θ̂± =

i

2
(θ̂1 ± iθ̂2)

5. Wave functions in the subspaces with zero and one Fermi number annihilated re-

spectively by Q̂+ and Q̂−: Q̂+Ψ
(0)
0 (x) = 0, Q̂−Ψ

(1)
0 (x) = 0, are eigenfunctions of the

Hamiltonian of zero energy. Therefore,

Ψ
(0)
0 (x) = C

(
exp[~̄−1W (x)]

0

)
, Ψ

(1)
0 (x) = C

(
0

exp[−~̄−1W (x)]

)
are the ground states of the supersymmetric quantum system if they are normalizable:∫

R dx e2W (x)~̄−1
< +∞ or

∫
R dx e−2W (x)~̄−1

< +∞. Note that either Ψ
(0)
0 or Ψ

(1)
0 can be

normalizable.

2.3 The two-fold way to supersymmetric quantum mechanics

Given a physical system, the issue of building the associated supersymmetric quantum

mechanics can be addressed in two different ways.

• Quantization of a classical supersymmetric system. In the first method, it is assumed

that the classical supersymmetric extension has been performed. The identification of the

classical superpotential requires that we must solve the ODE: 1
2

dW
dx

dW
dx

= V (x), the time-

independent Hamilton-Jacobi equation (4) for zero energy and flipped potential energy.

Canonical quantization, as in the previous Section, provides all the interactions in the

quantum system

V̂ (0)(x) =
1

2

dW

dx

dW

dx
+

~̄
2

d2W

dx2
, V̂ (1)(x) =

1

2

dW

dx

dW

dx
− ~̄

2

d2W

dx2

in terms of the Hamilton characteristic function.

• Supersymmetrization of a quantum system. The identification of the “quantum” super-

potential would require one to solve one of the two Riccati differential equations

1

2

dŴ

dx

dŴ

dx
± ~̄

2

d2Ŵ

dx2
= V (x) , (6)

the sign marking the subspace where the the potential energy V is expected to act. There

is no dependence on the Planck constant in the potential energy of any physically signif-

icant mechanical system. Therefore, we change the strategy and look for superpotentials

that solve the Poisson equation:

±d
2ŴP

dx2
(x) = V (x) , (7)
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with the same criterion for the signs. Physically, this means that the Yukawa interactions

provide the potential energy at stake. Mathematically, the solution of the Poisson equation

(7) ŴP provides a solution to a pair of related Riccati equations (8):

1

2

dŴP

dx

dŴP

dx
+

~̄
2

d2ŴP

dx2
= V̂ (0)(x) ,

1

2

dŴP

dx

dŴP

dx
− ~̄

2

d2ŴP

dx2
= V̂ (1)(x) , (8)

for other related potential energies: V̂ (0)(x), V̂ (1)(x). Once again, the datum is V (x) in

(7) from which V̂ (0)(x), V̂ (1)(x) are derived.

3 Examples: Anharmonic oscillators of sixth-order

To put these ideas to work, we choose as examples one-dimensional oscillators with

terms proportional to x4 and x6 in the potential energy. Papers, reviews and even books

dealing with the x4 case abound. We shall discuss the x6 case because it provides a

splendid arena to disentangle two effects, instantons and spontaneous supersymmetry

breaking, which in the x4 case come together. The potential energies are:

V (x;λ, k) =
λ2

2k
x2

(
x2 ± k

λ

)2

, V (x) =
1

2
x2(x2 ± 1)2 , (9)

describing respectively a single (+ sign) or triple (- sign) well. We shall only describe

the first line of attack here from the solution to the HJ equation (where the potential

energy is not found in the Yukawa interactions) and leave the Poisson route for another

publication.

3.1 Quantization of classical supersymmetric sixth-order wells

3.1.1 Single well

1. Supersymmetric classical mechanics. The solution to the HJ equation for E = 0 and

U(x) = −1
2
x2(x2 + 1)2 is:

W (x) = ±
∫

dx x(x2 + 1) = ±
(
x4

4
+
x2

2

)
.

