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Introduction

The Wuenschmann invariant is a quantity associated with a 3rd-order differential

equation

y′′′ = F (x, y, y′, y′′).

Set p = y′, q = y′′, and

Γ =
∂

∂x
+ p

∂

∂y
+ q

∂

∂p
+ F

∂

∂q
;

the Wuenschmann invariant is

1

6
Γ2(Fq)−

1

3
FqΓ(Fq)−

1

3
Γ(Fp) +

2

27
F 3

q +
1

3
FpFq + Fy.

It appears that Wuenschmann discovered a method of associating with certain classes

of 3rd-order differential equations a metric of Lorentz signature (+,−,−) on the 3-

dimensional solution space of the equation, determined up to conformal equivalence; the

equations for which this construction is possible are those whose Wuenschmann invariant

vanishes. This result, it is said, appeared in his PhD thesis of 1905. The study of 3rd-

order differential equations, and their possible association with 3-dimensional conformal

structures, was taken up again in the early 1940s by Chern [4] and Cartan [3]; Cartan

mentions Wuenschmann and his result in a footnote in his paper, and this is so far as we

are aware the only known reference to Wuenschmann’s scientific career.

The subject then remained in comparative obscurity until the beginning of the present

century, when Newman and his coworkers, in the course of their programme of formu-

lating general relativity in terms of null surfaces, discovered an association between 4-

dimensional conformal Lorentzian structures and certain systems of partial differential
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equations [9]; they took Wuenschmann’s result as a model for the 4-dimensional case. In-

spired by this, Nurowski has recently discovered and investigated a number of situations

in which there is some relation between differential equations and conformal structures

[13]; see also [10, 14]. In addition, there has been renewed interest recently in the study

of invariants of differential equations per se: see for example [7, 8].

All of these studies are bedevilled to some degree, or so it seems to us, by the com-

plexity of the expressions for the invariants discovered: the Wuenschmann invariant is in

fact one of the simpler ones. There is however a considerable and relevant body of knowl-

edge of geometrical structures associated with systems of 2nd-order ordinary differential

equations, built up in the late 1980s and early 1990s by a group in which Pepin Cariñena

played a significant role, and comprehensively recorded in [11, 12]. Anyone familiar with

the 2nd-order case who looks at the Wuenschmann invariant will recognize some structure

in it: in fact it looks as though it is constructed out of Jacobi endomorphisms and their

dynamical covariant derivatives.

We shall show in this paper that the Wuenschmann invariant does indeed have a sim-

ple expression in such terms. In arriving at this conclusion we had of course to decide how

exactly one should define and calculate the higher-order analogues of the Jacobi endo-

morphism of the 2nd-order case. We should explain first that although the Wuenschmann

invariant is an invariant of a single differential equation, in order to understand the rele-

vant differential geometry it is helpful to deal with systems of equations. Rather to our

surprise, we discovered that there are at least two ways of approaching the construction

of Jacobi endomorphisms for systems of equations of arbitrary order, which coincide in

the 2nd-order case but are distinct for higher-order equations; moreover the one which

comes from the most obvious way of generalizing the approach of [11, 12] to higher-order

equations is not the one best adapted to the problem at hand.

This paper accordingly falls into two parts. The first deals with the matter of the

Jacobi endomorphisms, and occupies Section 1. The derivation of the expression for the

Wuenschmann invariant in terms of Jacobi endomorphisms will be found in Section 2.

1 The Jacobi endomorphisms

We start with a manifold fibred over the real line, say π : E → R, with local coordi-

nates (x, yi), i = 1, 2, . . . , n. We denote by V E the vertical sub-bundle of TE with respect

to π.

Let JNπ denote the Nth jet bundle of π, and (x, yi
0, y

i
1, . . . , y

i
N) its natural jet coor-

dinates. Recall that JNπ is fibred over Jrπ for r = 0, 1, . . . , N − 1, where J0π = E;

the corresponding projections are written πr : JNπ → Jrπ. There is a corresponding
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filtration of TJNπ,

VN ⊂ VN−1 ⊂ · · · ⊂ V1 ⊂ V0 ⊂ TJNπ,

where for N ≥ r ≥ 1, Vr is the vector sub-bundle of TJNπ consisting of tangent vectors

vertical with respect to πr−1, while V0 is the vector sub-bundle consisting of vectors vertical

with respect to π ◦ π0. Thus the fibre of Vr at any point is spanned by the vectors ∂/∂yi
s

for s ≥ r. We can identify VN , and Vr−1/Vr, with π∗0(V E).

We denote by θi
r the contact 1-form dyi

r − yi
r+1dx, 0 ≤ r ≤ N − 1. The type (1, 1)

tensor field S on JNπ given by

S =
N∑

r=1

r
∂

∂yi
r

⊗ θi
r−1

is called the vertical endomorphism.

A differential equation field of order N + 1 is a vector field Γ on JNπ of the form

Γ =
∂

∂x
+ yi

1

∂

∂yi
0

+ yi
2

∂

∂yi
1

+ · · ·+ yi
N

∂

∂yi
N−1

+ F i ∂

∂yi
N

;

such a vector field is a geometrical expression for the system of (N + 1)st-order ordinary

differential equations

yi
N+1 = F i(x, yj, yj

1, . . . , y
j
N), yi

r =
dryi

dxr
.

Evidently TJNπ = 〈Γ〉 ⊕ V0. If furthermore we define θi
N = dyi

N − F idx then {dx, θi
r},

r = 0, 1, . . . , N , is a local basis of 1-forms, and 〈Γ, θi
r〉 = 0, 〈Γ, dx〉 = 1.

A differential equation field defines a dynamical covariant derivative: this is a linear

operator ∇ on sectπ∗0(V E) such that ∇(fX) = f∇X + Γ(f)X, and is determined by

∇
(
∂

∂yi

)
= − 1

N + 1

∂F j

∂yi
N

∂

∂yj
= Γj

i

∂

∂yj
.

The significance of the dynamical covariant derivative can be expressed, albeit a trifle

crudely, in terms of coordinate transformations, as follows. Suppose one carries out a

coordinate transformation of the type appropriate to the bundle structure of E, namely

ȳi = ȳi(x, yj), x̄ = x. Any section X of π∗0(V E) can be written

X = X i ∂

∂yi
= X̄ i ∂

∂ȳi
, where X̄ i =

∂ȳi

∂yj
Xj;

we shall say that quantities that transform in this way transform nicely. Then if the X i

transform nicely, and we set ∇X i = Γ(X i) + Γi
jX

j, the ∇X i transform nicely too.

Now LΓθ
i
r = θi

r+1, r = 0, 1, . . . , N − 1; it follows that the type (1, 1) tensor field LΓS,

considered as a fibre-linear map on TJNπ, maps V0 to itself. Consider the type (1, 1)

tensor field

P =
1

N + 1
(I + LΓS) ,
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restricted to operating on V0. It can be shown that P is a projection operator whose image

is VN . We denote the kernel of P by H ⊂ V0, and call the vector sub-bundle 〈Γ〉 ⊕H the

horizontal distribution of Γ. Then 〈Γ〉⊕H⊕VN = TJNπ. We have the following explicit

expression for P :

P =
∂

∂yi
N

⊗
(
θi

N −
N−1∑
r=0

(
r + 1

N + 1

)
∂F i

∂yj
r+1

θj
r

)
.

We set

φi
N = θi

N −
N−1∑
r=0

(
r + 1

N + 1

)
∂F i

∂yj
r+1

θj
r;

the φi
N transform nicely. A vector field ξ on JNπ is horizontal if and only if 〈ξ, φi

N〉 = 0

(notice that Γ satisfies these conditions).

It would be desirable to break H down into pieces which respect the vertical filtration.

We can do so as follows. Define

φi
r =

1

r + 1
S∗(φi

r+1), r = N − 1, . . . , 0;

the φi
r transform nicely. Now S∗(θi

r) = rθi
r−1, from which it follows that

φi
r = θi

r +
r−1∑
s=0

(Cs
r )

i
jθ

j
s

for some coefficients (Cs
r )

i
j. In particular, φi

0 = θi
0. It is evident that {dx, φi

r} is a local

1-form basis adapted both to the horizontal distribution and the vertical filtration; let

{Γ, ξr
i } be the dual basis. Then

• ξN
i = ∂/∂yi

N , ξr
i ∼ ∂/∂yi

r mod Vr+1, r < N − 1

• ξr
i is horizontal for r < N

• ξr
i = (1/r)S(ξr−1

i )

• if Hr = 〈ξr
i 〉 then Hr ⊂ Vr

• Hr ≡ Vr/Vr+1 ≡ π∗0(V E), r < N − 1

• H = H0 ⊕H1 ⊕ · · · ⊕ HN−1

• H0 ⊕H1 ⊕ · · · ⊕ Hr is a complement to Vr+1 in V0.