The supersymmetric classical Hamiltonian and the supercharges read:

HS =
1

2
p2 +

1

2
x2(x2 + 1)2 ∓ i(3x2 + 1)θ2θ1 , Qα = pθα ∓ x(x2 + 1)εαβθβ .

In the “soul” of the related supersymmetric system with flipped potential, the Hamilton

characteristic function and the trajectories are given analytically by hyperelliptic integrals:

W (x;E) =

∫
dx
√
x6 + 2x4 + x2 + 2E ,

∫
dx√

x6 + 2x4 + x2 + 2E
= t+ t0 .
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For E = 0, there is only one constant trajectory, where the particle sits on the top of

the potential: x̄(t) = 0, which is also the unique BPS trajectory of the supersymmetric

classical system.

2. Supersymmetric quantum mechanics. The quantum supercharges are:

Q̂1 = −i
√

~̄
2

(
0 ~̄ d

dx ∓ x(x2 + 1)

~̄ d
dx ± x(x2 + 1) 0

)
, Q̂2 =

√
~̄
2

(
0 −~̄ d

dx ± x(x2 + 1)

~̄ d
dx ± x(x2 + 1) 0

)

and the potential energies arising in HS read:

V̂ (0)(x) =
1

2
(x2(x2 + 1)2 ± ~̄(3x2 + 1)) , ˆV (1)(x) =

1

2
(x2(x2 + 1)2 ∓ ~̄(3x2 + 1)) . (10)

Thus, the zero energy ground states are:

Ψ
(0)
0 (x) = C

 exp{± (x4

4
+x2

2
)

~̄ }
0

 , Ψ
(1)
0 (x) = C

 0

exp{∓(x4

4
+x2

2
)

~̄ }

 .

The supersymmetric quantum system has always one ground (BPS) state and supersym-

metry is unbroken: if we choose W = x4

4
+ x2

2
as the superpotential, the ground state

belongs to the Fermi subspace - Ψ
(0)
0 is not normalizable-, the choice of W = −

(
x4

4
+ x2

2

)
forces a Bosonic ground state whereas Ψ

(1)
0 becomes non-normalizable.

One can guess the energy and the type of eigen-function of the next energetic states by

looking at the “effective” potentials V+ = V̂−
(0)

and V− = V̂+

(0)
, depending on the choice

of W . The critical points of V±(x) are: x0 = 0, x±1 = ±
√
−2−

√
1±9~̄
3

, x±2 = ±
√
−2+

√
1±9~̄

3
.

x0 is a minimum of V+ if ~̄ < 1
3

and becomes a maximum otherwise. x±1 are always

imaginary roots but x±2 are real and become minima of V+ for ~̄ > 1
3
.

x

V+@xD

x

V+@xD

x

V+@xD

x

V+@xD

Figure 1.— Potential energy V̂+ and BPS ground state ΨG
0 (x) for: (a) ~̄ = 0.001, (b)

~̄ = 0.1, (c) ~̄ = 2, (d) ~̄ = 4.

There is a unique minimum for V−, x0, and the wave function of the first level over

the ground state is well approximated by a Gaussian around it:

Ψ
E−

1
− (x) '

(ω−
~̄π

) 1
4

(
0

exp{−ω−
2~̄ x

2}

)
, ω− =

√
1 + 3~̄ , EE−

1
− ' ~̄

2
(1 + ω−) . (11)

The supersymmetric partner state in the subspace of ΨG
0 is obtained by acting on Ψ

E−
1
−

with Q̂+:

Ψ
E+

1
+ (x) = Q̂+ΨF

−(x) =

(
ω−~̄
4π

) 1
4

(
(x3 + (1 + ω−)x)exp[−ω−

~̄ x
2]

0

)
, E+

1 = E−1 . (12)
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x

V+@xD

x

V+@xD

x

V+@xD

x

V-@xD

x

V-@xD

x

V-@xD

Figure 2.— Potential energies V̂±. Degenerate in energy ΨE−
1
− (x) and ΨE+

1
+ (x) wave

functions: (a) ~̄ = 0.01, (b) ~̄ = 0.1, (c) ~̄ = 1.

3. Zero-energy ground state. The dependence of ΨG
0 (x) = exp[− (x4

4
+x2

2
)

~̄ ] on ~̄ is rather

involved and can be described analytically through the asymptotic behavior when ~̄ → ~̄c

and ~̄c = 0 is the classical value:

exp
[
− 1

2~̄
(
x4

2
+ x2)

]
' lim

~̄c→0
exp

[
− 1

~̄c
(
x4

2
+ x2)

]{
1 +

1
~̄2

c

·

(
2~̄

(x4

2 + x2)
− ~̄c

)

+
1− 2~̄c

2~̄4
c

·

(
2~̄

(x4

2 + x2)
− ~̄c

)2

+
1 + 6~̄c(~̄c − 1)

6~̄6
c

·

(
2~̄

(x4

2 + x2)
− ~̄c

)3

+ · · ·

 .

It is also interesting to analyze how the norm of the BPS ground state depends on ~̄:

N(~̄) =

∫
dx exp

{
−x

4

2~̄
− x2

~̄

}
=
√

~̄
∫

dz exp

{
− ~̄z4

2
− z2

}
, x =

√
~̄z . (13)

This non-gaussian integral is no more than the partition function Z(~̄) = N(~̄) of a QFT

system in (0+0)-spacetime dimensions and Lagrangian [9]: L = −1
2
ϕ2 − λ

4!
ϕ4 , z = ϕ√

2
,

λ = 3~̄. The partition function can be expressed as a series in ~̄,

Z(~̄) =
∞∑

m=0

∫ ∞
−∞

dz
(−3~̄)m

(4!)mm!
z4m e−z2

,

∫ ∞
−∞

dz z4m e−z2

=
(4m)!

(2m)!22m
·
√
π , (14)

by performing infinite Gaussian integrals:

Z(~̄)√
~̄π

=
∞∑

m=0

(−3~̄)m

(4!)mm!
· (4m)!

(2m)!22m
= 1− 1

8
(3~̄) +

5 · 7
3 · 27

(3~̄)2 − 5 · 7 · 11

3 · 210
(3~̄)3 + · · · . (15)

The expansion (15) of the partition function shows an essential singularity at ~̄ = 0 -the

classical limit- and it is an asymptotic series. The best approximation to the integral is

reached by keeping a number of terms m0 such that the quotient between two consecutive

terms is of the order of one:∣∣∣∣am0+1

am0

∣∣∣∣ =
(4m0 + 3)(4m0 + 1)

4!(m0 + 1)
|3~̄| ≈ ~̄2m0 ≈ 1 ⇒ m0 ≈

1

2~̄
,

and the error assumed by neglecting higher-order terms is bounded by exp[− 1
2~̄ ].
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It is tempting to explain the pictorial description of the series using Feynman diagram

technology. Writing the partition function in the form,

Z[λ]√
λ/3

=
∑∫ ︷ ︸︸ ︷

(−λ)ϕ4

4!
× · · · × (−λ)ϕ4

4!
m!

e(−
1
2
ϕ2)dϕ , (16)

one discovers the following Feynman rule: there is a single tetravalent vertex with a factor

(−λ). The lower-order terms in the series (15) correspond to the weights of the vacuum

diagrams up to second order in perturbation theory shown in the Table 1.

Vacuum graph Weight Vacuum graph Weight

→ 1

→ − λ
23 → λ2

24

→ λ2

27 → λ2

3·24

3.1.2 Triple well

1. Supersymmetric classical mechanics. The solution to the HJ equation for E = 0 and

U(x) = −1
2
x2(x2−1)2 is: W (x) = ±1

4
(x4−2x2) The superpotential is thus the “sombrero”

potential. The supersymmetric classical Hamiltonian and the supercharges read:

HS =
1

2
p2 +

1

2
x2(x2 − 1)2 ∓ i(3x2 − 1)θ2θ1 , Qα = pθα ∓ x(x2 − 1)εαβθβ .