We therefore obtain a multiconnection on V0, that is, for each vertical sub-bundle Vr ⊂
V0, a connection or complementary horizontal distribution Hr, these connections being

compatible in the sense that Hr ⊂ Hr+1; here Hr = H0 ⊕H1 ⊕ · · · ⊕ Hr−1.

We now turn to the formulation of the analogue of the Jacobi equation in this context.

The Jacobi equation should be thought of as the linearization of the original system, that

is to say, it is the equation satisfied by, and determining, a connecting vector between
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two neighbouring integral curves of Γ; in short, the Jacobi equation is the equation of Lie

transport, namely [Γ, ξ] = 0, and we can take ξ ∈ V0. We must therefore consider, in the

light of the previous analysis, how best to represent [Γ, ξ].

First of all, every X ∈ sectπ∗0(V E) determines a vector field on JNπ lying in Hr,

which we denote by Xr. We can express [Γ, X0] in terms of its components with respect

to the Hr, where for convenience (but disregarding the nomenclature) we set HN = VN .

We write

[Γ, X0] = (∇X)0 +
N∑

r=1

Φr(X)r :

then ∇ is the dynamical covariant derivative, and each Φr is a section of π∗0(V E ⊗ V E∗),

or loosely speaking a type (1, 1) tensor field along π0. It is in fact enough to know [Γ, X0],

since for 1 ≤ r < N

[Γ, Xr] = −Xr−1 + (∇X)r +
N∑

s=r+1

 s

r

Φs−r(X)s.

To see this, notice that

r[Γ, Xr] = [Γ, S(Xr−1)] = LΓS(Xr−1) + S([Γ, Xr−1] = −Xr−1 + S([Γ, Xr−1]

since Xr−1 is horizontal; then use induction. Finally

[Γ, XN ] = −XN−1 + (∇X)N .

We can return now to consideration of the Jacobi equation. Set

ξ = (X0)
0 + (X1)

1 + · · ·+ (XN)N , Xr ∈ sectπ∗0(V E).

Then

[Γ, ξ] = (∇X0)
0 + Φ1(X0)

1 + Φ2(X0)
2 + · · · · · · + ΦN(X0)

N

−(X1)
0 + (∇X1)

1 + 2Φ1(X1)
2 + · · · · · · + kΦN−1(X1)

N

− (X2)
1 + (∇X2)

2 + · · · · · · + k′ΦN−2(X2)
N

...

− (XN)N−1 + (∇XN)N

(where k, k′ are numerical coefficients). Thus for [Γ, ξ] = 0

X1 = ∇X0

X2 = ∇X1 + Φ1(X0)

X3 = ∇X2 + 2Φ1(X1) + Φ2(X0)
...

...

XN = ∇XN−1 + · · ·

∇(XN) = NΦ1(XN−1) + · · ·
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Everything can be expressed in terms of X0 = X say, which must satisfy an equation of

the form

∇N+1X + Ψ1(∇N−1X) + Ψ2(∇N−2X) + · · ·+ ΨN(X) = 0

where Ψr is an expression in the Φs and their∇-derivatives, which is complicated in all but

low order cases. This is the Jacobi equation, and the coefficients Ψr are therefore justly

called the Jacobi endomorphisms; but to obtain them via the obvious vertical projection

operator P is not entirely straightforward.

There is however another, better, method of obtaining them.