Although feasible, we shall not attempt to search for trajectories with non-null Grass-

man degrees of freedom. It is interesting, instead, to look at solutions in the “body”

of the related supersymmetric system with flipped potential because of their rôle in the

quantum HS system. The Hamilton characteristic function and the trajectories are given

analytically by hyperelliptic integrals:

W (x;E) =

∫
dx
√
x6 − 2x4 + x2 + 2E ,

∫
dx√

x6 − 2x4 + x2 + 2E
= t+ t0 .

For E = 0, the integrations are easily performed and two kinds of trajectories are found:

• Constant trajectories, the particle sits on the top of the potential: x̄(t) = 0, x̄(t) = ±1.

• Trajectories where the particle starts from a maximum of the potential at t = −∞ and

slowly moves to reach x = ±∞ (infinite action) or another maximum (finite action) at

t = ∞. x2 > 1 : x̄2(t) = 1
1−e±2(t+t0) , x2 < 1, instanton : x̄(t) = ± 1√

1+e±2(t+t0)
.

The constant trajectories are special due to the fact that they are also zero energy

(BPS) classical solutions to HS because the classical supercharges Q± are annihilated by

them for any value of θ±.
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t

x@tD

t

x@tD

x
U@xD

x

W+@xD

x

W-@xD

Figure 3.— (a) Potential energy U(x). (b) Superpotential W±(x). (c) Zero-energy,

finite action, trajectories (instantons).

2. Supersymmetric quantum mechanics. The potential energies arising in HS read:

V̂ (0)(x) =
1

2
(x2(x2 − 1)2 ± ~̄(3x2 − 1)) , V̂ (1)(x) =

1

2
(x2(x2 − 1)2 ∓ ~̄(3x2 − 1)) . (17)

Thus, the zero-energy ground states are:

Ψ
(0)
0 (x) = C

 exp{± (x4

4
−x2

2
)

~̄ }
0

 , Ψ
(1)
0 (x) = C

 0

exp{∓(x4

4
−x2

2
)

~̄ }

 .

The supersymmetric quantum system always has one ground (BPS) state and supersym-

metry is unbroken: if we choose W = x4

4
− x2

2
as superpotential the ground state belongs

to the Fermi subspace - Ψ
(0)
0 is not normalizable-, the choice of W = x2

2
− x4

4
forces a

bosonic ground state whereas Ψ
(1)
0 becomes non normalizable.

Nevertheless, despite unbroken supersymmetry this system has instantons. To analyze

the coexistence of these two phenomena one needs to study how V+ = V̂−
(0)

and V− =

V̂+
(0)

evolve in response to changes in ~̄. The critical points of V±(x) are: x0 = 0,

x±1 = ±
√

2−
√

1±9~̄
3

, x±2 = ±
√

2+
√

1±9~̄
3

.

x±2 are always minima of V+(x), x0 is a minimum of V+ if ~̄ < 1
3

but becomes a

maximum if ~̄ > 1
3
, and x±1 are maxima for ~̄ < 1

3
, not anymore critical point for ~̄ > 1

3
.

Therefore, because V+(x0) > V+(x±2 ), x0 is a false vacuum that decays to the true vacua

x±2 when ~̄ < 1
3
. The decay amplitude can be computed from the classical bounce for

the flipped potential, starting and ending at x0, which is very well approximated by an

instanton-anti-instanton configuration for small values of ~̄. It is remarkable how well this

behavior is described by the ground state wave function ΨG
0 (x); even more remarkable,

ΨG
0 (x) also matches the expected behavior for ~̄ > 1

3
where there is no tunnel effect at

all, see Figure 4.

x0, however, is the absolute minimum of V−(x); if ~̄ < 1
9
, x±2 are also minima of

V−(x), but V−(x0) < V−(x±2 ). If ~̄ > 1
9
x0 is the single critical point (minimum) of V−(x).