The dynamical covariant derivative ∇ can be made to act on n-tuples of 1-forms αi

which transform nicely, as follows:

∇αi = LΓα
i + Γi

jα
j, Γi

j = − 1

N + 1

∂F i

∂yj
N

;

as before, the fact that the αi transform nicely and the properties of the Γi
j mean that the

∇αi transform nicely too. Alternatively, one can note that saying that the αi transform

nicely is equivalent to saying that ∂/∂yi ⊗ αi is a section of π∗0(V E) ⊗ T ∗JNπ (a V E-

valued 1-form on JNπ, if you will); we can make ∇ act on sect π∗0(V E) ⊗ T ∗JNπ by

∇(X ⊗ α) = (∇X) ⊗ α + X ⊗ LΓα. Moreover, the θi
0 transform nicely: it is easy to

see that θ̄i
0 = (∂ȳi/∂yj)θj

0. Alternatively, note that ∂/∂yi ⊗ θi
0 is a well-defined section

of π∗0(V E) ⊗ T ∗JNπ, specified as a map as follows: it maps a vector field on JNπ into

sectπ∗0(TE) by projection, then takes the vertical component of the result with respect

to the canonical splitting of π∗0(TE) defined by the total derivative.

We may therefore define 1-forms Θi
r, 0 ≤ r ≤ N by

Θi
r+1 = ∇Θi

r, Θi
0 = θi

0;

such 1-forms will transform nicely. Since LΓθr = θr+1,

Θi
r = θi

r +
r−1∑
s=0

(Cs
r )

i
jθ

j
s

for some coefficients (Cs
r )

i
j. In fact it is not difficult to see, by induction, that

Θi
r = θi

r + rΓi
jθ

j
r−1 +

r−2∑
s=0

(Cs
r )

i
jθ

j
s.

Thus {dx,Θi
r}, 0 ≤ r ≤ N , is a new adapted basis, {Θi

N} defines a new horizontal

distribution, and we have a new multiconnection.

The ∇Θi
N must be linearly dependent on the Θi

r, 0 ≤ r ≤ N : say

∇Θi
N + (Ψ0)

i
jΘ

j
N + (Ψ1)

i
jΘ

j
N−1 + · · ·+ (ΨN)i

jΘ
j
0 = 0.
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In fact Ψ0 = 0:

Θi
N = θi

N +NΓi
jθ

j
N−1 +

N−2∑
s=0

(Cs
r )

i
jθ

j
s,

whence ∇Θi
N = LΓθ

i
N + (N + 1)Γi

jθ
j
N + · · · ; now

LΓθ
i
N = dF i − Γ(F i)dx =

∂F i

∂yj
N

θj
N + · · · ;

but
∂F i

∂yj
N

+ (N + 1)Γi
j = 0,

and the result follows. Clearly

∇Θi
N + (Ψ1)

i
jΘ

j
N−1 + · · ·+ (ΨN)i

jΘ
j
0 = 0

∇N+1Θi
0 + (Ψ1)

i
j∇N−1Θj

0 + · · ·+ (ΨN)i
jΘ

j
0 = 0

is the Jacobi equation in dual form. In fact, suppose that [Γ, ξ] = 0, where ξ =
∑N

r=0(Ξr)
r.

Then 〈ξ,Θi
r〉 = Ξi

r, and so

Γ(Ξi
r) = Γ〈ξ,Θi

r〉 = 〈ξ,LΓΘi
r〉 = 〈ξ,Θi

r+1 − Γi
jΘ

j
r〉,

whence ∇Ξr = Ξr+1 for r < N , and

∇ΞN + Ψ1(ΞN−1) + · · ·+ ΨN(Ξ0) = 0

as required.

To confirm that the two methods really are different we consider the 3rd-order case.

For the first method we have the adapted basis

φi
2 = θi

2 −
2

3

∂F i

∂yj
2

θj
1 −

1

3

∂F i

∂yj
1

θj
0

φi
1 = θi

1 −
1

3

∂F i

∂yj
2

θj
0

φi
0 = θi

0,

and the Jacobi equation ∇3X + 3Φ1(∇X) + ∇Φ1(X) + Φ2(X) = 0; thus Ψ1 = 3Φ1,

Ψ2 = Φ2 +∇Φ1.

For the second method the adapted basis is

Θi
0 = θi

0

Θi
1 = θi

1 −
1

3

∂F i

∂yj
2

θj
0

Θi
2 = θi

2 −
2

3

∂F i

∂yj
2

θj
1 −

1

3

(
Γ

(
∂F i

∂yj
2

)
− 1

3

∂F i

∂yk
2

∂F k

∂yj
2

)
θj
0,

and the Jacobi equation is of course ∇3X + Ψ1(∇X) + Ψ2(X) = 0.
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The equality of φi
1 and Θi

1 holds for all orders, and we see that for 2nd-order the two

methods agree, but not for any higher order.

The account of the first method given here is based in the first place, for the definition

and properties of P , on [6], and secondly, for the multiconnection construction, on [15].

Method 2 was given originally for 4th-order equations in [1]; the simple extension to

arbitrary order is given here (so far as we know) for the first time. It appears, though

this observation is based entirely on the comparison of quoted formulas in the 3rd-order

case, that method 2 is closely related in its results to Chern’s theory of higher-order path

spaces [5]; Chern’s approach, however, is completely different, being based on Cartan’s

method of equivalence (indeed, the paper referred to is dedicated to Cartan on his 70th

birthday). We should also mention the contribution of de León and his co-workers [2]: this

paper contains a construction of a distribution Hr complementary to Vr for all r, which

seems to contain elements of both of our methods; however, this construction does not

produce a multiconnection, since the compatibility condition Hr ⊂ Hr+1 is not satisfied.

2 The Wuenschmann condition

We now turn to consideration of the relation between 3-dimensional Lorentzian con-

formal geometry and 3rd-order ordinary differential equations which gives rise to the

Wuenschmann condition.

We begin with a simple example: null 2-planes in 3-dimensional Minkowski space. We

consider R3, with coordinates (t0, t1, t2), and with (the conformal class of) the Minkowski

metric

(dt0)2 − (dt1)2 − (dt2)2.

A 2-plane a0t
0 +a1t

1 +a2t
2 = c is null if and only if its normal covector (a0, a1, a2) is null,

that is, if and only if a2
0 − a2

1 − a2
2 = 0. The set of null 2-planes is 2-dimensional; we can

for example parametrize those null 2-planes for which a0 6= 0 with two parameters x, y

by

y = t0 + (cos x)t1 + (sinx)t2.

Then fixing (x, y) gives a null 2-plane in 3-dimensional Minkowski space. Fixing (ta), on

the other hand, leads to a curve in the (x, y) plane. Clearly such curves are solutions

of the third-order differential equation y′′′ + y′ = 0; and converesly every solution of this

equation determines a null 2-plane. So we have an association between the null 2-planes

and a third-order differential equation.

The association is in fact rather stronger than is immediately apparent, because the

set of 2-planes determines the conformal structure, in the following sense. Consider the

components of the contravariant metric gab = gab(tc) as unknown. Then the condition for
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the covector (1, cosx, sin x) to be null is that for all x

g00 + (cos x)2g11 + (sinx)2g22

+ 2(cos x)g01 + 2(sin x)g02 + 2(cos x sin x)g12 = 0.

By differentiating repeatedly with respect to x one obtains a set of simultaneous equations

for the 6 unknowns gab. The first five of these are satisfied if and only if g11 = g22 = −g00,

gij = 0, i 6= j; the sixth, and all subsequent ones, are linearly dependent on the first five.

This example illustrates how given a particular 3-dimensional Lorentzian conformal

structure one can obtain a 3rd-order ordinary differential equation. The obvious converse

question is whether given any 3rd-order ordinary differential equation one can construct

an associated 3-dimensional Lorentzian conformal structure. In general one cannot: in

order that one can do so the equation must satisfy the Wuenschmann condition. We now

address this question.

Suppose given a 3rd-order ordinary differential equation y′′′ = F (x, y, y′, y′′). Its gen-

eral solution depends on 3 constants ta, and can be written y = Z(x, ta). On the other

hand, on fixing x and y we obtain a 2-surface in the 3-dimensional space with coordinates

(ta). The question is, can we find a Lorentzian conformal structure on this 3-dimensional

space for which the surfaces of the 2-parameter family y = Z(x, ta) are null; in other

words, can we find gab(tc) such that

gab ∂Z

∂ta
∂Z

∂tb
= 0,

where gba = gab and the symmetric bilinear form (gab) is non-singular and of Lorentz

signature?