Therefore, the eigenfunction of the lowest eigenvalue of the Schrödinger operator with

potential energy V−(x) is approximately a Gaussian centered at x0 = 0:

Ψ
E−

1
− (x) '

(ω−
~̄π

) 1
4 · exp{−ω−

2~̄
x2} , ω− =

√
1 + 3~̄ , E−1 '

~̄
2
(ω− − 1) . (18)
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Figure 4.— Potential energy V+ and BPS wave function ΨG
0 (x) plotted as functions of

x for several values of ~̄: (a) ~̄ = 0.001, (b) ~̄ = 0.1, (c) ~̄ = 2.

Ψ
E−

1
− (x), the first eigenfunction of Hs outside the kernel, lives in the subspace orthogonal

to the subspace of ΨG(x). For ~̄ < 1
9
, Ψ

E−
1
− grows from the decay of the false vacua x±2 ruled

by instantons/anti-instantons now starting and ending at x±2 . Mathematica drawings of

these wave functions are offered in Figure 5.
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Figure 5.— Potential energy V±(x) and wave function ΨE±
1
± (x) plotted as functions of

x for several values of ~̄: (a)(a’) ~̄ = 0.001, (b)(b’) ~̄ = 0.1, (c)(c’)~̄ = 1.

Acting on Ψ
E−

1
− (x) with the supercharge operator Q̂+, an approximate eigenfunction

of HS is obtained in the subspace of ΨG(x). The supersymmetric partner of Ψ
E−

1
− (x) is,

Ψ
E+

1
+ (x) = Q̂+Ψ

E−
1
− (x) =

(
ω−~̄
4π

) 1
4

·(x3−(1−ω−)x)exp[−ω−
2~̄
x2] , E+

1 = E−1 , (19)

and E+
1 is the lowest-lying eigenvalue in the subspace of the zero mode (ground state).

Plots of these “odd” wave functions are shown in Figure 5 for several values of ~̄. The

wave function has a node at the origin.

3. Zero-energy ground state. The dependence of ΨG
0 (x) = exp[− (x4

4
−x2

2
)

~̄ ] on ~̄ is somewhat

involved and can be described analytically through the asymptotic behavior when ~̄ → ~̄c

and ~̄c = 0 is the classical value:

exp
[
− 1

2~̄
(
x4

2
− x2)

]
' lim

~̄c→0
exp

[
− 1

~̄c
(
x4

2
− x2)

]{
1 +

1
~̄2

c

·

(
2~̄

(x4

2 − x2)
− ~̄c

)

+
1− 2~̄c

2~̄4
c

·

(
2~̄

(x4

2 − x2)
− ~̄c

)2

+
1 + 6~̄c(~̄c − 1)

6~̄6
c

·

(
2~̄

(x4

2 − x2)
− ~̄c

)3

+ · · ·

 .

The norm of the BPS ground state ΨG
0 (x) is again a non-Gaussian integral. Denoting
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z = x−1√
~̄
, 2z = ϕ and 3

4
~̄ = β, we obtain:

N(~̄) =

∫
dx exp

{
−x

4

2~̄
+
x2

~̄

}
= e

~̄
2

√
~̄
∫

dz exp

{
− ~̄z4

2
− 2
√

~̄z3 − 2z2

}
. (20)

N(~̄) = Z(~̄) is the partition function for the Euclidean λ(ϕ)4
0-model with spontaneous

symmetry breaking in (0+0)-space time dimensions and the Lagrangian: L = −1
2
ϕ2 −

β
4!
ϕ4 −

√
3β
3!
ϕ3. Performing infinite Gaussian integrals one obtains:

Z[β]

e
2β
3

√
2βπ/3

=
∞∑

m=0

∞∑
k=0

(−β)m

(4!)mm!
· (−

√
3β)2k

(3!)2k(2k)!
· (4m+ 6k)!