In order that we can use the geometric methods of the first section in this problem we

must consider the fibred manifold π : R2 → R and the jet bundle J2π. We use coordinates

x, y, p = y′, q = y′′; the differential equation is represented by the vector field

Γ =
∂

∂x
+ p

∂

∂y
+ q

∂

∂p
+ F

∂

∂q
.

The space of coordinates (ta) is the path space P = J2π/Γ; we denote by τ the projection

J2 → P . (Considered globally, the path space need not be a manifold; but all of our

considerations are local, so we ignore this difficulty.)

The conformal structure, if it exists, will be defined on P ; we would prefer however

to work on J2π. We can in fact transfer the problem to J2π, as follows. Consider a

symmmetric contravariant 2-tensor ĝ on J2π such that LΓĝ = 0. Then for any 1-forms φ,

ψ on P , Γ(ĝ(τ ∗φ, τ ∗ψ)) = 0, so g(φ, ψ) = ĝ(τ ∗φ, τ ∗ψ) defines a symmmetric contravariant

2-tensor on P . Moreover, every symmmetric contravariant 2-tensor on P can be obtained

in this way, as we now show. Define new coordinates (t0, ta) = (tα) on J2π (α = 0, 1, 2, 3)
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by

x = t0, y = Z(t0, ta), p =
∂Z

∂t0
, q =

∂2Z

∂(t0)2
.

Then

dy − pdx =
∂Z

∂ta
dta

dp− qdx =
∂2Z

∂t0∂ta
dta

dq − Fdx =
∂3Z

∂(t0)2∂ta
dta;

all are semi-basic with respect to τ . It follows that

Γ =
∂

∂t0
,

as indeed one would expect; so

LΓĝ = 0 ⇐⇒ ∂ĝαβ

∂t0
= 0.

Thus starting with g we may take ĝab = gab and (for example) ĝ0α = 0.

We must express the condition

gab ∂Z

∂ta
∂Z

∂tb
= 0

in terms of ĝ. But
∂Z

∂ta
dta = dy − pdx = θ0,

so ĝ must satisfy ĝ(θ0, θ0) = 0.

We shall now assume that there is a symmetric contravariant 2-tensor ĝ on J2π such

that LΓĝ = 0 and ĝ(θ0, θ0) = 0, and attempt to characterize ĝ.

We use the 1-forms Θr where Θ0 = θ0 and Θr+1 = ∇Θr, so that LΓΘr = Θr+1+ 1
3
FqΘr.

We also have at our disposal the dual Jacobi equation Θ3 = ∇Θ2 = −(Ψ1Θ1 + Ψ2Θ0).

The following argument is similar in concept to the one we used in the example to show

that the null 2-planes determine the conformal Minkowski metric; it is now carried out

on J2π, however. We take the Lie derivative of the condition ĝ(Θ0,Θ0) = 0, to obtain

ĝ(Θ1 + 1
3
FqΘ0,Θ0) = 0 =⇒ ĝ(Θ0,Θ1) = 0.

Continuing in this way:

ĝ(Θ0,Θ0) = 0;

ĝ(Θ0,Θ1) = 0;

ĝ(Θ0,Θ2) + ĝ(Θ1,Θ1) = 0;

ĝ(Θ0,Θ3) + 3ĝ(Θ1,Θ2) = 0

=⇒ ĝ(Θ1,Θ2) = 0;

ĝ(Θ1,Θ3) + ĝ(Θ2,Θ2) = 0

=⇒ −Ψ1ĝ(Θ1,Θ1) + ĝ(Θ2,Θ2) = 0.
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We now have

ĝ(Θ0,Θ2) = −ĝ(Θ1,Θ1), ĝ(Θ2,Θ2) = Ψ1ĝ(Θ1,Θ1), ĝ(Θr,Θs) = 0 otherwise;

thus every component ĝ(Θr,Θs) is determined in terms of ĝ(Θ1,Θ1). We still have to

consider the components of ĝ involving dx. We may take ĝ(dx, dx) = ĝ(dx,Θr) = 0; since

LΓdx = 0, and LΓΘr is a linear combination of the Θr, these choices are consistent.

There is one consistency condition, coming from the derivative of the equation ĝ(Θ2,Θ2)

= Ψ1ĝ(Θ1,Θ1): it is

2ĝ(Θ2,Θ3) = Γ(Ψ1)ĝ(Θ1,Θ1) + 2Ψ1ĝ(Θ1,Θ2),

or equivalently

−2Ψ2ĝ(Θ2,Θ0) = 2Ψ2ĝ(Θ1,Θ1) = Γ(Ψ1)ĝ(Θ1,Θ1).

Thus in order that there should be a non-trivial solution ĝ to the problem the condition

Γ(Ψ1) = 2Ψ2 must be satisfied. This is the Wuenschmann condition. A type (1, 1) tensor

along the projection in 1 dimension is a function, so it is permissible, and would be better,

to write the condition as

∇Ψ1 = 2Ψ2.

Finally, we must choose ĝ(Θ1,Θ1): we must have

Γ(ĝ(Θ1,Θ1)) = 2
3
Fqĝ(Θ1,Θ1),

so we take ĝ(Θ1,Θ1) = −z2 (the choice of sign here determines the signature of the metric

(gab)) where z is any nowhere-vanishing solution of the equation

Γ(z) =
∂z

∂t0
= 1

3
Fqz.

We can write this equation as ∇z = 0.

We draw the following conclusions from this analysis.

Theorem Given a 3rd-order differential equation field Γ we can define a symmetric

contravariant 2-tensor ĝ on J2π by taking any nowhere-vanishing solution z of the partial

differential equation ∇z = 0 and setting

ĝ(Θ1,Θ1) = −ĝ(Θ0,Θ2) = −z2, ĝ(Θ2,Θ2) = −Ψ1z
2,

with all other components zero. In terms of the vector field basis {Γ, U r} dual to the

1-form basis {dx,Θr}

ĝ = z2
(
(2U0 −Ψ1U

2)� U2 − U1 � U1
)
.
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Then if the Wuenschmann condition ∇Ψ1 = 2Ψ2 holds, ĝ will be Γ-invariant, and will

define a metric of Lorentz signature on the path space; and the 2-surfaces y = Z(x, ta),

x, y constant, will be null with respect to this metric. Since the solutions of the partial

differential equation for z are determined only up to multiplication by a non-vanishing

function constant along the flow of Γ, the metrics on the path space constructed in this

manner are conformal.

Conversely, given a conformal class of Lorentz metrics on a 3-manifold and a suitable

2-parameter family of null 2-surfaces one can construct a differential equation field and a

symmmetric covariant 2-tensor ĝ on J2π as above; then ĝ will be Γ-invariant, and so the

Wuenschmann condition must hold.

We have asserted that the Wuenschmann invariant may be expressed in terms of the

Jacobi endomorphisms of the differential equation as ∇Ψ1−2Ψ2. It may be checked (with

a little effort) that when expanded out in terms of F this is indeed the expression given in

the introduction. Moreover, it is now clear that the Wuenschmann invariant is indeed an

invariant, so far as coordinate transformations of the (rather restricted) form ȳ = ȳ(x, y),

x̄ = x are concerned. It is also clear, however, that there are numerous opportunities

for varying the association between differential equations and conformal structures: for

example one can change the coordinates in the path space, change the parametrization of

the null surfaces, and indeed choose quite a different family of null surfaces to characterize

the conformal structure. The overall effect of all these possibilities is that the association

is with contact classes of differential equations, and the Wuenschmann condition is a

condition on such classes, or in other words the Wuenschmann invariant is a relative

invariant of contact transformations. We mention this point (which is discussed more

fully in [13]) for completeness’ sake.

The argument leading to the theorem above is based on one given by Newman et al.

in [9]; however, our use of the invariant methods of Section 1 gives an improved result,

namely a simple and illuminating expression for the Wuenschmann condition which is

manifestly invariant under a relevant if restricted class of coordinate transformations.

There is a final twist to our story. Recall that Ψ1 = 3Φ1, Ψ2 = Φ2 +∇Φ1; thus

∇Ψ1 − 2Ψ2 = ∇Φ1 − 2Φ2,

and so the Wuenschmann invariant turns out unexpectedly to have the same expression

in terms of the Φr and the Ψr after all.
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