(2m+ 3k)!22m+3k

= 1−β
8

+
5 · 7
27 · 3

β2 − 5 · 7 · 11

210 · 3
β3 + · · ·︸ ︷︷ ︸−3 · 5 · 7

26
β2︸ ︷︷ ︸+ · · ·+

+
5

23
β +

5 · 7 · 11

27
β2 +

5 · 7 · 11 · 13 · 17

210 · 3
β3 + · · ·︸ ︷︷ ︸ . (21)

Again, the optimum value of the number of terms of k type can be estimated. Keeping

a fixed but finite value of m = m0 such that m0 << k0, the quotient between two

consecutive k = k0 and k = k0 + 1 terms must be of the order of one:∣∣∣∣am0+k0+1

am0+k0

∣∣∣∣ = 1
(2k0 + 2)(2k0 + 1)

·
[
(4m0 + 6k0 + 6)(4m0 + 6k0 + 5) · · · (4m0 + 6k0 + 1)

(2m0 + 3k0 + 3)(2m0 + 3k0 + 2)(2m0 + 3k0 + 1)

]
× |3β|

(3!)223
≈ 27βk0 ≈ 1 ⇒ k0 ≈

1
27β

,

and the error is bounded by exp[− 1
27β

].

Writing the partition function in the form

Z[β]

e
2β
3

√
4β/3

=
∞∑

m=0

∞∑
k=0

∫ ︷ ︸︸ ︷
(−β)ϕ4

(4!)
× · · · × (−β)ϕ4

4!

m!
·

︷ ︸︸ ︷
(−
√

3β)ϕ3

3!
× · · · × (−

√
3β)ϕ3

3!

(2k)!
e−

1
2
ϕ2

dϕ (22)

one sees that the Feynman rules encompass one tetra-valent vertex and one trivalent

vertex that are proportional respectively to (−β) and −(
√

3β). Four-leg vertices come

from (−β)ϕ4

(4!)
in the integrand of (22); three-leg vertices are due to (−

√
3β)ϕ3

3!
terms in (22)

and only contribute in pairs. Comparison with the ~̄-expansion (15) shows that pictures

of the k = 0 terms are provided by the diagrams shown in Table 1. Diagrams with one

tetra-valent and two three-valent vertices, k = m = 1, shown in Table 2, provide the

second block in the second row in (21). In Table 3 only diagrams with tri-valent vertices,

m = 0, are displayed. Diagrams with two tri-valent vertices contribute: 5
23β, whereas the

contribution of diagrams with four trivalent vertices is: 5·7·11
27 β2.

4 Supersymmetric WKB approximation

The semiclassical regime is characterized by the inequality: ~̄
∣∣∣d2W

dx2 (x)
∣∣∣ << ∣∣dW

dx
(x)
∣∣2 =

|Ω(x) · Ω(x)|2, Ω(x) =
√

2V (x). Thus λ̄
2π

= ~̄√
2V (x)

<<
∣∣∣ 2V (x)
dV/dx

∣∣∣ is satisfied in the limit
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Diagram Weight Diagram Weight

→ −3β2

26 → − 3β2

3·25

→ −3β2

24 → −3β2

22

→ −3β2

23 → − 3β2

3·22

,

Vacuum graph Weight Vacuum graph Weight

→ 3β
23 → 3β

3·22

→ 32β2

27 → 32β2

3·25

→ 32β2

32·25 → 32β2

25

→ 32β2

3·24 → 32β2

24

→ 32β2

25 → 32β2

3·2

of short wave lengths. To obtain the WKB eigen-functions of the SUSY Hamiltonian in,

e.g., the subspace for which the zero Fermi number is zero, one starts from the Wentzel-

Krammers-Brillouin ansatz in the classically forbidden region:

ΨE(x, t) = A(x) · exp[−WE(x)

~̄
] · ei Et

~̄ , E < V (x). (23)

The Schrödinger equation for V+(x) becomes

~̄2

(
d2 lnA

dx2
(x) +

d lnA

dx
(x) · d lnA

dx
(x)

)
− ~̄

(
d2WE

dx2
(x) + 2 lnA(x) · dWE

dx
(x)− dΩ

dx
(x)

)
+WE(x) ·WE(x)− Ω(x) · Ω(x) + 2E = 0 . (24)

The usual WKB strategy starts by solving the equation (24) for the ~̄-independent terms:

WE(x) =
∫
dx
√

Ω(x) · Ω(x)− 2E, with the novelty with respect to the non SUSY case

that the turning points are those corresponding to V (x), rather than those set by the

effective potential V+(x). The second step is to plug this solution into the equation for

the terms proportional to ~̄:

d lnA

dx
(x) =

1

2

[
1√

Ω(x)Ω(x)− 2E
− Ω(x)

Ω(x)Ω(x)− 2E

]
· dΩ
dx

(x) .

Integration of this equation provides the SUSY WKB wave functions:

A(x) ∝ 1

(Ω(x)Ω(x)− 2E)
1
4

·
(
|Ω|(x) +

√
Ω(x)Ω(x)− 2E

) |
2

. (25)

Note the other difference: in the non-SUSY case the numerator of this expression is 1. In

the classical allowed regions, 2E > Ω2(x), however, the WKB ansatz reads,

ψE(x) = A(x)exp[−i |W (x)|
~̄

] , A(x) =
1

[2E − Ω2(x)]
1
4

· exp

[
i

2
arcsin

Ω(x)√
2E

]
(26)
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To match the WKB wave functions (23) and (26) analytically at the classical turning

points x = a < x = b the following supersymmetric quantization rule is required:∫ b

a

dx
[
2E − Ω2(x)

] 1
2 = nπ~̄ n ∈ Z+ . (27)

The appearance of the numerator in (25) is magic: firstly, because this term modifies the

process of analytic continuation necessary to match the exponential and periodic WKB

wave functions at the turning points in such a way that the π
2
~̄ term that appears in

the non SUSY version of (27) does not enter the SUSY case. To obtain the WKB wave

function in the classically allowed region

ψE(x) = e−
√

E
2 ·
√√

2E − Ω2 + iΩ

(2E − Ω2)
1
4

·
{
C1e

i
~̄
R x

b dx′
√

2E−Ω2(x′) + C2e
− i

~̄
R x

b dx′
√

2E−Ω2(x′)
}

from the WKB wave functions in the forbidden regions one chooses paths in the x-complex

plane that goes around the turning points a and b at great distance.

ψE = C

√√
Ω2 − 2E + |Ω|

(Ω2 − 2E)
1
4

· e− 1
~̄
R a

x
dx′
√

Ω2(x′)−2E , ψE = C ′

√√
Ω2 − 2E + |Ω|

(Ω2 − 2E)
1
4

· e− 1
~̄
R x

b
dx′
√

Ω2(x′)−2E

Unlike to the non-SUSY case, there is no e−i π
4 factor left and two wave functions are

obtained in the classically allowed region, one from the left and the other from the right:

ψE(x) = C

√√
2E − Ω2(x) + iΩ(x)

(2E − Ω2(x))
1
4

· cos[
1
~̄

∫ x

b

dx′
√

2E − Ω2(x′)

ψE(x) = C ′

√√
2E − Ω2(x) + iΩ(x)

(2E − Ω2(x))
1
4

· cos[
1
~̄

∫ a

x

dx′
√

2E − Ω2(x′)] .

These expressions are identical if and only if (27) holds. Secondly, E = 0 is a solution

of (27) for n = 0, whereas (23) becomes the exponential of the superpotential: the exact

ground state is a SUSY WKB wave function !

4.1 WKB analysis of the single well

We shall consider as examples non-harmonic oscillators of fourth order to avoid hyper-

elliptic integrals and deal with (slightly!) manageable expressions. In the case of a single

well with potential energy V (x) = λ
2
(x2 + k

λ
)2 we have, using non-dimensional variables:

V (x) = 1
2
(x4 + 2x2 + 1), Ω(x) = x2 + 1, W (x) = x3

3
+ x. The turning points are the real

roots of the quartic equation: x4 +2x2−a = 0 , a = 2E− 1, x± = ±
√
−1 +

√
1 + a. The

supersymmetric quantization rule is therefore:

I(E;x−, x+) =

∫ x+

x−

√
a− x4 − 2x2 dx = nπ~̄ . (28)
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Denoting A± = ±1 +
√

1 + a, the definite integral reads:

I(E;x−, x+) =
4

3

√
A−

(√
a+ 1 K

(
−A−
A+

)
− E

(
−A−
A+

))
, (29)

where K(k2) and E(k2) are respectively the complete elliptic integrals of first and second

type. This result is shown in Figure 6. The first three eigenvalues for ~̄ = 1 and ~̄ = 0.1

are: E1 = 2.18674k2

λ
, E2 = 4.23942 k2

λ
, E3 = 6.5444 k2

λ
, and E1 = 0.64500 k2

λ
, E2 =

0.78289 k2

λ
, E3 = 0.95403 k2

λ
, respectively.
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Figure 6.— Mathematica plot of I as a function of a and intersection with nπ~̄ for low

n and ~̄ = 1 (left) and ~̄ = 0.1 (right)

4.2 WKB analysis of the double well

For a non-harmonic oscillator of fourth order and a double well things are even more

difficult. The potential energy is V (x) = λ
2
(x2− k

λ
)2, such that in non-dimensional variables

we have: V (x) = 1
2
(x4 − 2x2 + 1) , Ω(x) = x2 − 1 , W (x) = x3

3
− x. The turning points

are the real solutions of the quartic equation: x4 − 2x2 − a = 0, x−∓ = −
√

1∓
√

1 + a,

x+∓ =
√

1∓
√

1 + a. For a > 0 there are only two real roots and the supersymmetric

quantization rule reads:

I1 = I(E;x−+, x++) =

∫ x++

x−+

√
a− x4 + 2x2 dx = nπ~̄ . (30)

The computation of I1 is qualitatively identical to the previous case, see Figure 7(left).

If −1 < a < 0 things are more difficult: there are four turning points, four real roots,

and the quantization rule splits into two equations:

I(E;x−−, x+−) =
∫ x+−

x−−

√
a− x4 + 2x2 dx = nπ~̄ , I(E;x−+, x++) =

∫ x++

x−+

√
a− x4 + 2x2 dx = nπ~̄

(31)

These definite integrals I2 = I(E;x−−, x+−) and I3 = I(E;x−+, x++) now read:

I2 = I3 =
2a

3A+

√
A−

[
√
a+ 1

(
K
(
−A+

A−

)
− F

(
arcsin

√
−A−
A+

,
−A+

A−

))

−E
(
−A−
A+

)
+ E

(
arcsin

√
−A−
A+

,
−A+

A−

)]
. (32)

Note that incomplete elliptic integrals of the first, F(u,m), and second, K(u,m), type

also enter. In any case, it is possible to plot these functions of a and find the intersection

points determining the spectrum.
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The first three eigenvalues for a > 0 and ~̄ = 1 are: E1 = 0.82272 k2

λ
, E2 = 2.08330 k2

λ
,

E3 = 5.63830 k2

λ
. In the case of −1 < a < 0 eigenvalues only exist if ~̄ < 0.95. Application

of rule (31) for the turning points on the left gives: E1 = 0.19183 k2

λ
, E2 = 0.36384 k2

λ
,

E3 = 0.49993 k2

λ
. Because of formula (32) the choice of pair of turning points is irrelevant;

E1, E2, E3, etcetera, are eigenvalues of the Schrödinger equation for both V±(x).
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Figure 7.— Mathematica plots of I1 for ~̄ = 1 and a > 0 (left) and I2 for ~̄ = 0.1

and −1 < a < 0 (right) as function of a. The intersection points with nπ~̄ giving the

eigenvalues are also shown.

5 Outlook

The next step is to study physical systems of two degrees of freedom. It is tempting

to start by discussing problems of this type in Hamilton separable systems. Following

the works [12] on supersymmetric quantum mechanics in more than one dimensions,

the general structure of supersymmetric classical and quantum Liouville systems has

been described in References [11]. An important example of this kind of systems is the

supersymmetric classical and quantum hydrogen atom respectively analyzed by Heumann

[14] and Kirchberg et al [15]. It seems also plausible to address similar issues in non-

separable but integrable systems as those proposed in [16].
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